Lecture 4
Multiplication and division

Computing platforms

Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018



Multiplication by adding

 A*B
P=0
While B>0 do
P+=A
B--
Wend
e For 8-bit values, 256 additions in worst case

* For 64-bit values on modern CPU, won’t finish in your lifetime



Let’s consider special cases

« A*2 = A+A = Ishift(A,1)
e A*2N = while N-->0 do P+=A wend = Ishift(A,N)
o A¥(2N+2M)=A*2N+A*2M

* If we represent arbitrary number as sum of 2N...



Algorithm of multiplication

* Any number has the binary representation
* B=Sum(b[N]*2N), where b[N] - Nth bit of binary representation
* P=A*B=Sum(A*b[N]*2N)
* So, the algorithm
N=0
P=0
While N<bits(B) do
P+=A*b[N]
A=Ishift(A,1)
Wend



Let’s try to visualize it

X

1101
1110

Note that 4-bit*4bit
vields 8-bit result

00000000
00011010
00110100
01101000

10110110



Looks familiar?

1101
1110

0000
1101

1101
101

110110



How to implement this in CdM-8?

* b[N] can be calculated as series of right shifts

 Shr instruction shifts the register and moves lowest bit to C
* We do not need to count to 8

* The loop can stop when reg==0 (Z flag is set)

* But how to calculate 16-bit P and 16-bit A*2N?

* They need 2 registers each, and we have only four registers.



Let’s go in other direction

N=7

P=0

While True do
P+=A*b[N]
if N==0 break
P=rshift(P,1)
N--

Wend

* Now we need a register to store N
e Or we can unroll the loop (there are only 8 iterations after all)



Demonstration in CocolDE

 http://ccfit.nsu.ru/~fat/Platforms/mult.asm

e 8-bit unsigned multiplication witn 16-bit results using only registers
(no memory access)



http://ccfit.nsu.ru/~fat/Platforms/mult.asm

What about signed multiplication?

1101
X 1110

0000
1101
1101
1101

10110110

If we treat 1101 and 1110 as
two-complement signed numbers,
the result is wrong.

You do not even need to convert to

decimal.
The operands are both negative, but

the result is positive!



Proper way of two-complement sighed
multiplication

11111101

_ x11111110
Sign-extend both numbers 00000000
before the multiplication 11111010
11110100

Actually, this is a disadvantage 11101000
of two-complement presentation 11010000
10100000

: : : : 01000000
With sigh-magnitude, you just 10000000

multiply unsigned and xor sign bits 00000110



Division

* the dividend is the number to be divided
* the divisor is the number the dividend is divided by

* the quotient is the main result of division,

* a remainder, which is the quantity left over, i.e. the difference
between the dividend and product of the quotient and the divisor.



Exact definition of quotient

* a quotient, which is the whole number of times the divisor ‘goes into’
the dividend.

* In other words, the quotient is the maximum integer that if multiplied
by the divisor gives the result not exceeding the dividend.



Let’s try to divide 11(dec) to 3(dec)

e 11:-3=3rem 2
e 11(dec)=1011
e 3=0011
STAGE 1: 1 STAGE 2: 1 STAGE 3: 11
11)1011 11)1011 11)1011
11 11 11
10 101 101

- 11

10



