
CdM-8 instruction set:

Level 3 and Level 31/2 mnemonics, descriptions, machine code, ex-
ample usage

1



Instructions for copying bit-strings from one place to another

1. Loading a bit-string from a memory cell into a register

ldi rn,const const → rn Flags unchanged

Load the immediate single-byte data item const into rn.
The bit-string representing const is copied into rn.

2-byte machine code instruction
Opcode: 110100
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: immediate value (second byte of instruction)

Example usage
Instruction: ldi r1, 0x6E
In binary: 11010001 01101110
Before: N/A
After: r1 contains 01101110

The assembler creates a 2-byte instruction containing the bit-string representing ldi rn immediately
followed by the bit-string representing const. The data item const is actually fetched from memory at
run-time.1

ld rn,rm *rn → rm Flags unchanged

Load a byte into rm from the memory cell addressed by rn.
(*rn is the memory cell pointed to by rn. The bit-string read from this memory cell is copied into rm.)

1-byte machine code instruction
Opcode: 1011
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: 2-bit register number (00, 01, 10 or 11)

Example usage
Instruction: ld r0, r3
In binary: 10110011
Before: r0 contains 01111001
After: r0 and mem[01111001] unchanged, r3 contains a copy of mem[01111001]

2. Storing a bit-string to a memory cell from a register

st rn,rm rm → *rn Flags unchanged

Store the byte in rm to the memory cell addressed by rn.
(*rn is the memory cell pointed to by rn. This cell is over-written by the bit-string copied from rm.)

1-byte machine code instruction
Opcode: 1010
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: 2-bit register number (00, 01, 10 or 11)

Example usage
Instruction: st r1, r0

1 Care must be taken not to over-write instructions stored in main memory whilst a program is running. This is a sure-fire
way to introduce bugs that are hard to detect, harder to diagnose, and even harder to correct.

2



In binary: 10100100
Before: r1 contains 00000110
After: r1 and r0 unchanged, mem[00000110] contains a copy of r0

3. Copying bit-strings to and from the stack

push rn ((SP-1)→SP) then (rn → *SP) Flags unchanged

Push the byte in rn onto the stack.2
SP is the stack pointer register. This is decremented, then used to point at a memory cell which is over-
written by the bit-string copied from rn. (*SP is the memory cell pointed to by SP)

1-byte machine code instruction
Opcode: 110000
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: None

Example usage
Instruction: push r2
In binary: 11000010
Before: SP contains 00000000
After: r2 unchanged, SP contains 11111111, mem[11111111] contains a copy of r2

pop rn (*SP → rn) then ((SP+1)→SP) Flags unchanged

Pop a byte off the stack into rn.3
SP is the stack pointer register. This is used to point at a memory cell which is copied into rn, then
incremented. (*SP is the memory cell pointed to by SP)

1-byte machine code instruction
Opcode: 110001
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: None

Example usage
Instruction: pop r3
In binary: 11000111
Before: SP contains 11111111
After: mem[11111111] unchanged, SP contains 00000000, r3 contains a copy of mem[11111111]

4. Copying bit-strings between registers

move rn,rm rm → rn Z,N reflect result C,V become 0

Move rn to rm
Copies the content of rn to rm. C and V are cleared. N and Z are based on the modified rn.

2 The stack is a data structure of variable size made up of memory cells. The first byte of the stack is held at memory
location 0xFF, and the stack grows down memory from there. It is managed using a register called the Stack Pointer, which
contains the address of the most recent byte stored on the stack. It is the responsibility of the programmer to manage the stack
properly. Each push instruction makes the stack grow in size by 1 byte, causing it to get closer and closer to those locations
where program instructions and initial data are stored, so too many pushes without a pop can cause a program to be corrupted
by being over-written by the stack.

3 Remember: it is the programmer’s responsibility to manage the stack properly. Each pop instruction makes the stack
shrink in size by 1 byte. A program that uses more pops than pushes will treat the bytes at location 0x00 and above as part
of the stack. These cells hold program instructions and initial data, so subsequent pushes will corrupt the program.

3



2-byte machine code instruction
Opcode: 0000
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: 2-bit register number (00, 01, 10 or 11)

ldsp rn SP → rn Z,N reflect result C,V become 0

Load Stack Pointer into rn
Copies the content of SP to rn. C and V are cleared. N and Z are based on the modified rn.

