

By Mostafa El-koumy

Introduction

to

USB

?

ORIGINAL MOTIVATION

 merging of computing and communication.

 Flexibility.

 Ease of using by an end user.

 High speed.

 Port expansion.

USB SPEEDS

 High Speed - 480 Mbits/s.

 Full Speed - 12 Mbits/s.

 Low Speed - 1.5 Mbits/s.

 USB version 1 supports Low and Full speeds.

 USB 2.0 that in our hands today supports the

three speeds.

USB BUS

 USB is host controlled so only one host can per
bus and does not support any form of multi-
master arrangement.

 The USB host is responsible for undertaking all
transactions and scheduling bandwidth.

 Data can be sent by various transaction methods
using a token-based protocol.

 The starting of implementation of USB idea was
by Apple As Apple Desktop Bus (ADB).

USB TOPOLOGY

 Star topology

 Host is responsible for powering the nodes if

there is no alternate power source.

 Up to 127 devices can be attached to USB bus at

once.

 It uses 4 shielded wires such that two are power

(+5v & GND) and The remaining two are twisted

pair differential data signals.

 USB supports plug & play with dynamically

loadable and unloadable drivers.

 The loading of the appropriate driver is done

using a PID/VID (Product ID/Vendor ID)

combination.

 The VID is supplied by the USB Implementer's

forum.

 Some organizations provide a extra VID for non-

commercial activities such as teaching, research.

 USB supports Control, Interrupt, Bulk and

Isochronous transfers.

 Data on the USB bus is transmitted LSb first.

Connection

?

?

 All devices have an upstream connection to the

host or hub and all hosts and hubs have a

downstream connection to the device.

 There are commonly two types of connectors,

called type A and type B which are shown below.

 Type A plugs always face upstream and Type B

sockets are found on devices.

 Type Mini was made for handheld devices (A&B).

 USB uses a differential transmission pair for data.

This is encoded using NRZI and is bit stuffed to

ensure adequate transitions in the data stream.

 The speed of USB bus is known by the applied voltage

on the bus using built in pull-up resistor.

 A USB device will enter suspend state when there is

no activity on the bus for greater than 3.0 ms. It then

has a further 7 ms to shutdown the device.

 so USB has a start of frame packet or keep alive sent

periodically on the bus. This prevents an idle bus

from entering suspend mode in the absence of data.

SUSPEND SORTS

 Global Suspend

 used when the entire USB bus
 enters suspend mode collectively.

 Selective suspend

 selected devices can be
suspended by sending a command to the hub.

 The device will resume operation when it receives
any non idle signaling. If a device has remote
wakeup enabled then it may signal to the host to
resume from suspend.

Inside

?

?

USB

USB TRANSACTION
 Each one consists of :-

 Token Packet (Header defining).

 Optional Data Packet, (Containing the data payload).

 Status Packet (Used to acknowledge transactions and to
provide a means of error correction).

 Because of the USB bus is a host centric bus. The host
initiates all transactions.

 The first packet, also called a token is generated by
the host to describe what is to follow and whether the
data transaction will be a read or write and what the
device’s address and designated endpoint is.

 The next packet is generally a data packet carrying
the payload and is followed by an handshaking
packet, reporting if the data or token was received
successfully, or if the endpoint is stalled or not
available to accept data.

Common

USB

Packet

?
Field

SYNC

 All packets must start with a sync field.

 The sync field is 8 bits long at low and full speed

or 32 bits long for high speed and it may be

shorter.

 It is used to synchronize the clock of the receiver

with that of the transmitter.

 The last two bits indicate to the end of the SYNC

field and, by inference, the start of the PID

PID

 PID stands for Packet Identifier and This field is

used to identify the type of packet that is being

sent.

 There are 4 bits to the PID and to insure it is

received correctly, the 4 bits are complemented

and repeated, making an 8 bit PID in total. The

resulting format is shown below.

ADDR

 The address field specifies which device the

packet is designated for.

 It is 7 bits long that means 127 devices can be

supported.

 Address 0 is not valid and any attached device

that not yet has an address must respond to

packets sent to address zero.

ENDP

 The endpoint field is made up of 4 bits, allowing

16 possible endpoints.

 Low speed devices have only 4 possible endpoint

max.

FRAME NUMBER

 Frame number is 11-bit field that is incremented

by the host on a per-frame.

 Max number is 7FF H (2047).

 It is sent only in SOF tokens at the start of each

frame.

DATA FIELD (PAYLOAD)

 The data field may range from zero to 1024 bytes

and must be an integral number of bytes.

