Lecture 8
Data structures

Computing platforms

Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018



Data structures in CdM-8 assembly

* Pointers
* No such type
* You can use any 8-bit numeric value as memory address

* Arrays
* No such structure in the language
* But some supporting constructs, like ds directive
* You can use addresses (pointers) and address arithmetic to work with arrays

* Strings
* Support for string literals in dc directive
* No other support
* You can operate strings like arrays of characters



More on data structures in CdM-8

* Structures
* You can use tplate section to describe a structure layout

* Arrays of structures

* Tplate section have _ symbol which designates size of the structure
roughly equivalent to C sizeof operator

* You must implement C-style pointer arithmetic manually
but it is hard because you do not have multiplication

* May be, it is good idea to pad structures to power of 2
But in CdM-8 you must save memory
* Linked lists and other linked structures (trees, graphs)
* No builtin support

* Note that C also has no builtin linked lists
it justs offer facilities to implement them manually (structures and pointers



Arrays

* Sequence of elements of same size

e Can be allocated by ds (Define Space) directive

* Or by dc directive with many operands (“initialized array”)
array: dc 1,2,3,4
array2: dc “Hello world”



Byte array (array of 8-bit ints or chars)

* Indexing with arbitrary index
|di rO, array
Idi r1, index
add rO,r1 #rl contains address of array[index]
Id r1,rl. # rl contains value of array[index]

* Scanning all elements
|di rO, array
|di r1, array.size+1
while
decrl
stays gt

incrO
wend



How to determine array size?

* In most assemblers, you can assign arithmetic expressions to symbols

e Like:
array: dc0,1,2,3,4
.set array_size=.-array # . (dot characters) means current position

* In CdM-8, no equivalent of .set directive, no . pseudo-symbol
* And limitations on symbol arithmetic

* | plan a feature request



Using tplate section to define constants

tplate array
dc0,2,5,3,4
ds 1
size:
asect 0
br main
array: dc0,2,5,3,4
main:
Idi r1, array.size

Ugly, because you need to
duplicate dc statement

You can use macros to avoid this
We will discuss macros later
Why all this?

* Because tplate directive
produces no code

 And its labels are calculated in
compile time, not in runtime



So, the array scanning routine (body)

main:

|di rO,array

Id rO,r3

|di r1, array.size

while
decrl

stays gt
I? rO,r2 # value of current element
|

cmp r2,r3

Is gt
fi
inc rO

wend
halt

move r2,r3



Two-dimensional arrays

* Two possible implementations:

* Array of arrays
* Indexing of [i1][i2] calculated as i1*row_size+i2
* Not convenient on CdM-8 because you have no multiplication
* Impossible if rows have different size (why not?)

* Array of pointers (takes extra memory)
rowl: ds 5
row2: ds 6
row3: ds 4

array: dc rowl, row2, row3 # Yes you can use labels as values in dc!



Arrays on stack

* Why not?
* Just allocate enough space on stack by using addsp instruction

* This way you can even allocate dynamic arrays
(size defined at run time)

e Use ldsa instead of Idi to load array start pointer in r0..3
* BTW, do you know that C99 allows variable size arrays?
* Or, you can push the array element by element, and thus initialize it



Copy array on stack and back (in reverse)

Idi rO, a

|di r1, array.size

while

stays gt

wend

rray

decrl

Id rO,r2
push r2
inc rO

|di rO, array
|di r1, array.size
while
decrl
stays gt
pop r2
st rO,r2
inc r0
wend



Structures

e Structure is a collection of fields
* Fields are defined by offset from the beginning of the structure

* It can be seen as an array with predefined indices

field1 field2 field3

Struct
start




Tplate section can define structures

tplate struct
fieldl:ds 1
field2:ds 1
field3:ds 1
field4: ds 1
asect O
struct: ds 4. # you can have tplate and label with same name!
main:
|di rO, struct+struct.field3 # unfortunately, impossible in CdM-8!
|di rO, struct
|di r1, struct.field3
add rO, r1 # address of field3 is calculated at runtime



Linked lists

e But you can interpret some fields as addresses

* Below is valid CdM-8 data section

asect Ox0D
item1:

dcitem2, 5
item2:

dcitem3, 7
item3:

dc item4, -3
item4:

dc 0x00, 8