1-byte machine code instruction
Opcode: 110011
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: None

stsp rn rn → SP Z,N reflect result C,V become 0

Store rn to Stack Pointer4
Copies the content of rn to SP. C and V are cleared. N and Z are based on rn.

1-byte machine code instruction
Opcode: 110010
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: None

4 This instruction must be used with great care, as it changes the content of the stack pointer.

4



Instructions for manipulating bit-strings within registers

1. Arithmetic operations
Like all other CdM-8 Platform 3 operations these may be used on any bit-strings. However, they are named
for the results they give when those bit-strings represent numbers.
The flags in the Processor Status (PS) register are affected by each of these operations. C and V are modified
in the course of calculating the result, whereas Z and N depend solely on the result bit-string: Z is 1 when
the result is an all-zeros bit-pattern, and 0 otherwise, N is equal to bit 7 (the sign bit) of the result.
Conventionally, C is taken to be the value that is carried out from Column 7 of the bit-string, and V tells us
whether there has been a two’s complement overflow (e.g. when the result of adding together two bit-strings
representing positive numbers in two’s complement form is a bit-string that represents a negative number in
two’s complement form, such as 01000000 + 01100000 = 10100000).
It is important to remember, however, that the true ‘meaning’ of each of the status flags depends upon what
the bit-strings being manipulated actually represent. For example, it is perfectly possible to apply an add
operation to a pair of registers containing bit-strings that represent ASCII characters. Neither the resulting
bit-string nor the flags would be terribly meaningful under such circumstances, and to interpret V=1 as a
two’s complement overflow (for example) would be pretty daft.

add rn,rm (rn + rm) → rm C,V,Z,N reflect result

Add together the bit-strings in rn and rm, assuming they represent binary numbers.
The result is placed in rm.
C is the carry-out from column 7.
V is 1 when rn7 = rm7 before the operation and rn7 6= rm7 afterwards. Otherwise V is 0.

1-byte machine code instruction
Opcode: 0001
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: 2-bit register number (00, 01, 10 or 11)

addc rn,rm (rn + rm + C) → rm C,V,Z,N reflect result

Add together the C flag (0 or 1) and the bit-strings in rn and rm, assuming they represent binary numbers.
The result is placed in rm.
Add-with-carry-in is used when performing byte-sliced addition on numbers that are represented by bit-strings
made up of two or more bytes.
Beforehand the C flag holds a carry-in value (the carry-out from bit 7 of a lower-order byte), and afterwards
its content is the carry-out from bit 7 of the addition.
V is 1 when rn7 = rm7 before the operation and rn7 6= rm7 afterwards. Otherwise V is 0.

1-byte machine code instruction
Opcode: 0010
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: 2-bit register number (00, 01, 10 or 11)

sub rn,rm (rn − rm) → rm C,V,Z,N reflect result

Subtract the byte in rm from the byte in rn, assuming they represent binary numbers.
The result is placed in rm.

1-byte machine code instruction
Opcode: 0011
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: 2-bit register number (00, 01, 10 or 11)

cmp rn,rm

5



Calculates (rn − rm) C,V,Z,N reflect result

Compare rm with rn.
Assume the bytes in rn and rm represent binary numbers and perform the subtraction (rn−rm).
Used to modify flags without affecting registers or memory.
The registers rn and rm remain unchanged by this operation. Any of the four flags may change.

1-byte machine code instruction
Opcode: 0111
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: 2-bit register number (00, 01, 10 or 11)

tst rn Modifies Z & N flags Z,N reflect result

Test rn.
Assume the byte in rn represents a binary number and test whether it is zero or negative.
Used to modify flags without changing registers or memory.
The register rn remains unchanged by this operation, as do C and V.

This is a Platform 31/2 macro. The macro-assembler inserts move rn, rn wherever tst rn is requested
by the programmer, as it has the same effect.

