
Lecture 4
Multiplication and division

Computing platforms
Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018

Multiplication by adding

• A*B
P=0
While B>0 do

P+=A
B--

Wend
• For 8-bit values, 256 additions in worst case
• For 64-bit values on modern CPU, won’t finish in your lifetime

Let’s consider special cases

• A*2 = A+A = lshift(A,1)
• A*2N = while N-->0 do P+=A wend = lshift(A,N)
• A*(2N+2M)=A*2N+A*2M

• If we represent arbitrary number as sum of 2N…

Algorithm of multiplication

• Any number has the binary representation
• B=Sum(b[N]*2N), where b[N] - Nth bit of binary representation
• P=A*B=Sum(A*b[N]*2N)
• So, the algorithm
N=0
P=0
While N<bits(B) do

P+=A*b[N]
A=lshift(A,1)

Wend

Let’s try to visualize it

Partial multiplication. We take each digit of the second operand in turn, starting with the least signifi-
cant (right-most), and multiply it by the first operand, and place the results of each of these partial
multiplications (the partial products) on successive lines. There will be one partial product line for
each digit in the second operand, starting with the right-most (least significant) digit.

Shift Each partial product line is shifted to the left by a distance that increases as we work down, and the
right-hand end of each string is filled in with zeros. The number of positions a partial product line is
shifted to the left is the column number of the digit that produced that partial product, so the first
line is shifted 0 positions to the left, the second line is shifted left by 1 position and a single zero is
appended to the right-hand end, the third line (if it were there) would be shifted by 2 positions and 2
zeros would be appended,etc. Finally the left-hand ends of the strings are padded with zeros to ensure
that all partial product strings are of the same length. Notice that all partial products are now twice
the operand size.

Summation The partial product lines are totalled up using addition (in this example we need to use 4-digit
addition).

3.8.2 Unsigned binary multiplication

Binary multiplication uses the same algorithm, but it is greatly simplified by the fact that all digits are 0’s
and 1’s. Multiplication by 1 means copying, and by 0 means nullifying. Here is an example of multiplication
of two 4-bit strings, representing the (unsigned) quantities thirteen and fourteen:

1 1 0 1
⇥ 1 1 1 0

0 0 0 0
1 1 0 1

1 1 0 1
1 1 0 1

1 0 1 1 0 1 1 0

Once again, all calculations are done in strings of the same size. When we multiply a 4-bit number by
another 4-bit number we will get an 8-bit result, so we must use 8-bit strings for each of the partial products.
Each partial product should be shifted to the correct position in an 8-bit string, and padded with zeros as
appropriate:

1 1 0 1
⇥ 1 1 1 0

0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0
0 0 1 1 0 1 0 0
0 1 1 0 1 0 0 0
1 0 1 1 0 1 1 0

Multiplication of unsigned numbers is pretty straightforward. When we calculate the product of two n-digit
binary numbers we generate n partial products, each of which is padded with zeros to give a 2n-digit number.
These are then added together to give a 2n-bit result. The result in this case is the 8-bit binary number
10110110, which represents the unsigned value one hundred and eighty two ... the correct result.

3.8.3 Multiplication of signed numbers

Things change significantly when we switch to signed numbers. If a signed-magnitude representation is being
used we first have to remove the sign bit from each number. Then we can multiply the two unsigned numbers
using the partial product method. But what sign should we give to the result? Simple: the result will be
negative whenever the two operands have different signs (one negative one positive), and it will be positive
whenever the two operands have the same sign (both positive or both negative).

38

Note that 4-bit*4bit
yields 8-bit result

Looks familiar?

Partial multiplication. We take each digit of the second operand in turn, starting with the least signifi-
cant (right-most), and multiply it by the first operand, and place the results of each of these partial
multiplications (the partial products) on successive lines. There will be one partial product line for
each digit in the second operand, starting with the right-most (least significant) digit.