 Data bits within each byte are shifted out LSb

first.

CRC

 Cyclic Redundancy Checks are performed on the

data within the packet payload.

 All token packets have a 5 bit CRC.

 Data packets have a 16 bit CRC.

EOP

 End of packet is Signaled by a Single Ended Zero

(SE0) for approximately 2 bit times followed by a

J for 1 bit time.

USB

Packets

Type

?

USB HAS FOUR DIFFERENT PACKET TYPES

 Token packets - indicate the type of transaction

to follow.

 Data packets - contain the payload.

 Handshake packets - are used for

acknowledging data or reporting errors.

 Start of frame packets - indicate the start of a

new frame.

TOKEN PACKETS

 There are three types of token packets:-

 In - Informs the USB device that the host wishes

to read information.

 Out - Informs the USB device that the host wishes

to send information.

 Setup - Used to begin control transfers.

 Token Packets must conform to the following

format.

DATA PACKETS

 There are two types of data packets each capable

of transmitting up to 1024 bytes of data.

 DATA0

 DATA1

 High Speed mode defines another two data PIDs,

DATA2 and MDATA.

 Data packets have the following format

DATA PACKETS (CON’T)

 Maximum data payload size for low-speed devices

is 8 bytes.

 Maximum data payload size for full-speed devices

is 1023 bytes.

 Maximum data payload size for high-speed

devices is 1024 bytes.

 Data must be sent in multiples of bytes (integral

number).

HANDSHAKE PACKETS

 There are 3 types of handshake packets which

consist simply of the PID

 ACK - Acknowledgment that the packet has been

successfully received.

 NAK - Reports that the device temporary cannot

send/receive data. Also used during interrupt

transactions to inform the host there is no data to

send.

 STALL - The device finds its in a state that it

requires intervention from the host.

 Handshake Packets have the following format

START OF FRAME PACKETS (SOF)

 The SOF packet consisting of an 11-bit frame

number is sent by the host every 1ms ± 500ns on

a full speed bus or every 125 µs ± 0.0625 µs on a

high speed bus.

USB

Functions

?

 USB devices which provide a capability or function such as
a Printer, Zip Drive, Scanner, Modem or other peripheral
called a function.

 Most functions will have a series of buffers, Each buffer
will belong to an endpoint - EP0 IN, EP0 OUT etc.

 For example, the host sends a device descriptor request.
The function hardware will read the setup packet and
determine from the address field ,it will copy the payload of
the following data packet to the appropriate endpoint
buffer dedicated by the value in the endpoint field of the
setup token.

 It will then send a handshake packet to acknowledge the
reception of the byte and generate an internal interrupt
within the semiconductor/micro-controller for the
appropriate endpoint signifying it has received a packet.
This is typically all done in hardware.

 The software now gets an interrupt, and should read the
contents of the endpoint buffer and parse the device
descriptor request.

USB

Endpoints

?

 Endpoints can be described as sources or sinks of
data.

 Endpoints can also be seen as the interface
between the hardware of the function device and
the firmware running on the function device.

 For example, data is flowing out from the host, it
will end up in the EP1 OUT buffer. Your
firmware will then read this data. If it wants to
return data, the function cannot simply write to
the bus as the bus is controlled by the host.
Therefore it writes data to EP1 IN which sits in
the buffer until such time when the host sends a
IN packet to that endpoint requesting the data.

 All devices must support endpoint zero. This is
the endpoint which receives all of the devices
control and status requests during enumeration
and if the device not yet has an address.

RELATIONSHIP BETWEEN FUNCTION AND

ENDPOINT

USB

Pipes

?

 While the device sends and receives data on a

series of endpoints, the client software transfers

data through pipes.

 A pipe is a logical connection between the host

and endpoint(s).

 Pipes will also have a set of parameters

associated with them such as:

 Bandwidth allocated to it.

 Transfer type (Control, Bulk, Isochronous or

Interrupt) it uses,

 Direction of data flow.

 maximum packet/buffer sizes.

USB DEFINES TWO TYPES OF PIPES

 Stream Pipes

 have no defined USB format, that is you can send any type

of data down a stream.

 Data flows sequentially and has a pre-defined direction,

either in or out.

 Stream pipes supports bulk, isochronous and interrupt

transfer types.

 Stream pipes can either be controlled by the host or device.

 Message Pipes

 have a defined USB format.

 host controlled, which are initiated by a request sent from

the host.

 Data is then transferred in the desired direction, dictated by

the request.