6



neg rn (−rn) → rn C,V,Z,N reflect result

Negate rn
Replace the contents of rn by its 8-bit two’s complement.
If rn holds the 8-bit two’s complement representation of the numerical value x before the operation it will
contain the 8-bit two’s complement representation of −x afterwards.5

1-byte machine code instruction
Opcode: 100001
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: None

inc rn (rn + 1) → rn C,V,Z,N reflect result

Increment rn
Treats rn as a binary number, and adds 1 to it.
The addition ’wraps around’, so when rn contains 11111111 beforehand it will contain 00000000 afterwards
(and the C, V and Z flags will all be set to 1). The V flag will also be set to 1 by inc when 01111111 is
incremented to 10000000, but otherwise it will be 0.

1-byte machine code instruction
Opcode: 100011
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: None

dec rn (rn − 1) → rn C,V,Z,N reflect result

Decrement rn
Treats rn as a binary number, and subtracts 1 from it.
The subtraction ’wraps around’, so when rn contains 00000000 beforehand it will contain 11111111 after-
wards (and the C, V and Z flags will all be set to 1). The only other time a flag will be set by inc is when
01111111 is incremented to 10000000 (in which case the V flag will be set to 1).

1-byte machine code instruction
Opcode: 100010
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: None

2. Bit-wise Logic operations

and rn,rm (rn and rm) → rm Z,N reflect result C,V become 0

And rn with rm.
Computes the bitwise conjunction of rn and rm placing the result in rm:
(rn0 ∧ rm0) → rm0 (rn1 ∧ rm1) → rm1 (rn2 ∧ rm2) → rm2 (rn3 ∧ rm3) → rm3

(rn4 ∧ rm4) → rm4 (rn5 ∧ rm5) → rm5 (rn6 ∧ rm6) → rm6 (rn7 ∧ rm7) → rm7

2-byte machine code instruction
Opcode: 0100
Operand1: 2-bit register number (00, 01, 10 or 11)

5 The exception to this is the number -128, represented by 10000000, which has 10000000 as its 8-bit two’s complement. So
negating -128 gives -128.

7



Operand2: 2-bit register number (00, 01, 10 or 11)

or rn,rm (rn or rm) → rm Z,N reflect result C,V become 0

Or rn with rm.
Computes the bitwise disjunction of rn and rm placing the result in rm:
(rn0 ∨ rm0) → rm0 (rn1 ∨ rm1) → rm1 (rn2 ∨ rm2) → rm2 (rn3 ∨ rm3) → rm3

(rn4 ∨ rm4) → rm4 (rn5 ∨ rm5) → rm5 (rn6 ∨ rm6) → rm6 (rn7 ∨ rm7) → rm7

2-byte machine code instruction
Opcode: 0101
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: 2-bit register number (00, 01, 10 or 11)

xor rn,rm (rn xor rm) → rm Z,N reflect result C,V become 0

Exclusive Or rn with rm.
Computes the bitwise exclusive-or of rn and rm placing the result in rm:
(rn0 ⊕ rm0) → rm0 (rn1 ⊕ rm1) → rm1 (rn2 ⊕ rm2) → rm2 (rn3 ⊕ rm3) → rm3

(rn4 ⊕ rm4) → rm4 (rn5 ⊕ rm5) → rm5 (rn6 ⊕ rm6) → rm6 (rn7 ⊕ rm7) → rm7

2-byte machine code instruction
Opcode: 0110
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: 2-bit register number (00, 01, 10 or 11)

not rn (not rn) → rn Z,N reflect result C,V become 0

Not rn.
Flips all bits in rn:
(¬rn0) → rn0 (¬rn1) → rn1 (¬rn2) → rn2 (¬rn3) → rn3

(¬rn4) → rn4 (¬rn5) → rn5 (¬rn6) → rn6 (¬rn7) → rn7

1-byte machine code instruction
Opcode: 100000
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: None

8



3. Shifts and Rotates

shra rn (rn div 2) → rn C,Z,N reflect result V become 0

Arithmetic shift right rn
Shift every bit in the bit-string in rn one place to the right, whilst leaving the sign bit (bit 7) unchanged.
Bit 0 is shifted into C; V is 0; N & Z are based on the modified rn.
The effect on rn is the same as dividing a two’s complement number by 2, with the result being that rn
contains the quotient and C contains the remainder of the division.6