Shift Each partial product line is shifted to the left by a distance that increases as we work down, and the
right-hand end of each string is filled in with zeros. The number of positions a partial product line is
shifted to the left is the column number of the digit that produced that partial product, so the first
line is shifted 0 positions to the left, the second line is shifted left by 1 position and a single zero is
appended to the right-hand end, the third line (if it were there) would be shifted by 2 positions and 2
zeros would be appended,etc. Finally the left-hand ends of the strings are padded with zeros to ensure
that all partial product strings are of the same length. Notice that all partial products are now twice
the operand size.

Summation The partial product lines are totalled up using addition (in this example we need to use 4-digit
addition).

3.8.2 Unsigned binary multiplication

Binary multiplication uses the same algorithm, but it is greatly simplified by the fact that all digits are 0’s
and 1’s. Multiplication by 1 means copying, and by 0 means nullifying. Here is an example of multiplication
of two 4-bit strings, representing the (unsigned) quantities thirteen and fourteen:

1 1 0 1
⇥ 1 1 1 0

0 0 0 0
1 1 0 1

1 1 0 1
1 1 0 1

1 0 1 1 0 1 1 0

Once again, all calculations are done in strings of the same size. When we multiply a 4-bit number by
another 4-bit number we will get an 8-bit result, so we must use 8-bit strings for each of the partial products.
Each partial product should be shifted to the correct position in an 8-bit string, and padded with zeros as
appropriate:

1 1 0 1
⇥ 1 1 1 0

0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0
0 0 1 1 0 1 0 0
0 1 1 0 1 0 0 0
1 0 1 1 0 1 1 0

Multiplication of unsigned numbers is pretty straightforward. When we calculate the product of two n-digit
binary numbers we generate n partial products, each of which is padded with zeros to give a 2n-digit number.
These are then added together to give a 2n-bit result. The result in this case is the 8-bit binary number
10110110, which represents the unsigned value one hundred and eighty two ... the correct result.

3.8.3 Multiplication of signed numbers

Things change significantly when we switch to signed numbers. If a signed-magnitude representation is being
used we first have to remove the sign bit from each number. Then we can multiply the two unsigned numbers
using the partial product method. But what sign should we give to the result? Simple: the result will be
negative whenever the two operands have different signs (one negative one positive), and it will be positive
whenever the two operands have the same sign (both positive or both negative).

38

How to implement this in CdM-8?

• b[N] can be calculated as series of right shifts
• Shr instruction shifts the register and moves lowest bit to C
• We do not need to count to 8
• The loop can stop when reg==0 (Z flag is set)
• But how to calculate 16-bit P and 16-bit A*2N?
• They need 2 registers each, and we have only four registers.

Let’s go in other direction

N=7
P=0
While True do

P+=A*b[N]
if N==0 break
P=rshift(P,1)
N--

Wend
• Now we need a register to store N
• Or we can unroll the loop (there are only 8 iterations after all)

Demonstration in CocoIDE

• http://ccfit.nsu.ru/~fat/Platforms/mult.asm
• 8-bit unsigned multiplication witn 16-bit results using only registers

(no memory access)

http://ccfit.nsu.ru/~fat/Platforms/mult.asm

What about signed multiplication?

Partial multiplication. We take each digit of the second operand in turn, starting with the least signifi-
cant (right-most), and multiply it by the first operand, and place the results of each of these partial
multiplications (the partial products) on successive lines. There will be one partial product line for
each digit in the second operand, starting with the right-most (least significant) digit.

Shift Each partial product line is shifted to the left by a distance that increases as we work down, and the
right-hand end of each string is filled in with zeros. The number of positions a partial product line is
shifted to the left is the column number of the digit that produced that partial product, so the first
line is shifted 0 positions to the left, the second line is shifted left by 1 position and a single zero is
appended to the right-hand end, the third line (if it were there) would be shifted by 2 positions and 2
zeros would be appended,etc. Finally the left-hand ends of the strings are padded with zeros to ensure
that all partial product strings are of the same length. Notice that all partial products are now twice
the operand size.

Summation The partial product lines are totalled up using addition (in this example we need to use 4-digit
addition).

