Lecture 5
Subroutines and stack

Computing platforms

Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018



Stack

e Stack as a primitive (opaque type with predefined set of operations)
* Primitive means that we have semantic of the operations

e But do not know (or should not rely on) details of implementation.
* So we can change implementation without changing the semantics
* Two operations: push and pop

* Push stores data in some [internal] storage

* Pop retrieves them in LIFO (Last In First Out) order



Stack on CdM-8

* SP register (we discussed it during CocolDE demonstration)
* Main memory pointed by SP register (*SP)

e Push rn
e ((SP-1)->SP) then (rn - *SP)

* Poprn
e (*SP - rn) then ((SP+1)->SP)

* At CPU power on, SP==0
* First push makes SP==255, so stack starts from the top of the RAM
e Be careful!



How stack works

(0x76) |0x13 0x13 0x13 0x13 0x13
Ox75 | 0x27 0x01 0x01 0x01 0x01
0x74 | Oxfb 0Oxfb 0x02 0x02 0x02

(a) (b) (c) (d) (e)

Figure 6.1: Stack behaviour: (a) initial state: the stack is empty; (b) after 0x01 has been pushed; (c) after
0x02 has been pushed; (d) after a pop; (e) after another pop, stack is empty again.



Be careful!

* |If you push too many times, you can overwrite your program!

* If you pop more times than push, SP wraps over to 0 and you can
overwrite your program again!

 Commercial CPU (x86, ARM) have hardware protection against this

* We will discuss it in Operating System course

* And this protection is not 100% bulletproof
(you can mess your stack if you really want to)

* CdM-8, like most other 8-bit CPU, has no hardware protection
(at least in basic configuration)



Wait, there is more!

e Ldsa rn, offset
e SP+offset - rn
e Not in instruction-set.pdf (we’re working on this)

* Addsp n
* SP=SP+n
* Ldsp rn, Stsp rn

* Move SP to/from a GP register n



Subroutine call and return

e Jsr [const]
e SP-1->SP, then PC - *SP, then const - PC
* |n most modern CPUs this instruction is called Call
* Jsr mnemonic comes from IBM 360

* Rts
e *SP - *PC, then SP+1->SP

* Jsrrrn
e SP-1->SP, then PC - *SP, then rn - PC
* You can implement function pointers!



Subroutine activation record

* Create a space for local variables

top of stack

’

Stack Pointer >
* New space for every new call ocals of
* Allows recursion DrawLine
* CdM-8 has no frame pointer rame Pointer —> " Return Address
Parameters for
* Caller push param to stack DrawLine
. Locals of
’ Then Jsr to Ca”ee stack frame DrawSquare
. f
* Then callee addsp frame size Drawsquare § [nAddress
subroutine Parameters for

* And uses ldsa to access values

DrawSquare

stack frame
for
DrawLine
subroutine



Special syntax for local variables (and structs!)

1 tplate foo

00: 2 dc "abcde"
05: 3a: ds 13
12: 4 dc "thisis it"
1c: 5b: ds 7
23: 6

7/ asect O

8: main:
00: c9 05 9 ldsa rl,foo.a
02:ca lc 10 ldsa r2,foo.b

04: cb 23 11 ldsa r3,foo._



What exactly tplate directive does?

* A template is a named absolute section that
e starts at O,

* does not allocate any memory
* dc parameters are only placeholders

* is accessible in the whole source file,
* the section’s text can not be interrupted and continued later

* Each label defined within a template is absolute and must be
referenced using the prefix name.



Calling conventions

* How to pass parameters

* On registers?
* Fast, but CdM-8 has too few registers
* Cannot pass structures

e On stack?
* Relatively slow

 Who cleans the stack after the call?
e On CdM-8 it is hard for callee to clean the stack, but other CPU have means for that
* Callee must know size of parameters to clean the stack (impossible in C)

* How to save registers?
* Clean protocol (callee must save all registers before touching them)
 Dirty protocol (callee can change any register)
* Hybrid protocol (some registers must be saved, some are not)