1-byte machine code instruction
Opcode: 100110
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: None

shla rn (rn × 2) → rn C,V,Z,N reflect result - become 0

Arithmetic shift left rn
Shift every bit in the bit-string in rn one place to the left, filling the least significant bit (bit 0) with 0.
Bit 7 is shifted into C; V is 1 if bit 7 changes and 0 if it does not; N & Z are based on the modified rn.
The effect on rn is the same as multiplying a two’s complement number by 2.7

This is a Platform 31/2 macro. The macro-assembler inserts rol rn wherever shla rn is requested by
the programmer, as it has the same effect.

shr rn (rn ») → rn C,Z,N reflect result V become 0

Sliced shift right rn
Shifts the bit-string in rn one place to the right without maintaining the sign. The old value of C is shifted
into the sign bit (bit 7), and bit 0 is shifted into C. V becomes 0. N and Z are based on the modified rn.

1-byte machine code instruction
Opcode: 100100
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: None

shl rn (rn « 1) → rn C,V,Z,N reflect result - become 0

Sliced shift left rn
Shifts the bit-string in rn one place to the left without ensuring that the result is a multiple of two. The
old value of C is shifted into bit 0, and the sign bit (bit 7) is shifted into C; V is 1 if bit 7 changes and 0 if it
does not; N and Z are based on the modified rn.

1-byte machine code instruction
Opcode: 100101
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: None

rol rn (rotate-left rn) → rn C,V,Z,N reflect result - become 0

Rotate left rn
Treats the bit-string in rn as if the opposite ends are directly connected, and shifts it left one place. The
sign bit (b7) is shifted into b0, and also into C. V is cleared. N and Z are based on the modified rn.

6 This operation may be applied to any 8-bit string, but it can only be used to perform division by two two’s complement
nymbers. rn will contain an incorrect value for the quotient under these circumstances.

7 This operation may be applied to any 8-bit string, and can be used to perform multiplication by two on a bit-string that
represent an unsigned whole number as well as a two’s complement number.

9



1-byte machine code instruction
Opcode: 100111
Operand1: 2-bit register number (00, 01, 10 or 11)
Operand2: None

Instructions for controlling the flow of execution

1. Branch instructions (none of these change the flags)

br const const → PC Flags unchanged

Branch unconditionally to a constant address
Copies the bit-string const into the Program Counter (PC). This bit-string will be interpreted as an address.
The processor will fetch its next instruction from the address const, no matter what the state of the flags.

2-byte machine code instruction
Opcode: 11101111
Operand1: immediate value (second byte of instruction)
Operand2: None

bz const const → PC when C V Z N matches − − 1 0 Flags unchanged

Branch on zero to a constant address
Copies the bit-string const into the Program Counter (PC), but only if the Z flag contains 1 (in which case
the N flag is guaranteed to be 0).
The processor will fetch its next instruction from the address const, when the result of the most recent
flag-modifying operation was an all-zeros bit-string.

2-byte machine code instruction
Opcode: 11100000
Operand1: immediate value (second byte of instruction)
Operand2: None

beq const const → PC when C V Z N matches − − 1 0 Flags unchanged

Branch on equal to a constant address
Copies the bit-string const into the Program Counter (PC), but only if the Z flag contains 1 (in which case
the N flag is guaranteed to be 0).
The processor will fetch its next instruction from the address const, when the result of the most recent
flag-modifying operation was an all-zeros bit-string.

This is a Platform 31/2 macro. The macro-assembler inserts bz const wherever beq const is requested
by the programmer, as it has the same effect.

bnz const const → PC when C V Z N matches − − 0− Flags unchanged

Branch on non-zero to a constant address
Copies the bit-string const into the Program Counter (PC), but only if the Z flag contains 0. This bit-string
will be interpreted as an address.
The processor will fetch its next instruction from the address const, when the result of the most recent
flag-modifying operation was anything other than an all-zeros bit-string.

2-byte machine code instruction
Opcode: 11100001
Operand1: immediate value (second byte of instruction)

10



Operand2: None

bne const const → PC when C V Z N matches − − 0− Flags unchanged

Branch on not-equal to a constant address
Copies the bit-string const into the Program Counter (PC), but only if the Z flag contains 0.
This bit-string will be interpreted as an address.
The processor will fetch its next instruction from the address const, when the result of the
most recent flag-modifying operation was any bit-string other than all-zeros.