 Message pipes allow data to flow in both directions but will

only support control transfers.

Endpoints

Types

?

Interrupt

Transfers

Bulk

Transfers

Isochronous

Transfers

Control

Transfers

CONTROL TRANSFERS

 Control transfers are typically used for command

and status operations.

 They are essential to setup a USB device with all

enumeration functions being performed using

control transfers.

 They are typically bursty, initiated by the host

and use best effort delivery.

 The packet length of control transfers in low

speed devices must be 8 bytes, high speed devices

allow a packet size of 8, 16, 32 or 64 bytes and

full speed devices must have a packet size of 64

bytes.

Control

Transfer

?

setup

Status

Data

1- SETUP STAGE

 Held when the request is sent.

 consists of three packets.

 The setup token is sent first which contains the
address and endpoint number.

 The data packet is sent next and always has a PID
type of DATA0 and includes a setup packet which
details the type of request.

 The last packet is a handshake used for
acknowledging successful receipt or to indicate an
error.

 If the function successfully receives the setup data
(CRC and PID etc OK) it responds with ACK,
otherwise it ignores the data and doesn’t send a
handshake packet.

 Functions cannot issue a STALL or NAK packet in
response to a setup packet.

2- DATA STAGE

 Optional and consists of one or multiple IN or

OUT transfers.

 The setup request indicates the amount of data

to be transmitted in this stage, If it exceeds the

maximum packet size, data will be sent in

multiple transfers each being the maximum

packet length except for the last packet.

 Data stage has two different scenarios depending

upon the direction of data transfer (IN / OUT).

IN-TRANSFER

 When the host is ready to receive control data it

issues an IN Token.

 If the function receives the IN token with an

error e.g. the PID doesn't match the inverted PID

bits, then it ignores the packet.

 If the token was received correctly, the device can

either reply with a DATA packet containing the

control data to be sent, a stall packet indicating

the endpoint cannot send and needs help or a

NAK packet indicating to the host that the

endpoint is working, but temporarily has no data

to send.

OUT-TRANSFER

 When the host needs to send the device a control
data packet, it issues an OUT token followed by a
data packet containing the control data as the
payload.

 If any part of the OUT token or data packet is
corrupt then the function ignores the packet.

 If the function's endpoint buffer was empty and
it has clocked the data into the endpoint buffer it
issues an ACK informing the host it has
successfully received the data.

 If the endpoint buffer is not empty due to
processing of the previous packet, then the
function returns a NAK.

3- STATUS STAGE

 reports the status of the overall request and this once
again varies due to direction of transfer.

 Status reporting is always performed by the function.

 IN: If the host sent IN token(s) during the data stage
to receive data, then the host must acknowledge the
successful receipt of this data.

 This is done by the host sending an OUT token
followed by a zero length data packet.

 The function can now report its status in the
handshaking stage.

 An ACK indicates the function has completed the
command is now ready to accept another command. If
an error occurred during the processing of this
command, then the function will issue a STALL.

 OUT: If the host sent OUT token(s) during the

data stage to transmit data, the function will

acknowledge the successful receipt of data by

sending a zero length packet in response to an IN

token.

 However if an error occurred, it should issue a

STALL or if it is still busy processing data, it

should issue a NAK asking the host to retry the

status phase later.

Example

?

THE HOST WANTS TO REQUEST A

DEVICE DESCRIPTOR DURING

ENUMERATION

PROCEDURE

 The host will send the Setup token telling the

function that the following packet is a Setup packet.

 The Address field will hold the address of the device

which the host is requesting the descriptor from.

 The endpoint number should be zero, specifying the

default pipe.

 The host will then send a DATA0 packet. This will

have an 8 byte payload which is the Device Descriptor

Request (Low Speed).

 The USB function then acknowledges the setup

packet has been read correctly with no errors.

 If the packet was received corrupt, the device just

ignores this packet and The host will then resend the

packet after a short delay

 The above three packets represent the first USB

transaction.

 The USB device will now decode the 8 bytes

received, and determine if it was a device

descriptor request.

 The device will then attempt to send the Device

Descriptor, which will be the next USB

transaction.

DATA STAGE

 In this case, we assume that the maximum

payload size is 8 bytes.

 The host sends the IN token, telling the device it

can now send data for this endpoint.

 As the maximum packet size is 8 bytes, we must

split up the 12 byte device descriptor into chunks

to send, Each chunk must be 8 bytes except for

the last transaction.

 The host acknowledges every data packet we

send it.

DATA STAGE (CON’T)

STATUS STAGE

 Once the device descriptor is sent, a status

transaction follows.