3.8.2 Unsigned binary multiplication

Binary multiplication uses the same algorithm, but it is greatly simplified by the fact that all digits are 0’s
and 1’s. Multiplication by 1 means copying, and by 0 means nullifying. Here is an example of multiplication
of two 4-bit strings, representing the (unsigned) quantities thirteen and fourteen:

1 1 0 1
⇥ 1 1 1 0

0 0 0 0
1 1 0 1

1 1 0 1
1 1 0 1

1 0 1 1 0 1 1 0

Once again, all calculations are done in strings of the same size. When we multiply a 4-bit number by
another 4-bit number we will get an 8-bit result, so we must use 8-bit strings for each of the partial products.
Each partial product should be shifted to the correct position in an 8-bit string, and padded with zeros as
appropriate:

1 1 0 1
⇥ 1 1 1 0

0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0
0 0 1 1 0 1 0 0
0 1 1 0 1 0 0 0
1 0 1 1 0 1 1 0

Multiplication of unsigned numbers is pretty straightforward. When we calculate the product of two n-digit
binary numbers we generate n partial products, each of which is padded with zeros to give a 2n-digit number.
These are then added together to give a 2n-bit result. The result in this case is the 8-bit binary number
10110110, which represents the unsigned value one hundred and eighty two ... the correct result.

3.8.3 Multiplication of signed numbers

Things change significantly when we switch to signed numbers. If a signed-magnitude representation is being
used we first have to remove the sign bit from each number. Then we can multiply the two unsigned numbers
using the partial product method. But what sign should we give to the result? Simple: the result will be
negative whenever the two operands have different signs (one negative one positive), and it will be positive
whenever the two operands have the same sign (both positive or both negative).

38

If we treat 1101 and 1110 as
two-complement signed numbers,
the result is wrong.
You do not even need to convert to
decimal.
The operands are both negative, but
the result is positive!

Proper way of two-complement signed
multiplication

complement representation (all be it an 8-bit two’s complement) we are bound to be disappointed. Indeed,
for a positive y, y = |y|,

(24 � |x|)⇥ y = 24 ⇥ y � |x|⇥ y ,

which is not at all the same as
28 � |x|⇥ y ,

which we expect from an 8-bit two’s complement result. Just as in the ten’s complement case, because
the addition and the shifting left (multiplication by powers of two) are all done in the 8-bit format, the
two operands need to be transformed to 8-bit representations so that the magic of complement arithmetic
works. Let’s assume we wish to multiply �3 by �2, and these quantities are represented using 4-bit two’s
complement, we get:

1 1 1 1 1 1 0 1
⇥ 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 0
1 1 1 1 0 1 0 0
1 1 1 0 1 0 0 0
1 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0

The operands are converted to 8-bit representations by extending the sign bit (most significant bit) to the
left, and the answer we get is the 8-bit two’s complement representation of the quantity six. In this case
each operand is negative so the 4 extra spaces to the left are filled with 1’s, but if they were positive the
spaces would be filled with 0’s. This is obviously correct for positive numbers (padding to the left with zeros
adds nothing), but is not so obvious that it will work for negative numbers.

If we look at the two negative operands we see that each of them can be negated again to obtain a positive
number with the same magnitude, just by obtaining its two’s complement. This works just as well for an
8-bit representation as it does in 4 bits. So when we pad a negative n-bit two’s complement number to the
left with a string of k 1’s we get an (n+k)-bit two’s complement number that represents the same quantity.22

Now let’s look at the multiplication process. Not only do we have 8-bit partial products as before, there
are now going to be 8 of them, which means two’s complement multiplication requires much more work as
unsigned binary multiplication.

So, just as in the decimal case, it is better to note the signs of the two operands to determine whether the
result should be positive or negative 23, and then convert each of them to a positive number of the same
magnitude and use unsigned multiplication to work out their product. Then we use the signs of the two
operands to determine the correct sign for the result, and obtain the two’s complement of the product if the
result should be negative.

22 The correct positive number is the one we would get by left-padding the n-bit positive version of the number to (n + k)
bits with 0’s.

23 A simple way to do this is to take the logical exclusive-or (xor) of the two sign bits (A xor B is 1 if A and B are the same,
and 0 if they are different). If it is 0 the result sign is positive and if it is 1 the result sign is negative.

