
B C Reference number
ISO/IEC 14882:1998(E)

INTERNATIONAL
STANDARD

ISO/IEC
14882

First edition
1998-09-01

Programming languages — C++

Langages de programmation — C++

Processed and adopted by ASC X3 and approved by ANSI
as an American National Standard.

Date of ANSI Approval: 7/27/98

Published by American National Standards Institute,
11 West 42nd Street, New York, New York 10036

Copyright 1998 by Information Technology Industry Council
(ITI). All rights reserved.

These materials are subject to copyright claims of International
Standardization Organization (ISO), International
Electrotechnical Commission (IEC), American National
Standards Institute (ANSI), and Information Technology
Industry Council (ITI). Not for resale. No part of this
publication may be reproduced in any form, including an
electronic retrieval system, without the prior written permission
of ITI. All requests pertaining to this standard should be
submitted to ITI, 1250 Eye Street NW, Washington, DC 20005.

Printed in the United States of America

ISO/IEC 14882:1998(E)

© ISO/IEC 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office • Case postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

ii

Contents

1 General .. 1

1.1 Scope.. 1

1.2 Normative references ... 1

1.3 Definitions.. 1
1.3.1 argument.. 1
1.3.2 diagnostic message.. 2
1.3.3 dynamic type ... 2
1.3.4 ill-formed program.. 2
1.3.5 implementation-defined behavior.. 2
1.3.6 implementation limits.. 2
1.3.7 locale-specific behavior... 2
1.3.8 multibyte character.. 2
1.3.9 parameter... 2
1.3.10 signature .. 2
1.3.11 static type... 2
1.3.12 undefined behavior.. 2
1.3.13 unspecificed behavior.. 3
1.3.14 well-formed program... 3

1.4 Implementation compliance ... 3

1.5 Structure of this International Standard.. 4

1.6 Syntax notation... 4

1.7 The C++ memory model .. 4

1.8 The C++ object model..

1.9 Program execution.. 5

© ISO/IEC ISO/IEC 14882:1998(E)

1.10 Acknowledgments ...8

2 Lexical conventions ..9

2.1 Phases of translation ..9

2.2 Character sets ...10

2.3 Trigraph sequences ..11

2.4 Preprocessing tokens ...11

2.5 Alternative tokens ..12

2.6 Tokens..12

2.7 Comments ..12

2.8 Header names ...13

2.9 Preprocessing numbers ..13

2.10 Identifiers ...13

2.11 Keywords ...14

2.12 Operators and punctuators ...15

2.13 Literals ...15
2.13.1 Integer literals ...15
2.13.2 Character literals ...16
2.13.3 Floating literals ...18
2.13.4 String literals ...19
2.13.5 Boolean literals ...19

3 Basic concepts ..21

3.1 Declarations and definitions ..21

3.2 One definition rule ...22

3.3 Declarative regions and scopes ..24
3.3.1 Point of declaration ...25
3.3.2 Local scope ...26
3.3.3 Function prototype scope ..26
3.3.4 Function scope ..27
3.3.5 Namespace scope ..27
3.3.6 Class scope..27
3.3.7 Name hiding..28

3.4 Name lookup ..29
3.4.1 Unqualified name lookup ...29
3.4.2 Argument-dependent name lookup ...32
3.4.3 Qualified name lookup ...33

iii

ISO/IEC 14882:1998(E) © ISO/IEC

3.4.3.1 Class members ...35
3.4.3.2 Namespace members ...35
3.4.4 Elaborated type specifiers ...38
3.4.5 Class member access ..39
3.4.6 Using-directives and namespace aliases ...40

3.5 Program and linkage ..41

3.6 Start and termination..43
3.6.1 Main function..43
3.6.2 Initialization of non-local objects ...44
3.6.3 Termination...45

3.7 Storage duration ...45
3.7.1 Static storage duration ..46
3.7.2 Automatic storage duration...46
3.7.3 Dynamic storage duration ...46
3.7.3.1 Allocation functions...47
3.7.3.2 Deallocation functions ...47
3.7.4 Duration of sub-objects...48

3.8 Object Lifetime ..48

3.9 Types..51
3.9.1 Fundamental types ..53
3.9.2 Compound types ...54
3.9.3 CV-qualifiers ..55

3.10 Lvalues and rvalues ...55

4 Standard conversions ..57

4.1 Lvalue-to-rvalue conversion ..57

4.2 Array-to-pointer conversion ..58

4.3 Function-to-pointer conversion ...58

4.4 Qualification conversions ..58

4.5 Integral promotions ..59

4.6 Floating point promotion ...59

4.7 Integral conversions ...60

4.8 Floating point conversions ...60

4.9 Floating-integral conversions ..60

4.10 Pointer conversions ..60

4.11 Pointer to member conversions ...61

iv

© ISO/IEC ISO/IEC 14882:1998(E)

4.12 Boolean conversions ..61

5 Expressions ...63

5.1 Primary expressions ...64

5.2 Postfix expressions ..66
5.2.1 Subscripting ..66
5.2.2 Function call ...66
5.2.3 Explicit type conversion (functional notation) ...68
5.2.4 Pseudo destructor call ...68
5.2.5 Class member access ..68
5.2.6 Increment and decrement ..69
5.2.7 Dynamic cast ..70
5.2.8 Type identification ..71
5.2.9 Static cast ..72
5.2.10 Reinterpret cast ...73
5.2.11 Const cast ..74

5.3 Unary expressions ..76
5.3.1 Unary operators...76
5.3.2 Increment and decrement ..77
5.3.3 Sizeof ..77
5.3.4 New ...78
5.3.5 Delete ..81

5.4 Explicit type conversion (cast notation) ..82

5.5 Pointer-to-member operators ...83

5.6 Multiplicative operators ...83

5.7 Additive operators ...84

5.8 Shift operators ..85

5.9 Relational operators ...85

5.10 Equality operators ..86

5.11 BitwiseAND operator ..87

5.12 Bitwise exclusiveOR operator ...87

5.13 Bitwise inclusiveOR operator ...87

5.14 LogicalAND operator ..87

5.15 LogicalOR operator ...88

5.16 Conditional operator ..88

5.17 Assignment operators ..89

v

ISO/IEC 14882:1998(E) © ISO/IEC

5.18 Comma operator ..90

5.19 Constant expressions ...90

6 Statements ...93

6.1 Labeled statement ..93

6.2 Expression statement ...93

6.3 Compound statement or block ...93

6.4 Selection statements...94
6.4.1 Theif statement ..95
6.4.2 Theswitch statement ..95

6.5 Iteration statements ..95
6.5.1 Thewhile statement ...96
6.5.2 Thedo statement ..96
6.5.3 Thefor statement..97

6.6 Jump statements ...97
6.6.1 Thebreak statement ...97
6.6.2 Thecontinue statement..98
6.6.3 Thereturn statement ..98
6.6.4 Thegoto statement ...98

6.7 Declaration statement ..98

6.8 Ambiguity resolution ...99

7 Declarations ..101

7.1 Specifiers ...102
7.1.1 Storage class specifiers ...103
7.1.2 Function specifiers ..104
7.1.3 Thetypedef specifier..105
7.1.4 Thefriend specifier ..106
7.1.5 Type specifiers ..106
7.1.5.1 Thecv-qualifiers..107
7.1.5.2 Simple type specifiers ..108
7.1.5.3 Elaborated type specifiers ..109

7.2 Enumeration declarations ..110

7.3 Namespaces ...112
7.3.1 Namespace definition ...112
7.3.1.1 Unnamed namespaces ..113
7.3.1.2 Namespace member definitions ...113
7.3.2 Namespace alias ..115
7.3.3 Theusing declaration ..115
7.3.4 Using directive ..120