 If the transactions were successful, the host will

send a zero length packet indicating the overall

transaction was successful.

 The function then replies to this zero length

packet indicating its status (ACK, STALL, NAK).

Interrupt

Transfer

?

 Through USB the device cannot take the

attention of the Host, it must wait until the host

polls it to tell it the urgent.

 Non-periodic communication.

 Interrupt request is queued by the device until

the host polls the USB device asking for data.

 Max data payload size for low-speed devices is 8 bytes.

 Max data payload size for full-speed devices is 64 bytes.

 Max data payload size for high-speed devices is 1024 bytes

Isochronous

Transfer

?

 Isochronous transfers occur continuously and

periodically.

 They typically contain time sensitive

information, such as an audio or video stream.

 Guaranteed access to USB bandwidth.

 Bounded latency.

 Stream Pipe – Unidirectional transfer.

 Error detection via CRC, but no retry or

guarantee of delivery.

 Full & high speed modes only.

 No data toggling.

 Don’t have a handshake stage.

Bulk

Transfer

?

 can be used for large bursty data, Such as print-job
sent to a printer or an image generated from a
scanner.

 It provides error correction in the form of a CRC16
field on the data payload and error detection/re-
transmission mechanisms ensuring data is
transmitted and received without error.

 Bulk transfers will use spare un-allocated bandwidth
on the bus.

 It should only be used for time insensitive
communication as there is no guarantee of latency.

 only supported by full and high speed devices.

 For full speed endpoints, max bulk packet size is 8,
16, 32 or 64 bytes long.

 For high speed endpoints, max packet size can be up
to 512 bytes long.

 If the data payload falls short of the maximum packet
size, it doesn't need to be padded with zeros.

Bandwidth

Management

?

 The host is responsible for managing the bandwidth
of the bus.

 This is done at enumeration when configuring
Isochronous and Interrupt Endpoints and throughout
the operation of the bus (if found).

 no more than 90% of any frame to be allocated for
periodic transfers (Interrupt and Isochronous) on a
full speed bus.

 On high speed buses this limitation gets reduced to no
more than 80% of a micro-frame can be allocated for
periodic transfers.

 So you can quite quickly see that if you have a highly
saturated bus with periodic transfers, the remaining
10% is left for control transfers and once those have
been allocated, bulk transfers will get their slice of
what is left.

USB

Descriptors

?

Interface

string

Endpoint

Confugur

-ation

Device

DEVICE DESCRIPTOR

 Each device should have one device descriptor.

 Includes information about:-

 USB revision number.

 Product ID.

 Vendor ID.

 Number of configuration descriptor the device have.

 Product and vendor IDs of device descriptor helps

to load the appropriate device driver to operate it.

CONFIGURATION DESCRIPTOR

 The configuration descriptor specifies values such
as the amount of power this particular
configuration uses.

 if the device is self or bus powered and the
number of interfaces it has.

 When a device is enumerated, the host reads the
device descriptors and can make a decision of
which configuration to enable.

 It can only enable one configuration at a time.

 changing the configuration requires all activity
on each endpoint to stop.

 very few devices have more than 1 configuration.

EXAMPLE

 It is possible to have a high power bus powered

configuration and a self powered configuration.

 If the device is plugged into a host with a mains

power supply, the device driver may choose to

enable the high power bus powered configuration

enabling the device to be powered without a

connection to the mains.

 If it is connected to a laptop or personal organizer

it could enable the 2nd configuration (self

powered) requiring the user to plug your device

into the power source.

INTERFACE DESCRIPTOR

 could be seen as a header or grouping of the endpoints
into a functional group performing a single feature of
the device.

 For example you could have a multi-function
fax/scanner/printer device.

 Interface descriptor 1 describe the endpoints of the fax
function.

 Interface descriptor 2 the scanner function.

 Interface descriptor 3 the printer function.

 Unlike the configuration descriptor, there is no
limitation to having only one interface enabled at a
time.

 A device could have 1 or more interface descriptors
enabled at once.

 Interface descriptors have a bInterfaceNumber field
specifying the Interface number and
a bAlternateSetting which allows an interface to change
settings on the fly.

 For example we could have a device with two interfaces,
interface 1 and interface 2.

 Interface 1 has bInterfaceNumber = 0, bAlternateSetting = 0
(default).

 Interface 2 has bInterfaceNumber = 0, bAlternateSetting = 0
(default).

 Making bAlternateSetting = 1 means making an
alternate settings to be applied on the configuration.