40

Sign-extend both numbers
before the multiplication

Actually, this is a disadvantage
of two-complement presentation

With sign-magnitude, you just
multiply unsigned and xor sign bits

Division

• the dividend is the number to be divided
• the divisor is the number the dividend is divided by
• the quotient is the main result of division,
• a remainder, which is the quantity left over, i.e. the difference

between the dividend and product of the quotient and the divisor.

Exact definition of quotient

• a quotient, which is the whole number of times the divisor ‘goes into’
the dividend.
• In other words, the quotient is the maximum integer that if multiplied

by the divisor gives the result not exceeding the dividend.

Let’s try to divide 11(dec) to 3(dec)

• 11÷3=3 rem 2
• 11(dec)=1011
• 3=0011

STAGE 1: 1
25) 3 6 5

– 2 5
1 1

STAGE 2: 1
25) 3 6 5

– 2 5
1 1 5

STAGE 3: 1 4
25) 3 6 5

– 2 5
1 1 5

– 1 0 0
1 5

Once we reach the end of Stage 3 we have a remainder (15) which is smaller than the divisor, so we stop
dividing because we have the result: 365÷ 25 = 14 rem 15

Binary division is simpler than decimal. Long division of a by b includes a step where you must work out
how many times b “goes into” (some part of) a, but in the case of binary, b either “goes into” a once (because
b  a), or not at all (because b > a). The result is 1 or 0 respectively, and that result is shifted into the
quotient in the correct position. Here is an example, in which the dividend is eleven (1011) and the divisor
is three (11):

STAGE 1: 1
11) 1 0 1 1

– 1 1
1 0

STAGE 2: 1
11) 1 0 1 1

– 1 1
1 0 1

STAGE 3: 1 1
11) 1 0 1 1

– 1 1
1 0 1

– 1 1
1 0

At Stage 1 the divisor (11) is aligned with the furthest-left column of the dividend (1011) that makes the
subtraction possible (while ensuring that the result is not negative). 11 cannot be subtracted from 1 (the
1-bit number starting at the left-most end of the dividend), or from 10 (the left-most 2-bit number), but it
can be subtracted from 101 (the left-most 3-bit number). So it is aligned with the 3-bit number 101, and
the subtraction is performed: 101� 11 = 10. In binary this is the same as 101÷ 11 = 1 rem 10.

The alignment is for efficiency only. We could in fact start off by aligning the left-most bit of the divisor
with the left-most bit of the dividend, then shift the divisor to the right to make the subtraction possible.
This shift generates a leading zero for the quotient and we start subtracting at our present starting position.
We build the quotient left-to-right, and it is not important how many leading zeros we place on the left-hand
end because they do not change the quotient’s value.

As long as we start off with a dividend that is greater than or equal to the divisor a starting position will be
found after zero or one shift. If the divisor is greater than the dividend we will not be able to shift it to the
right without a digit ‘falling off’ its right-hand end. In this case the dividend becomes the remainder, and
the quotient is 0. In our example, at Stage 1 we found the initial position and did the subtraction, placing
a 1 in the quotient area and 10 as the current remainder.

At Stage 2 we expand the remainder by bringing down the next digit to the right in the dividend and
appending it to the right-hand end of the current remainder. If the expanded remainder is greater than or
equal to the divisor we move on to Stage 3. Otherwise we must place a 0 in the quotient and bring down
the next digit from the dividend to expand the remainder further.

We keep this process going until we either end up with a remainder from which the divisor can successfully
be subtracted (in which case we move on to Stage 3) or else there are no more digits to bring down from the
dividend (in which case we have finished the division and the current quotient and remainder are the end
results).

At Stage 3 we do exactly the same as we did at Stage 1, except now the remainder cannot be expanded
and so this is the last stage. We find, as we should, that 11÷ 3 = 3 rem 2.

In a bigger example, Stage 1 and Stage 2 will need to be applied one after another many times in exactly
the same manner. Of course in a computing platform (as opposed to a human exercise on a piece of paper),
the divisor will be represented in a fixed-length bit-string, as will the dividend.

Subtraction of the divisor presents no problem as it involves working out its two’s complement and doing
addition. A further optimisation may be applied by observing that during division we always subtract the

42