7.4 Theasm declaration ..123

vi

© ISO/IEC ISO/IEC 14882:1998(E)

7.5 Linkage specifications ...123

8 Declarators ..127

8.1 Type names ..128

8.2 Ambiguity resolution ...128

8.3 Meaning of declarators ..130
8.3.1 Pointers ...131
8.3.2 References ...132
8.3.3 Pointers to members ...133
8.3.4 Arrays ...133
8.3.5 Functions...135
8.3.6 Default arguments ...137

8.4 Function definitions ...140

8.5 Initializers ..141
8.5.1 Aggregates ..144
8.5.2 Character arrays ..146
8.5.3 References ...147

9 Classes ..149

9.1 Class names ...149

9.2 Class members ...151

9.3 Member functions ..153
9.3.1 Nonstatic member functions ...154
9.3.2 Thethis pointer ...155

9.4 Static members...156
9.4.1 Static member functions ...157
9.4.2 Static data members ..157

9.5 Unions ..158

9.6 Bit-fields ..159

9.7 Nested class declarations ...160

9.8 Local class declarations ...161

9.9 Nested type names ...161

10 Derived classes ...163

10.1 Multiple base classes ...164

10.2 Member name lookup ..165

10.3 Virtual functions ..168

vii

ISO/IEC 14882:1998(E) © ISO/IEC

10.4 Abstract classes ..172

11 Member access control ...175

11.1 Access specifiers ..176

11.2 Accessibility of base classes and base class members ...177

11.3 Access declarations ..178

11.4 Friends ...179

11.5 Protected member access ...182

11.6 Access to virtual functions...183

11.7 Multiple access ..183

11.8 Nested classes ..184

12 Special member functions...185

12.1 Constructors ...185

12.2 Temporary objects ...187

12.3 Conversions ...188
12.3.1 Conversion by constructor ..189
12.3.2 Conversion functions ..190

12.4 Destructors ...191

12.5 Free store ...194

12.6 Initialization ...195
12.6.1 Explicit initialization ..196
12.6.2 Initializing bases and members ...197

12.7 Construction and destruction ...200

12.8 Copying class objects ..203

13 Overloading ..209

13.1 Overloadable declarations..209

13.2 Declaration matching ...211

13.3 Overload resolution ...212
13.3.1 Candidate functions and argument lists ..213
13.3.1.1 Function call syntax ...214
13.3.1.1.1 Call to named function..214
13.3.1.1.2 Call to object of class type ..215
13.3.1.2 Operators in expressions ..216

viii

© ISO/IEC ISO/IEC 14882:1998(E)

13.3.1.3 Initialization by constructor ...218
13.3.1.4 Copy-initialization of class by user-defined conversion..218
13.3.1.5 Initialization by conversion function ...218
13.3.1.6 Initialization by conversion function for direct reference binding ..219
13.3.2 Viable functions ..219
13.3.3 Best Viable Function ..219
13.3.3.1 Implicit conversion sequences ...221
13.3.3.1.1 Standard conversion sequences ..222
13.3.3.1.2 User-defined conversion sequences ..223
13.3.3.1.3 Ellipsis conversion sequences...223
13.3.3.1.4 Reference binding ...224
13.3.3.2 Ranking implicit conversion sequences...224

13.4 Address of overloaded function ...226

13.5 Overloaded operators ...227
13.5.1 Unary operators...228
13.5.2 Binary operators..229
13.5.3 Assignment ...229
13.5.4 Function call ...229
13.5.5 Subscripting ..230
13.5.6 Class member access ..230
13.5.7 Increment and decrement ..230

13.6 Built-in operators ...231

14 Templates ..235

14.1 Template parameters ..236

14.2 Names of template specializations ...238

14.3 Template arguments...239
14.3.1 Template type arguments ..241
14.3.2 Template non-type arguments ..242
14.3.3 Template template arguments ...243

14.4 Type equivalence ...244

14.5 Template declarations ..244
14.5.1 Class templates ...244
14.5.1.1 Member functions of class templates...245
14.5.1.2 Member classes of class templates ..246
14.5.1.3 Static data members of class templates..246
14.5.2 Member templates ..246
14.5.3 Friends ..248
14.5.4 Class template partial specializations ...250
14.5.4.1 Matching of class template partial specializations ..252
14.5.4.2 Partial ordering of class template specializations ..252
14.5.4.3 Members of class template specializations ..253
14.5.5 Function templates ..254
14.5.5.1 Function template overloading ..254
14.5.5.2 Partial ordering of function templates ...256

ix

ISO/IEC 14882:1998(E) © ISO/IEC

14.6 Name resolution ...257
14.6.1 Locally declared names ..260
14.6.2 Dependent names ..262
14.6.2.1 Dependent types...263
14.6.2.2 Type-dependent expressions ..263
14.6.2.3 Value-dependent expressions ..264
14.6.2.4 Dependent template arguments ..264
14.6.3 Non-dependent names...265
14.6.4 Dependent name resolution ..265
14.6.4.1 Point of instantiation ..265
14.6.4.2 Candidate functions ...266
14.6.5 Friend names declared within a class template ...266

14.7 Template instantiation and specialization ..267
14.7.1 Implicit instantiation ...268
14.7.2 Explicit instantiation ...271
14.7.3 Explicit specialization ...272

14.8 Function template specializations ..277
14.8.1 Explicit template argument specification ...278
14.8.2 Template argument deduction ..280
14.8.2.1 Deducing template arguments from a function call ...282
14.8.2.2 Deducing template arguments taking the address of a function template283
14.8.2.3 Deducing conversion function template arguments...283
14.8.2.4 Deducing template arguments from a type ..283
14.8.3 Overload resolution ..288

15 Exception handling ...291

15.1 Throwing an exception ..292

15.2 Constructors and destructors..294

15.3 Handling an exception ...294

15.4 Exception specifications ..296

15.5 Special functions ..298
15.5.1 Theterminate() function ..298
15.5.2 Theunexpected() function ..299
15.5.3 Theuncaught_exception() function ...299

15.6 Exceptions and access ..299

16 Preprocessing directives ...301

16.1 Conditional inclusion ...302

16.2 Source file inclusion ..303

16.3 Macro replacement ..304
16.3.1 Argument substitution ..305
16.3.2 The# operator ..305
16.3.3 The## operator ..306

x

© ISO/IEC ISO/IEC 14882:1998(E)

16.3.4 Rescanning and further replacement...306
16.3.5 Scope of macro definitions ...306

16.4 Line control ..308

16.5 Error directive ..308

16.6 Pragma directive ..308

16.7 Null directive ...308

16.8 Predefined macro names ..309

17 Library introduction ..311

17.1 Definitions ...311
17.1.1 arbitrary-positional stream ..311
17.1.2 character ..311
17.1.3 character container type ..311
17.1.4 comparison function ...311
17.1.5 component...312
17.1.6 default behavior ..312
17.1.7 handler function ..312
17.1.8 iostream class templates ...312
17.1.9 modifier function ..312
17.1.10 object state ..312
17.1.11 narrow-oriented iostream classes ..312
17.1.12 NTCTS ..312
17.1.13 observer function ..312
17.1.14 replacement function...312
17.1.15 required behavior ..312
17.1.16 repositional stream ..313
17.1.17 reserved function...313
17.1.18 traits class..313
17.1.19 wide-oriented iostream classes ...313