 In other words, having two configurations, in that we can
be transmitting data over interface zero while we change
the endpoint settings associated with interface one
without affecting interface zero.

ENDPOINT DESCRIPTOR

 Each endpoint descriptor is used to specify:-

 type of transfer (control, bulk,…).

 Direction (IN, OUT).

 polling interval.

 maximum packet size for each endpoint.

 Endpoint zero, the default control endpoint is always

assumed to be a control endpoint and as such never has

a descriptor.

Composition

OF

Descriptors

?

USB

 All descriptors are made up of a common format.

 The first byte specifies the length of descriptor.

 the second byte indicates the descriptor type.

 If the length of a descriptor is smaller than what

the specification defines, then the host shall

ignore it.

 if the length is greater than expected the host

will ignore the extra bytes and start looking for

the next descriptor at the end of actual length.

DEVICE DESCRIPTOR

CONFIGURATION DESCRIPTOR

INTERFACE DESCRIPTOR

ENDPOINT DESCRIPTOR

STRING DESCRIPTORS

 provide optional human readable information.

 If they are not used, any string index fields of

descriptors must be set to zero.

 The strings are encoded in the Unicode format and

products can be made to support multiple languages.

 A list of USB Language IDs can be found in USB

Language Identifiers (LANGIDs) on USB.org.

 The host should read this descriptor to determine

what languages are available.

 If a language is supported, it can then be referenced

by sending the language ID in the wIndex field of

a Get Descriptor(String) request.

 The above String Descriptor shows the format of

String Descriptor Zero.

 All subsequent strings take on the format below

Requests

USB

?

Setup

Packet

?

 Every USB device must respond to setup packets

on the default pipe.

 The setup packets are used for detection and

configuration of the device and carry out common

functions such as setting the USB device’s

address, requesting a device descriptor or checking

the status of a endpoint.

 A USB compliant Host expects all requests to be

processed within a maximum period of 5 seconds.

 Standard Device requests without a data stage

must be completed in 50 ms.

 Standard Device requests with a data stage must

start to return data 500 ms after the request.

 Each data packet must be sent within 500 ms of

the successful transmission of the previous

packet.

 The status stage must complete within 50 ms

after the transmission of the last data packet.

 Each request starts with a 8 byte long Setup data

Packet which has the following format

Standard

device

requests

?

THERE ARE CURRENTLY EIGHT STANDARD

DEVICE REQUESTS.

EXAMPLE

 The Get_Status request directed at the device

will return two bytes during the data stage with

the following format.

 If D0 is set, then this indicates the device is self

powered. If clear, the device is bus powered. If D1

is set, the device has remote wakeup enabled and

can wake the host up during suspend.

 The remote wakeup bit can be by the SetFeature

and ClearFeature requests with a feature

selector.

 Set_Address is used during enumeration to

assign a unique address to the USB device.

 The address is specified in wValue and can only

be a maximum of 127. This request is unique in

that the device does not set its address until after

the completion of the status stage.

 This request is unique in that the device does not

set its address until after the completion of the

status stage, but All other requests must

complete before the status stage.

 Set_Descriptor/Get_Descriptor is used to

set/return the specified descriptor in wValue.

 Get_Configuration/Set_Configuration is used to

request or set/return the current device

configuration.

Standard

interface

requests

?

THE SPECIFICATION CURRENTLY DEFINES

FIVE STANDARD INTERFACE REQUESTS

 the current USB Specification Revision 2 specifies

no interface features.

Standard

Endpoints

requests

?

Enumeration

Steps

?

 1. The system has a new device.

 2. The hub detects the device

 3. The host learns of the new device.

 4. The hub detects whether a device is low or full
speed.

 5. The hub resets the device.

 6. The host learns if a full-speed device supports
high speed.

 7. The hub establishes a signal path between the
device and the bus.

 8. The host sends a Get Descriptor request to learn
the maximum packet size of the default pipe.

 9. The host assigns an address.

 10. The host learns about the device’s abilities.

 11. The host assigns and loads a device driver
(client).

 12. The host’s device driver selects a configuration.

REFERENCES

 Universal Serial Bus Specification 2.0.

 Wikipedia.

 www.usb.org.

 beyondlogic.org.

 USB Overview by Silicon Labs.

http://www.usb.org/

CONTACT DETAILS

 Mostafa El-koumy

 Embedded SW Developer

 mostafa.elkoumy@gmail.com

https://plus.google.com/u/0/+MostafaElkoumy
eg.linkedin.com/in/elkoumy