This is a Platform 31/2 macro. The macro-assembler inserts bnz const wherever bne const is
requested by the programmer, as it has the same effect.

blt const const → PC when C V Z N matches − − 0 1 Flags un-
changed

Branch on less-than to a constant address
Copies the bit-string const into the Program Counter (PC), but only if the N flag contains
1 (in which case the Z flag is guaranteed to be 0). This bit-string will be interpreted as an
address.
The processor will fetch its next instruction from the address const, when the result of the
most recent flag-modifying operation was a bit-string that could be interpreted as a negative
two’s complement number.

2-byte machine code instruction
Opcode: 11100001
Operand1: immediate value (second byte of instruction)
Operand2: None

ble const const → PC when C V Z N matches − − 0 1 or − − 1 0 Flags un-
changed

Branch on less-or-equal to a constant address
Copies the bit-string const into the Program Counter (PC), but only if the Z and N flags are
different from one another.
The processor will fetch its next instruction from the address const, when the result of the
most recent flag-modifying operation was either an all-zeros bit-string or a bit-string that
could be interpreted as a negative two’s complement number.

2-byte machine code instruction
Opcode: 11100001
Operand1: immediate value (second byte of instruction)
Operand2: None

bgt const const → PC when C V Z N matches − − 0 0 Flags un-
changed

Branch on greater-than to a constant address
Copies the bit-string const into the Program Counter (PC), but only if the Z and N flags are
both 0.
The processor will fetch its next instruction from the address const, when the result of the
most recent flag-modifying operation was a bit-string that could be interpreted as a positive
two’s complement number (zero is not a positive number, any more than it is a negative
number).

11



2-byte machine code instruction
Opcode: 11100001
Operand1: immediate value (second byte of instruction)
Operand2: None

bge const const → PC when C V Z N matches − − − 0 Flags un-
changed

Branch on greater-or-equal to a constant address
Copies the bit-string const into the Program Counter (PC), but only if the N flag is 0.
The processor will fetch its next instruction from the address const, when the result of the
most recent flag-modifying operation was either a bit-string that could be interpreted as a
positive two’s complement number, or an all-zeros bit-string.

2-byte machine code instruction
Opcode: 11100001
Operand1: immediate value (second byte of instruction)
Operand2: None

2. Subroutine call / return

3. Miscellaneous control instructions

halt Stop the clock Flags un-
changed

Halt the instruction machine.
Switches off the platform clock.
The PC is not updated, so if the clock is re-started the halt will be executed again. It makes
no difference how the clock is re-started. Single-stepping the platform has the same effect as
re-starting the clock and performing a single tick.

1-byte machine code instruction
Opcode: 11010100
Operand1: None
Operand2: None

wait Suspend the clock Flags un-
changed

Wait until an interrupt occurs.
Suspends the platform clock in anticipation of an interrupt.
The PC is not updated. If the clock is re-started the wait will be executed again unless the
re-start is initiated by a hardware interrupt, in which case the PC is loaded with the start
address of an interrupt service routine, and then the clock is re-started. Single-stepping the
platform has the same effect as re-starting the clock without an interrupt, and performing a
single tick.

1-byte machine code instruction
Opcode: 11010101
Operand1: None
Operand2: None

jsr const PC → *SP, then SP+1→SP, then const → PC

12



Flags un-
changed

Branch on greater-or-equal to a constant address
Copies the bit-string const into the Program Counter (PC), but only if the N flag is 0.
The processor will fetch its next instruction from the address const, when the result of the
most recent flag-modifying operation was either a bit-string that could be interpreted as a
positive two’s complement number, or an all-zeros bit-string.

Wait until an interrupt occurs.
Suspends the platform clock in anticipation of an interrupt.
The PC is not updated. If the clock is re-started the wait will be executed again unless the
re-start is initiated by a hardware interrupt, in which case the PC is loaded with the start
address of an interrupt service routine, and then the clock is re-started. Single-stepping the
platform has the same effect as re-starting the clock without an interrupt, and performing a
single tick.

2-byte machine code instruction
Opcode: 11010110
Operand1: immediate value (second byte of instruction)
Operand2: None

11010110 jsr 11010111 rts 11011000 osi 11011001 rti 11011010 crc 11011011 osix

13