17.2 Additional definitions ..313

17.3 Method of description (Informative) ...313
17.3.1 Structure of each subclause...313
17.3.1.1 Summary ..314
17.3.1.2 Requirements ...314
17.3.1.3 Specifications ...314
17.3.1.4 C Library ..315
17.3.2 Other conventions ...315
17.3.2.1 Type descriptions ...315
17.3.2.1.1 Enumerated types..316
17.3.2.1.2 Bitmask types..316
17.3.2.1.3 Character sequences ..317
17.3.2.1.3.1 Byte strings ..317
17.3.2.1.3.2 Multibyte strings ..318
17.3.2.1.3.3 Wide-character sequences ..318
17.3.2.2 Functions within classes ..318
17.3.2.3 Private members ..318

xi

ISO/IEC 14882:1998(E) © ISO/IEC

17.4 Library-wide requirements ..318
17.4.1 Library contents and organization ..319
17.4.1.1 Library contents ...319
17.4.1.2 Headers ..319
17.4.1.3 Freestanding implementations ...320
17.4.2 Using the library ...320
17.4.2.1 Headers ..320
17.4.2.2 Linkage ..321
17.4.3 Constraints on programs ...321
17.4.3.1 Reserved names ...321
17.4.3.1.1 Macro names ...321
17.4.3.1.2 Global names ..321
17.4.3.1.3 External linkage ..322
17.4.3.1.4 Types...322
17.4.3.2 Headers ..322
17.4.3.3 Derived classes ..322
17.4.3.4 Replacement functions...322
17.4.3.5 Handler functions...323
17.4.3.6 Other functions ..323
17.4.3.7 Function arguments ...324
17.4.3.8 Required paragraph ..324
17.4.4 Conforming implementations ...324
17.4.4.1 Headers ..324
17.4.4.2 Restrictions on macro definitions ..324
17.4.4.3 Global functions...324
17.4.4.4 Member functions ..325
17.4.4.5 Reentrancy ...325
17.4.4.6 Protection within classes..325
17.4.4.7 Derived classes ..325
17.4.4.8 Restrictions on exception handling ..325

18 Language support library ..327

18.1 Types..327

18.2 Implementation properties ...328
18.2.1 Numeric limits ..328
18.2.1.1 Template classnumeric_limits ...328
18.2.1.2 numeric_limits members ..329
18.2.1.3 Typefloat_round_style ...333
18.2.1.4 Typefloat_denorm_style ...334
18.2.1.5 numeric_limits specializations ...334
18.2.2 C Library ...335

18.3 Start and termination..336

18.4 Dynamic memory management ...337
18.4.1 Storage allocation and deallocation ..337
18.4.1.1 Single-object forms ..337
18.4.1.2 Array forms ..338
18.4.1.3 Placement forms ..339
18.4.2 Storage allocation errors ...340
18.4.2.1 Classbad_alloc ..340
18.4.2.2 Typenew_handler ..340

xii

© ISO/IEC ISO/IEC 14882:1998(E)

18.4.2.3 set_new_handler ...341

18.5 Type identification ...341
18.5.1 Classtype_info ...341
18.5.2 Classbad_cast ...342
18.5.3 Classbad_typeid ...342

18.6 Exception handling ..343
18.6.1 Classexception ...343
18.6.2 Violatingexception-specifications ...344
18.6.2.1 Classbad_exception ..344
18.6.2.2 Typeunexpected_handler ...345
18.6.2.3 set_unexpected ..345
18.6.2.4 unexpected ...345
18.6.3 Abnormal termination ...345
18.6.3.1 Typeterminate_handler ...345
18.6.3.2 set_terminate ..345
18.6.3.3 terminate ..345
18.6.4 uncaught_exception ...346

18.7 Other runtime support ..346

19 Diagnostics library ..349

19.1 Exception classes ...349
19.1.1 Classlogic_error ..349
19.1.2 Classdomain_error ..350
19.1.3 Classinvalid_argument ..350
19.1.4 Classlength_error ..350
19.1.5 Classout_of_range ..351
19.1.6 Classruntime_error ...351
19.1.7 Classrange_error ..351
19.1.8 Classoverflow_error ...351
19.1.9 Classunderflow_error ...352

19.2 Assertions ..352

19.3 Error numbers ..352

20 General utilities library ...353

20.1 Requirements ...353
20.1.1 Equality comparison ...353
20.1.2 Less than comparison ...353
20.1.3 Copy construction ...354
20.1.4 Default construction..354
20.1.5 Allocator requirements ...354

20.2 Utility components...357
20.2.1 Operators...357
20.2.2 Pairs ..358

20.3 Function objects ...359
20.3.1 Base...361

xiii

ISO/IEC 14882:1998(E) © ISO/IEC

20.3.2 Arithmetic operations ...361
20.3.3 Comparisons ...362
20.3.4 Logical operations ..363
20.3.5 Negators ..363
20.3.6 Binders ..364
20.3.6.1 Template classbinder1st ...364
20.3.6.2 bind1st ...364
20.3.6.3 Template classbinder2nd ...364
20.3.6.4 bind2nd ...365
20.3.7 Adaptors for pointers to functions ..365
20.3.8 Adaptors for pointers to members ..366

20.4 Memory..368
20.4.1 The default allocator ...368
20.4.1.1 allocator members ..369
20.4.1.2 allocator globals ...370
20.4.2 Raw storage iterator ..370
20.4.3 Temporary buffers ..371
20.4.4 Specialized algorithms ..371
20.4.4.1 uninitialized_copy ..371
20.4.4.2 uninitialized_fill ..372
20.4.4.3 uninitialized_fill_n ...372
20.4.5 Template classauto_ptr ..372
20.4.5.1 auto_ptr constructors..373
20.4.5.2 auto_ptr members ..373
20.4.5.3 auto_ptr conversions ..374
20.4.6 C Library ...374

20.5 Date and time ...375

21 Strings library ...377

21.1 Character traits ...377
21.1.1 Character traits requirements ..377
21.1.2 traits typedefs ..379
21.1.3 char_traits specializations ...379
21.1.3.1 struct char_traits<char> ..379
21.1.3.2 struct char_traits<wchar_t> ...380

21.2 String classes ...381

21.3 Template classbasic_string ..383
21.3.1 basic_string constructors ...387
21.3.2 basic_string iterator support ..390
21.3.3 basic_string capacity ...390
21.3.4 basic_string element access ...391
21.3.5 basic_string modifiers ...392
21.3.5.1 basic_string::operator+= ..392
21.3.5.2 basic_string::append ...392
21.3.5.3 basic_string::assign ...393
21.3.5.4 basic_string::insert ...393
21.3.5.5 basic_string::erase ..394
21.3.5.6 basic_string::replace ...395
21.3.5.7 basic_string::copy ..396

xiv

© ISO/IEC ISO/IEC 14882:1998(E)

21.3.5.8 basic_string::swap ..397
21.3.6 basic_string string operations ..397
21.3.6.1 basic_string::find ..397
21.3.6.2 basic_string::rfind ..398
21.3.6.3 basic_string::find_first_of ...398
21.3.6.4 basic_string::find_last_of ...399
21.3.6.5 basic_string::find_first_not_of ...399
21.3.6.6 basic_string::find_last_not_of ...400
21.3.6.7 basic_string::substr ...400
21.3.6.8 basic_string::compare ...400
21.3.7 basic_string non-member functions ..401
21.3.7.1 operator+ ..401
21.3.7.2 operator== ...402
21.3.7.3 operator!= ...402
21.3.7.4 operator< ..403
21.3.7.5 operator> ..403
21.3.7.6 operator<= ...403
21.3.7.7 operator>= ...404
21.3.7.8 swap ..404
21.3.7.9 Inserters and extractors ..404

