
Lecture 5
Subroutines and stack

Computing platforms
Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018

Stack

• Stack as a primitive (opaque type with predefined set of operations)
• Primitive means that we have semantic of the operations
• But do not know (or should not rely on) details of implementation.
• So we can change implementation without changing the semantics
• Two operations: push and pop
• Push stores data in some [internal] storage
• Pop retrieves them in LIFO (Last In First Out) order

Stack on CdM-8

• SP register (we discussed it during CocoIDE demonstration)
• Main memory pointed by SP register (*SP)
• Push rn
• ((SP-1)→SP) then (rn → *SP)

• Pop rn
• (*SP → rn) then ((SP+1)→SP)

• At CPU power on, SP==0
• First push makes SP==255, so stack starts from the top of the RAM
• Be careful!

How stack works

0x13(0x76)

0x270x75

0xfb0x74
...

(a)

SP 0x13
0x01

0xfb
...

(b)

SP

0x13
0x01
0x02
...

(c)

SP

0x13
0x01
0x02
...

(d)

SP

0x13
0x01
0x02
...

(e)

SP

Figure 6.1: Stack behaviour: (a) initial state: the stack is empty; (b) after 0x01 has been pushed; (c) after
0x02 has been pushed; (d) after a pop; (e) after another pop, stack is empty again.

6.3 The Stack

Interestingly, the register discipline problem and the return problem have the same solution, which is based
on a data structure called stack. Imagine a stack of books on a desk. If you put “Romeo and Juliet” on the
desk first and then put “Hamlet” on top of it, the first book you will be able to take off the stack is “Hamlet”,
which happens to be the last one you put on it. Only then will you be able to take “Romeo and Juliette” off
the stack and it will become empty. A stack is consequently a queue of items following the LIFO principle:
Last In — First Out.

A computer stack works in the same way. In Platform 31/2, our running example, the top of the stack is a
memory cell that is pointed to by a special register: the Stack Pointer (SP). There are two operations one
can perform on that stack (just like those on the stack of books). The push operation places an item on top
of the stack. The pop operation removes the item that has been placed on top of the stack before. Repeated
pushes and pops will work according to the LIFO principle. If the stack is empty a pop is not allowed. If
there are two many pushes without a pop, the stack may use up its available memory: this is called stack

overflow (nothing to do with adding numbers, everything to do with overusing a resource).

Despite the fact that push and pop deal exclusively with the top of the stack, stack memory is just that,
memory, and therefore can be accessed directly, by address. This is useful for using stack for subroutines’
internal data and for parameter passing as well, see section 6.4.2.

It so happens that many things grow in the wrong direction in the topsy-turvy world of computing. While
normal trees grow up, a tree as a type of graph (studied in an undergraduate course of discrete mathematics)
or a data structure (studied in a course of algorithms and data structures) is usually depicted growing down.
The same, unfortunately, is true of stacks. Here is an illustration (see figure 6.1). The stack area begins at
the address 0x75 and extends down, towards smaller addresses. One can think of the address 0x75 as the
desk upside down, on which books will be piled (obviously with the planet Earth above us keeping them on
with its gravity). The stack pointer SP initially points to the cell right above the stack area (0x76). If we
push the number 0x01 onto the stack, the SP will go down first and then the number will be stored at the
pointed address (stage (b)). Now if we push another number onto the stack, say 0x02,the SP will go down
again and the new number will be stored at the pointed address. Now let us try to pop an item currently
on top of the stack off the stack. This is done as follows: the cell that the SP points to is read, then the SP
is incremented to point to the next cell up (stage (d)). Finally we pop 0x01 off the stack in the same way
and it becomes empty (stage (e)).

Unsurprisingly there are two Platform 31/2 instructions for doing what has just been described:

push rn

and

pop rn

131

Be careful!

• If you push too many times, you can overwrite your program!
• If you pop more times than push, SP wraps over to 0 and you can

overwrite your program again!
• Commercial CPU (x86, ARM) have hardware protection against this
• We will discuss it in Operating System course
• And this protection is not 100% bulletproof

(you can mess your stack if you really want to)

• CdM-8, like most other 8-bit CPU, has no hardware protection
(at least in basic configuration)

Wait, there is more!

• Ldsa rn, offset
• SP+offset → rn
• Not in instruction-set.pdf (we’re working on this)

• Addsp n
• SP=SP+n

• Ldsp rn, Stsp rn
• Move SP to/from a GP register n

Subroutine call and return

• Jsr [const]
• SP-1→SP, then PC → *SP, then const → PC
• In most modern CPUs this instruction is called Call
• Jsr mnemonic comes from IBM 360

• Rts
• *SP → *PC, then SP+1→SP

• Jsrr rn
• SP-1→SP, then PC → *SP, then rn → PC
• You can implement function pointers!

Subroutine activation record

• Create a space for local variables
• New space for every new call
• Allows recursion
• CdM-8 has no frame pointer

• Caller push param to stack
• Then jsr to callee
• Then callee addsp frame size
• And uses ldsa to access values

Special syntax for local variables (and structs!)

1 tplate foo
00: 2 dc "abcde"
05: 3 a: ds 13
12: 4 dc "this is it"
1c: 5 b: ds 7
23: 6

7 asect 0
8: main:

00: c9 05 9 ldsa r1,foo.a
02: ca 1c 10 ldsa r2,foo.b
04: cb 23 11 ldsa r3,foo._

….

What exactly tplate directive does?

• A template is a named absolute section that
• starts at 0,
• does not allocate any memory

• dc parameters are only placeholders
• is accessible in the whole source file,
• the section’s text can not be interrupted and continued later

• Each label defined within a template is absolute and must be
referenced using the prefix name.

Calling conventions

• How to pass parameters
• On registers?

• Fast, but CdM-8 has too few registers
• Cannot pass structures

• On stack?
• Relatively slow

• Who cleans the stack after the call?
• On CdM-8 it is hard for callee to clean the stack, but other CPU have means for that
• Callee must know size of parameters to clean the stack (impossible in C)

• How to save registers?
• Clean protocol (callee must save all registers before touching them)
• Dirty protocol (callee can change any register)
• Hybrid protocol (some registers must be saved, some are not)