21.4 Null-terminated sequence utilities ...405

22 Localization library ...409

22.1 Locales ...409
22.1.1 Classlocale ..410
22.1.1.1 locale types ...412
22.1.1.1.1 Typelocale::category ...412
22.1.1.1.2 Classlocale::facet ...414
22.1.1.1.3 Classlocale::id ...414
22.1.1.2 locale constructors and destructor ...415
22.1.1.3 locale members ...416
22.1.1.4 locale operators ...416
22.1.1.5 locale static members ..416
22.1.2 locale globals ...417
22.1.3 Convenience interfaces ...417
22.1.3.1 Character classification ..417
22.1.3.2 Character conversions ..417

22.2 Standardlocale categories...418
22.2.1 Thectype category ..418
22.2.1.1 Template classctype ..418
22.2.1.1.1 ctype members ...419
22.2.1.1.2 ctype virtual functions ...420
22.2.1.2 Template classctype_byname ..421
22.2.1.3 ctype specializations ...422
22.2.1.3.1 ctype<char> destructor ...423
22.2.1.3.2 ctype<char> members ..423
22.2.1.3.3 ctype<char> static members ...424
22.2.1.3.4 ctype<char> virtual functions...424
22.2.1.4 Class ctype_byname<char> ...425
22.2.1.5 Template classcodecvt ..425
22.2.1.5.1 codecvt members ..426

xv

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.1.5.2 codecvt virtual functions ..427
22.2.1.6 Template classcodecvt_byname ...429
22.2.2 The numeric category ...429
22.2.2.1 Template classnum_get ..429
22.2.2.1.1 num_get members ..431
22.2.2.1.2 num_get virtual functions ..431
22.2.2.2 Template classnum_put ..433
22.2.2.2.1 num_put members ..434
22.2.2.2.2 num_put virtual functions ..434
22.2.3 The numeric punctuation facet ...437
22.2.3.1 Template classnumpunct ...437
22.2.3.1.1 numpunct members ...438
22.2.3.1.2 numpunct virtual functions ..439
22.2.3.2 Template classnumpunct_byname ..439
22.2.4 The collate category ..439
22.2.4.1 Template classcollate ..439
22.2.4.1.1 collate members ..440
22.2.4.1.2 collate virtual functions ..440
22.2.4.2 Template classcollate_byname ...441
22.2.5 The time category ...441
22.2.5.1 Template classtime_get ...441
22.2.5.1.1 time_get members ...442
22.2.5.1.2 time_get virtual functions ..443
22.2.5.2 Template classtime_get_byname ..444
22.2.5.3 Template classtime_put ...444
22.2.5.3.1 time_put members ...445
22.2.5.3.2 time_put virtual functions ..445
22.2.5.4 Template classtime_put_byname ..445
22.2.6 The monetary category ...446
22.2.6.1 Template classmoney_get ...446
22.2.6.1.1 money_get members ...446
22.2.6.1.2 money_get virtual functions ...446
22.2.6.2 Template classmoney_put ...448
22.2.6.2.1 money_put members ...448
22.2.6.2.2 money_put virtual functions ...448
22.2.6.3 Template classmoneypunct ..449
22.2.6.3.1 moneypunct members ...450
22.2.6.3.2 moneypunct virtual functions ...450
22.2.6.4 Template classmoneypunct_byname ..451
22.2.7 The message retrieval category...452
22.2.7.1 Template classmessages ...452
22.2.7.1.1 messages members ...452
22.2.7.1.2 messages virtual functions ..453
22.2.7.2 Template classmessages_byname ..453
22.2.8 Program-defined facets ...453

22.3 C Library Locales ..457

23 Containers library ...459

23.1 Container requirements ..459
23.1.1 Sequences ...462
23.1.2 Associative containers ..464

xvi

© ISO/IEC ISO/IEC 14882:1998(E)

23.2 Sequences ..467
23.2.1 Template classdeque ...470
23.2.1.1 deque constructors, copy, and assignment ..472
23.2.1.2 deque capacity ...473
23.2.1.3 deque modifiers ...473
23.2.1.4 deque specialized algorithms ..473
23.2.2 Template classlist ..474
23.2.2.1 list constructors, copy, and assignment ...476
23.2.2.2 list capacity ...477
23.2.2.3 list modifiers ...477
23.2.2.4 list operations ..477
23.2.2.5 list specialized algorithms ...479
23.2.3 Container adaptors ..479
23.2.3.1 Template classqueue ..479
23.2.3.2 Template classpriority_queue ...480
23.2.3.2.1 priority_queue constructors ..481
23.2.3.2.2 priority_queue members ...481
23.2.3.3 Template classstack ..481
23.2.4 Template classvector ...482
23.2.4.1 vector constructors, copy, and assignment ..484
23.2.4.2 vector capacity ...485
23.2.4.3 vector modifiers...485
23.2.4.4 vector specialized algorithms ..486
23.2.5 Classvector<bool> ..486

23.3 Associative containers ...488
23.3.1 Template classmap..490
23.3.1.1 mapconstructors, copy, and assignment ...492
23.3.1.2 mapelement access ...493
23.3.1.3 mapoperations ..493
23.3.1.4 mapspecialized algorithms ...493
23.3.2 Template classmultimap ..493
23.3.2.1 multimap constructors..496
23.3.2.2 multimap operations ..496
23.3.2.3 multimap specialized algorithms ...496
23.3.3 Template classset ..496
23.3.3.1 set constructors, copy, and assignment ...498
23.3.3.2 set specialized algorithms ...499
23.3.4 Template classmultiset ..499
23.3.4.1 multiset constructors..501
23.3.4.2 multiset specialized algorithms ...501
23.3.5 Template classbitset ...502
23.3.5.1 bitset constructors ..503
23.3.5.2 bitset members ...504
23.3.5.3 bitset operators ...506

24 Iterators library ...509

24.1 Iterator requirements ..509
24.1.1 Input iterators ..510
24.1.2 Output iterators ...511
24.1.3 Forward iterators ...512
24.1.4 Bidirectional iterators ...513
24.1.5 Random access iterators..513

xvii

ISO/IEC 14882:1998(E) © ISO/IEC

24.2 Header<iterator> synopsis ..514

24.3 Iterator primitives ..516
24.3.1 Iterator traits..516
24.3.2 Basic iterator ...517
24.3.3 Standard iterator tags ..518
24.3.4 Iterator operations ...519

24.4 Predefined iterators ..519
24.4.1 Reverse iterators ...519
24.4.1.1 Template classreverse_iterator ..520
24.4.1.2 reverse_iterator requirements ...521
24.4.1.3 reverse_iterator operations ...521
24.4.1.3.1 reverse_iterator constructor ...521
24.4.1.3.2 Conversion ..521
24.4.1.3.3 operator* ...521
24.4.1.3.4 operator-> ..522
24.4.1.3.5 operator++ ..522
24.4.1.3.6 operator-- ..522
24.4.1.3.7 operator+ ...522
24.4.1.3.8 operator+= ..522
24.4.1.3.9 operator- ...523
24.4.1.3.10 operator-= ..523
24.4.1.3.11 operator[] ..523
24.4.1.3.12 operator== ..523
24.4.1.3.13 operator< ...523
24.4.1.3.14 operator!= ..523
24.4.1.3.15 operator> ...523
24.4.1.3.16 operator>= ..524
24.4.1.3.17 operator<= ..524
24.4.1.3.18 operator- ...524
24.4.1.3.19 operator+ ...524
24.4.2 Insert iterators ...524
24.4.2.1 Template classback_insert_iterator ..525
24.4.2.2 back_insert_iterator operations ..525
24.4.2.2.1 back_insert_iterator constructor ...525
24.4.2.2.2 back_insert_iterator::operator= ..525
24.4.2.2.3 back_insert_iterator::operator* ..525
24.4.2.2.4 back_insert_iterator::operator++ ..525
24.4.2.2.5 back_inserter ...526
24.4.2.3 Template classfront_insert_iterator ..526
24.4.2.4 front_insert_iterator operations ...526
24.4.2.4.1 front_insert_iterator constructor ...526
24.4.2.4.2 front_insert_iterator::operator= ..526
24.4.2.4.3 front_insert_iterator::operator* ..526
24.4.2.4.4 front_insert_iterator::operator++ ...527
24.4.2.4.5 front_inserter ...527
24.4.2.5 Template classinsert_iterator ..527
24.4.2.6 insert_iterator operations ..527
24.4.2.6.1 insert_iterator constructor ...527
24.4.2.6.2 insert_iterator::operator= ..527
24.4.2.6.3 insert_iterator::operator* ..528
24.4.2.6.4 insert_iterator::operator++ ..528
24.4.2.6.5 inserter ...528

xviii

© ISO/IEC ISO/IEC 14882:1998(E)

24.5 Stream iterators ..528
24.5.1 Template classistream_iterator ...528
24.5.1.1 istream_iterator constructors and destructor ...529
24.5.1.2 istream_iterator operations ...529
24.5.2 Template classostream_iterator ...530
24.5.2.1 ostream_iterator constructors and destructor ...531
24.5.2.2 ostream_iterator operations ...531
24.5.3 Template classistreambuf_iterator ..531
24.5.3.1 Template classistreambuf_iterator::proxy ..532
24.5.3.2 istreambuf_iterator constructors ...533
24.5.3.3 istreambuf_iterator::operator* ...533
24.5.3.4 istreambuf_iterator::operator++ ...533
24.5.3.5 istreambuf_iterator::equal ...533
24.5.3.6 operator== ...533
24.5.3.7 operator!= ...534
24.5.4 Template classostreambuf_iterator ..534
24.5.4.1 ostreambuf_iterator constructors ...534
24.5.4.2 ostreambuf_iterator operations ..534

25 Algorithms library ..537

25.1 Non-modifying sequence operations ...545
25.1.1 For each ..545
25.1.2 Find ...546
25.1.3 Find End..546
25.1.4 Find First...546
25.1.5 Adjacent find ..547
25.1.6 Count...547
25.1.7 Mismatch ..547
25.1.8 Equal ...548
25.1.9 Search ...548

25.2 Mutating sequence operations ...549
25.2.1 Copy ..549
25.2.2 Swap ...549
25.2.3 Transform ...550
25.2.4 Replace ...550
25.2.5 Fill ...551
25.2.6 Generate ..551
25.2.7 Remove ...551
25.2.8 Unique...552
25.2.9 Reverse ...552
25.2.10 Rotate ..553
25.2.11 Random shuffle ...553
25.2.12 Partitions ...554

25.3 Sorting and related operations ...554
25.3.1 Sorting...555
25.3.1.1 sort ..555
25.3.1.2 stable_sort ...555
25.3.1.3 partial_sort ...555
25.3.1.4 partial_sort_copy ...556
25.3.2 Nth element ...556
25.3.3 Binary search ..556

xix

ISO/IEC 14882:1998(E) © ISO/IEC

25.3.3.1 lower_bound ...556
25.3.3.2 upper_bound ...557
25.3.3.3 equal_range ...557
25.3.3.4 binary_search ..557
25.3.4 Merge ..558
25.3.5 Set operations on sorted structures ...558
25.3.5.1 includes ..559
25.3.5.2 set_union ..559
25.3.5.3 set_intersection ...559
25.3.5.4 set_difference ..560
25.3.5.5 set_symmetric_difference ..560
25.3.6 Heap operations ..560
25.3.6.1 push_heap ..561
25.3.6.2 pop_heap ..561
25.3.6.3 make_heap ..561
25.3.6.4 sort_heap ..561
25.3.7 Minimum and maximum ..562
25.3.8 Lexicographical comparison ...562
25.3.9 Permutation generators ...563

25.4 C library algorithms ...563

26 Numerics library ...565

26.1 Numeric type requirements ..565

26.2 Complex numbers ..566
26.2.1 Header<complex> synopsis ...566
26.2.2 Template classcomplex ...567
26.2.3 complex specializations ...569
26.2.4 complex member functions..570
26.2.5 complex member operators..570
26.2.6 complex non-member operations ..571
26.2.7 complex value operations ..572
26.2.8 complex transcendentals ..573

26.3 Numeric arrays ...574
26.3.1 Header<valarray> synopsis ...574
26.3.2 Template classvalarray ..577
26.3.2.1 valarray constructors..578
26.3.2.2 valarray assignment ...579
26.3.2.3 valarray element access ...580
26.3.2.4 valarray subset operations ...580
26.3.2.5 valarray unary operators ..580
26.3.2.6 valarray computed assignment ..581
26.3.2.7 valarray member functions ..581
26.3.3 valarray non-member operations ..583
26.3.3.1 valarray binary operators ...583
26.3.3.2 valarray logical operators ..584
26.3.3.3 valarray transcendentals...585
26.3.4 Classslice ...585
26.3.4.1 slice constructors ...585
26.3.4.2 slice access functions ..586
26.3.5 Template classslice_array ...586

xx

© ISO/IEC ISO/IEC 14882:1998(E)

26.3.5.1 slice_array constructors ..587
26.3.5.2 slice_array assignment ..587
26.3.5.3 slice_array computed assignment ...587
26.3.5.4 slice_array fill function ...587
26.3.6 Thegslice class ..587
26.3.6.1 gslice constructors ..588
26.3.6.2 gslice access functions ..589
26.3.7 Template classgslice_array ...589
26.3.7.1 gslice_array constructors ..589
26.3.7.2 gslice_array assignment..590
26.3.7.3 gslice_array computed assignment ...590
26.3.7.4 gslice_array fill function...590
26.3.8 Template classmask_array ...590
26.3.8.1 mask_array constructors ...591
26.3.8.2 mask_array assignment ..591
26.3.8.3 mask_array computed assignment..591
26.3.8.4 mask_array fill function ...592
26.3.9 Template classindirect_array ..592
26.3.9.1 indirect_array constructors ...592
26.3.9.2 indirect_array assignment ...593
26.3.9.3 indirect_array computed assignment ..593
26.3.9.4 indirect_array fill function ..593

26.4 Generalized numeric operations ..593
26.4.1 Accumulate ...594
26.4.2 Inner product ...595
26.4.3 Partial sum ..595
26.4.4 Adjacent difference ...595

26.5 C Library ..596

27 Input/output library ...599

27.1 Iostreams requirements ..599
27.1.1 Imbue Limitations ...599
27.1.2 Positioning Type Limitations ...599

27.2 Forward declarations..599

27.3 Standard iostream objects ..602
27.3.1 Narrow stream objects ..602
27.3.2 Wide stream objects ..603

27.4 Iostreams base classes ..604
27.4.1 Types...604
27.4.2 Classios_base ...605
27.4.2.1 Types..607
27.4.2.1.1 Classios_base::failure ..607
27.4.2.1.2 Typeios_base::fmtflags ..607
27.4.2.1.3 Typeios_base::iostate ..608
27.4.2.1.4 Typeios_base::openmode ..609
27.4.2.1.5 Typeios_base::seekdir ..609
27.4.2.1.6 Classios_base::Init ...609
27.4.2.2 ios_base fmtflags state functions ..610

xxi

ISO/IEC 14882:1998(E) © ISO/IEC

27.4.2.3 ios_base locale functions ...611
27.4.2.4 ios_base static members ...611
27.4.2.5 ios_base storage functions ..611
27.4.2.6 ios_base callbacks ..612
27.4.2.7 ios_base constructors/destructors ...612
27.4.3 Template classfpos ..612
27.4.3.1 fpos Members ..612
27.4.3.2 fpos requirements ..612
27.4.4 Template classbasic_ios ..613
27.4.4.1 basic_ios constructors ...614
27.4.4.2 Member functions ..615
27.4.4.3 basic_ios iostate flags functions ..616
27.4.5 ios_base manipulators ...617
27.4.5.1 fmtflags manipulators ..617
27.4.5.2 adjustfield manipulators ...618
27.4.5.3 basefield manipulators ..619
27.4.5.4 floatfield manipulators ...619

27.5 Stream buffers ..619
27.5.1 Stream buffer requirements ..620
27.5.2 Template classbasic_streambuf<charT,traits> ..620
27.5.2.1 basic_streambuf constructors ...622
27.5.2.2 basic_streambuf public member functions ..623
27.5.2.2.1 Locales ..623
27.5.2.2.2 Buffer management and positioning ...623
27.5.2.2.3 Get area ...623
27.5.2.2.4 Putback ...624
27.5.2.2.5 Put area ...624
27.5.2.3 basic_streambuf protected member functions..624
27.5.2.3.1 Get area access ..624
27.5.2.3.2 Put area access ..625
27.5.2.4 basic_streambuf virtual functions ..625
27.5.2.4.1 Locales ..625
27.5.2.4.2 Buffer management and positioning ...625
27.5.2.4.3 Get area ...626
27.5.2.4.4 Putback ...627
27.5.2.4.5 Put area ...628

27.6 Formatting and manipulators ...629
27.6.1 Input streams ...630
27.6.1.1 Template classbasic_istream ...630
27.6.1.1.1 basic_istream constructors...632
27.6.1.1.2 Classbasic_istream::sentry ..632
27.6.1.2 Formatted input functions ..633
27.6.1.2.1 Common requirements..633
27.6.1.2.2 Arithmetic Extractors..633
27.6.1.2.3 basic_istream::operator>> ..634
27.6.1.3 Unformatted input functions ..635
27.6.1.4 Standardbasic_istream manipulators ...639
27.6.1.5 Template classbasic_iostream ...639
27.6.1.5.1 basic_iostream constructors ..640
27.6.1.5.2 basic_iostream destructor ..640
27.6.2 Output streams ..640
27.6.2.1 Template classbasic_ostream ...640

xxii

© ISO/IEC ISO/IEC 14882:1998(E)

27.6.2.2 basic_ostream constructors..642
27.6.2.3 Classbasic_ostream::sentry ...642
27.6.2.4 basic_ostream seek members ..643
27.6.2.5 Formatted output functions ..643
27.6.2.5.1 Common requirements..643
27.6.2.5.2 Arithmetic Inserters ..643
27.6.2.5.3 basic_ostream::operator<< ..644
27.6.2.5.4 Character inserter template functions ...645
27.6.2.6 Unformatted output functions ..645
27.6.2.7 Standardbasic_ostream manipulators ...646
27.6.3 Standard manipulators ..646

27.7 String-based streams ..648
27.7.1 Template classbasic_stringbuf ...649
27.7.1.1 basic_stringbuf constructors ...650
27.7.1.2 Member functions ..650
27.7.1.3 Overridden virtual functions ..651
27.7.2 Template classbasic_istringstream ..653
27.7.2.1 basic_istringstream constructors ...653
27.7.2.2 Member functions ..654
27.7.3 Classbasic_ostringstream ...654
27.7.3.1 basic_ostringstream constructors ...655
27.7.3.2 Member functions ..655
27.7.4 Template classbasic_stringstream ..655
27.7.5 basic_stringstream constructors ..656
27.7.6 Member functions ...656

27.8 File-based streams ...657
27.8.1 File streams ...657
27.8.1.1 Template classbasic_filebuf ...657
27.8.1.2 basic_filebuf constructors..658
27.8.1.3 Member functions ..659
27.8.1.4 Overridden virtual functions ..660
27.8.1.5 Template classbasic_ifstream ...662
27.8.1.6 basic_ifstream constructors ...663
27.8.1.7 Member functions ..663
27.8.1.8 Template classbasic_ofstream ...664
27.8.1.9 basic_ofstream constructors ...664
27.8.1.10 Member functions ..665
27.8.1.11 Template classbasic_fstream ...665
27.8.1.12 basic_fstream constructors..666
27.8.1.13 Member functions ..666
27.8.2 C Library files ...666

Annex A (informative) Grammar summary ..667

A.1 Keywords ..667

A.2 Lexical conventions ..667

A.3 Basic concepts...671

A.4 Expressions ...671

xxiii

ISO/IEC 14882:1998(E) © ISO/IEC

A.5 Statements ...674

A.6 Declarations ..675

A.7 Declarators ..677

A.8 Classes ..679

A.9 Derived classes..680

A.10 Special member functions ...680

A.11 Overloading ..680

A.12 Templates ..681

A.13 Exception handling ...681

A.14 Preprocessing directives..682

Annex B (informative) Implementation quantities ..685

Annex C (informative) Compatibility ...687

C.1 C++ and ISO C ..687
C.1.1 Clause 2: lexical conventions ...687
C.1.2 Clause 3: basic concepts ..688
C.1.3 Clause 5: expressions ...690
C.1.4 Clause 6: statements ...690
C.1.5 Clause 7: declarations ..691
C.1.6 Clause 8: declarators ..693
C.1.7 Clause 9: classes...694
C.1.8 Clause 12: special member functions...695
C.1.9 Clause 16: preprocessing directives ...696

C.2 Standard C library ...696
C.2.1 Modifications to headers ..698
C.2.2 Modifications to definitions ...698
C.2.2.1 Typewchar_t ...698
C.2.2.2 Header<iso646.h> ..699
C.2.2.3 MacroNULL..699
C.2.3 Modifications to declarations ...699
C.2.4 Modifications to behavior ..699
C.2.4.1 Macrooffsetof(type , member-designator) ..699
C.2.4.2 Memory allocation functions ..699

Annex D (normative) Compatibility features ..701

D.1 Postfix increment operator ..701

D.2 static keyword ...701

D.3 Access declarations ...701

xxiv

© ISO/IEC ISO/IEC 14882:1998(E)

D.4 Implicit conversion from const strings ...701

D.5 Standard C library headers ..701

D.6 Old iostreams members ..701

D.7 char* streams ...703
D.7.1 Classstrstreambuf ...703
D.7.1.1 strstreambuf constructors ...705
D.7.1.2 Member functions ...706
D.7.1.3 strstreambuf overridden virtual functions ..706
D.7.2 Classistrstream ..709
D.7.2.1 istrstream constructors ..709
D.7.2.2 Member functions ...709
D.7.3 Classostrstream ..710
D.7.3.1 ostrstream constructors ..710
D.7.3.2 Member functions ...710
D.7.4 Classstrstream ..711
D.7.4.1 strstream constructors ..711
D.7.4.2 strstream destructor ..712
D.7.4.3 strstream operations ...712

Annex E (normative) Universal-character-names ...713

Index ...715

xxv

ISO/IEC 14882:1998(E) © ISO/IEC

xxvi

Foreword

ISO (the International Organization for Standardization) and IEC (the Inter-
national Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are members of ISO or IEC participate in the
development of International Standards through technical committees established
by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with
ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the
joint technical committee are circulated to national bodies for voting. Publication
as an International Standard requires approval by at least 75 % of the national
bodies casting a vote.

International Standard ISO/IEC 14882 was prepared by Joint Technical
Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 22,
Programming languages, their environments and system software interfaces.

Annexes D and E form an integral part of this International Standard. Annexes A
to C are for information only.

_ __

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 14882:1998(E)
_ __

Programming languages– C++

1 General [intro]

[intro.scope] 1.1 Scope

1 This International Standard specifies requirements for implementations of the C++ programming language.
The first such requirement is that they implement the language, and so this International Standard also
defines C++. Other requirements and relaxations of the first requirement appear at various places within
this International Standard.

2 C++ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:1990Programming languages– C (1.2). In addition to the facilities provided by C, C++
provides additional data types, classes, templates, exceptions, namespaces, inline functions, operator over-
loading, function name overloading, references, free store management operators, and additional library
facilities.

[intro.refs] 1.2 Normative references

1 The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this International Standard are encouraged to investi-
gate the possibility of applying the most recent editions of the standards indicated below. Members of IEC
and ISO maintain registers of currently valid International Standards.

— ISO/IEC 2382 (all parts),Information technology– Vocabulary

— ISO/IEC 9899:1990,Programming languages– C

— ISO/IEC 9899/Amd.1:1995,Programming languages– C, AMENDMENT 1: C Integrity

— ISO/IEC 10646-1:1993Information technology– Universal Multiple-Octet Coded Character Set
(UCS) – Part 1: Architecture and Basic Multilingual Plane

2 The library described in clause 7 of ISO/IEC 9899:1990 and clause 7 of ISO/IEC 9899/Amd.1:1995 is here-
inafter called theStandard C Library.1)

[intro.defs] 1.3 Definitions

1 For the purposes of this International Standard, the definitions given in ISO/IEC 2382 and the following
definitions apply. 17.1 defines additional terms that are used only in clauses 17 through 27.

2 Terms that are used only in a small portion of this International Standard are defined where they are used
and italicized where they are defined.

[defns.argument] 1.3.1 argument
an expression in the comma-separated list bounded by the parentheses in a function call expression, a
sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a function-like
macro invocation, the operand ofthrow , or an expression,type-id or template-namein the comma-
separated list bounded by the angle brackets in a template instantiation. Also known as anactual argument
or actual parameter.

1) With the qualifications noted in clauses 17 through 27, and in C.2, the Standard C library is a subset of the Standard C++ library.

1

ISO/IEC 14882:1998(E) © ISO/IEC

1.3.2 diagnostic message 1 General

[defns.diagnostic] 1.3.2 diagnostic message
a message belonging to an implementation-defined subset of the implementation’s output messages.

[defns.dynamic.type] 1.3.3 dynamic type
the type of the most derived object (1.8) to which the lvalue denoted by an lvalue expression refers. [Exam-
ple: if a pointer (8.3.1)p whose static type is“pointer to classB” is pointing to an object of classD, derived
from B (clause 10), the dynamic type of the expression*p is “D.” References (8.3.2) are treated similarly.]
The dynamic type of an rvalue expression is its static type.

[defns.ill.formed] 1.3.4 ill-formed program
input to a C++ implementation that is not a well-formed program (1.3.14).

[defns.impl.defined] 1.3.5 implementation-defined behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation and
that each implementation shall document.

[defns.impl.limits] 1.3.6 implementation limits
restrictions imposed upon programs by the implementation.

[defns.locale.specific] 1.3.7 locale-specific behavior
behavior that depends on local conventions of nationality, culture, and language that each implementation
shall document.

[defns.multibyte] 1.3.8 multibyte character
a sequence of one or more bytes representing a member of the extended character set of either the source or
the execution environment. The extended character set is a superset of the basic character set (2.2).

[defns.parameter] 1.3.9 parameter
an object or reference declared as part of a function declaration or definition, or in the catch clause of an
exception handler, that acquires a value on entry to the function or handler; an identifier from the comma-
separated list bounded by the parentheses immediately following the macro name in a function-like macro
definition; or atemplate-parameter. Parameters are also known asformal argumentsor formal parameters.

[defns.signature] 1.3.10 signature
the information about a function that participates in overload resolution (13.3): the types of its parameters
and, if the function is a class member, thecv-qualifiers (if any) on the function itself and the class in which
the member function is declared.2) The signature of a template function specialization includes the types of
its template arguments (14.5.5.1).

[defns.static.type] 1.3.11 static type
the type of an expression (3.9), which type results from analysis of the program without considering execu-
tion semantics. The static type of an expression depends only on the form of the program in which the
expression appears, and does not change while the program is executing.

[defns.undefined] 1.3.12 undefined behavior
behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which this
International Standard imposes no requirements. Undefined behavior may also be expected when this
International Standard omits the description of any explicit definition of behavior. [Note:permissible unde-
fined behavior ranges from ignoring the situation completely with unpredictable results, to behaving during
translation or program execution in a documented manner characteristic of the environment (with or with-
out the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a
diagnostic message). Many erroneous program constructs do not engender undefined behavior; they are

2) Function signatures do not include return type, because that does not participate in overload resolution.

2

© ISO/IEC ISO/IEC 14882:1998(E)

1 General 1.3.12 undefined behavior

required to be diagnosed.]

[defns.unspecified] 1.3.13 unspecified behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation. The
implementation is not required to document which behavior occurs. [Note: usually, the range of possible
behaviors is delineated by this International Standard.]

[defns.well.formed] 1.3.14 well-formed program
a C++ program constructed according to the syntax rules, diagnosable semantic rules, and the One Defini-
tion Rule (3.2).

[intro.compliance] 1.4 Implementation compliance

1 The set ofdiagnosable rulesconsists of all syntactic and semantic rules in this International Standard
except for those rules containing an explicit notation that“no diagnostic is required” or which are described
as resulting in“undefined behavior.”

2 Although this International Standard states only requirements on C++ implementations, those requirements
are often easier to understand if they are phrased as requirements on programs, parts of programs, or execu-
tion of programs. Such requirements have the following meaning:

— If a program contains no violations of the rules in this International Standard, a conforming implemen-
tation shall, within its resource limits, accept and correctly execute3) that program.

— If a program contains a violation of any diagnosable rule, a conforming implementation shall issue at
least one diagnostic message, except that

— If a program contains a violation of a rule for which no diagnostic is required, this International Stan-
dard places no requirement on implementations with respect to that program.

3 For classes and class templates, the library clauses specify partial definitions. Private members (clause 11)
are not specified, but each implementation shall supply them to complete the definitions according to the
description in the library clauses.

4 For functions, function templates, objects, and values, the library clauses specify declarations. Implementa-
tions shall supply definitions consistent with the descriptions in the library clauses.

5 The names defined in the library have namespace scope (7.3). A C++ translation unit (2.1) obtains access
to these names by including the appropriate standard library header (16.2).

6 The templates, classes, functions, and objects in the library have external linkage (3.5). The implementa-
tion provides definitions for standard library entities, as necessary, while combining translation units to
form a complete C++ program (2.1).

7 Two kinds of implementations are defined:hostedand freestanding. For a hosted implementation, this
International Standard defines the set of available libraries. A freestanding implementation is one in which
execution may take place without the benefit of an operating system, and has an implementation-defined set
of libraries that includes certain language-support libraries (17.4.1.3).

8 A conforming implementation may have extensions (including additional library functions), provided they
do not alter the behavior of any well-formed program. Implementations are required to diagnose programs
that use such extensions that are ill-formed according to this International Standard. Having done so, how-
ever, they can compile and execute such programs.

3) “Correct execution” can include undefined behavior, depending on the data being processed; see 1.3 and 1.9.

3

ISO/IEC 14882:1998(E) © ISO/IEC

1.5 Structure of this International Standard 1 General

[intro.structure] 1.5 Structure of this International Standard

1 Clauses 2 through 16 describe the C++ programming language. That description includes detailed syntactic
specifications in a form described in 1.6. For convenience, Annex A repeats all such syntactic specifica-
tions.

2 Clauses 17 through 27 (thelibrary clauses) describe the Standard C++ library, which provides definitions
for the following kinds of entities: macros (16.3), values (clause 3), types (8.1, 8.3), templates (clause 14),
classes (clause 9), functions (8.3.5), and objects (clause 7).

3 Annex B recommends lower bounds on the capacity of conforming implementations.

4 Annex C summarizes the evolution of C++ since its first published description, and explains in detail the
differences between C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D
describes those features.

5 Finally, Annex E says what characters are valid in universal-character names in C++ identifiers (2.10).

6 Throughout this International Standard, each example is introduced by“[Example:” and terminated by“]”.
Each note is introduced by“[Note:” and terminated by“]”. Examples and notes may be nested.

[syntax] 1.6 Syntax notation

1 In the syntax notation used in this International Standard, syntactic categories are indicated byitalic type,
and literal words and characters inconstant width type. Alternatives are listed on separate lines
except in a few cases where a long set of alternatives is presented on one line, marked by the phrase“one
of.” An optional terminal or nonterminal symbol is indicated by the subscript“opt,” so

{ expressionopt }

indicates an optional expression enclosed in braces.

2 Names for syntactic categories have generally been chosen according to the following rules:

— X-nameis a use of an identifier in a context that determines its meaning (e.g.class-name, typedef-
name).

— X-id is an identifier with no context-dependent meaning (e.g.qualified-id).

— X-seqis one or moreX’s without intervening delimiters (e.g.declaration-seqis a sequence of declara-
tions).

— X-list is one or moreX’s separated by intervening commas (e.g.expression-listis a sequence of expres-
sions separated by commas).

[intro.memory] 1.7 The C++ memory model

1 The fundamental storage unit in the C++ memory model is thebyte. A byte is at least large enough to con-
tain any member of the basic execution character set and is composed of a contiguous sequence of bits, the
number of which is implementation-defined. The least significant bit is called thelow-order bit; the most
significant bit is called thehigh-orderbit. The memory available to a C++ program consists of one or more
sequences of contiguous bytes. Every byte has a unique address.

2 [Note:the representation of types is described in 3.9.]

[intro.object] 1.8 The C++ object model

1 The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. Anobject is a
region of storage. [Note:A function is not an object, regardless of whether or not it occupies storage in the
way that objects do.] An object is created by adefinition (3.1), by anew-expression(5.3.4) or by the
implementation (12.2) when needed. The properties of an object are determined when the object is created.
An object can have aname(clause 3). An object has astorage duration(3.7) which influences itslifetime
(3.8). An object has atype(3.9). The termobject typerefers to the type with which the object is created.

4

© ISO/IEC ISO/IEC 14882:1998(E)

1 General 1.8 The C++ object model

Some objects arepolymorphic(10.3); the implementation generates information associated with each such
object that makes it possible to determine that object’s type during program execution. For other objects,
the interpretation of the values found therein is determined by the type of theexpressions (clause 5) used to
access them.

2 Objects can contain other objects, calledsub-objects. A sub-object can be amember sub-object(9.2), a
base class sub-object(clause 10), or an array element. An object that is not a sub-object of any other object
is called acomplete object.

3 For every objectx , there is some object calledthe complete object ofx , determined as follows:

— If x is a complete object, thenx is the complete object ofx .

— Otherwise, the complete object ofx is the complete object of the (unique) object that containsx .

4 If a complete object, a data member (9.2), or an array element is of class type, its type is considered the
most derivedclass, to distinguish it from the class type of any base class subobject; an object of a most
derived class type is called amost derived object.

5 Unless it is a bit-field (9.6), a most derived object shall have a non-zero size and shall occupy one or more
bytes of storage. Base class sub-objects may have zero size. An object of POD4) type (3.9) shall occupy
contiguous bytes of storage.

6 [Note: C++ provides a variety of built-in types and several ways of composing new types from existing
types (3.9).]

[intro.execution] 1.9 Program execution

1 The semantic descriptions in this International Standard define a parameterized nondeterministic abstract
machine. This International Standard places no requirement on the structure of conforming implementa-
tions. In particular, they need not copy or emulate the structure of the abstract machine. Rather, conform-
ing implementations are required to emulate (only) the observable behavior of the abstract machine as
explained below.5)

2 Certain aspects and operations of the abstract machine are described in this International Standard as
implementation-defined (for example,sizeof(int)). These constitute the parameters of the abstract
machine. Each implementation shall include documentation describing its characteristics and behavior in
these respects. Such documentation shall define the instance of the abstract machine that corresponds to
that implementation (referred to as the ‘‘corresponding instance’’ below).

3 Certain other aspects and operations of the abstract machine are described in this International Standard as
unspecified (for example, order of evaluation of arguments to a function). Where possible, this Interna-
tional Standard defines a set of allowable behaviors. These define the nondeterministic aspects of the
abstract machine. An instance of the abstract machine can thus have more than one possible execution
sequence for a given program and a given input.

4 Certain other operations are described in this International Standard as undefined (for example, the effect of
dereferencing the null pointer). [Note: this International Standard imposes no requirements on the behavior
of programs that contain undefined behavior.]

5 A conforming implementation executing a well-formed program shall produce the same observable behav-
ior as one of the possible execution sequences of the corresponding instance of the abstract machine with
the same program and the same input. However, if any such execution sequence contains an undefined
operation, this International Standard places no requirement on the implementation executing that program

4) The acronym POD stands for“plain old data.”
5) This provision is sometimes called the“as-if” rule, because an implementation is free to disregard any requirement of this Interna-
tional Standard as long as the result isas if the requirement had been obeyed, as far as can be determined from the observable behavior
of the program. For instance, an actual implementation need not evaluate part of an expression if it can deduce that its value is not used
and that no side effects affecting the observable behavior of the program are produced.

5

ISO/IEC 14882:1998(E) © ISO/IEC

1.9 Program execution 1 General

with that input (not even with regard to operations preceding the first undefined operation).

6 The observable behavior of the abstract machine is its sequence of reads and writes tovolatile data and
calls to library I/O functions.6)

7 Accessing an object designated by avolatile lvalue (3.10), modifying an object, calling a library I/O
function, or calling a function that does any of those operations are allside effects, which are changes in the
state of the execution environment. Evaluation of an expression might produce side effects. At certain
specified points in the execution sequence calledsequence points, all side effects of previous evaluations
shall be complete and no side effects of subsequent evaluations shall have taken place.7)

8 Once the execution of a function begins, no expressions from the calling function are evaluated until execu-
tion of the called function has completed.8)

9 When the processing of the abstract machine is interrupted by receipt of a signal, the values of objects with
type other thanvolatile sig_atomic_t are unspecified, and the value of any object not of
volatile sig_atomic_t that is modified by the handler becomes undefined.

10 An instance of each object with automatic storage duration (3.7.2) is associated with each entry into its
block. Such an object exists and retains its last-stored value during the execution of the block and while the
block is suspended (by a call of a function or receipt of a signal).

11 The least requirements on a conforming implementation are:

— At sequence points, volatile objects are stable in the sense that previous evaluations are complete and
subsequent evaluations have not yet occurred.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
messages actually appear prior to a program waiting for input. What constitutes an interactive device is
implementation-defined.

[Note: more stringent correspondences between abstract and actual semantics may be defined by each
implementation.]

12 A full-expressionis an expression that is not a subexpression of another expression. If a language construct
is defined to produce an implicit call of a function, a use of the language construct is considered to be an
expression for the purposes of this definition.

13 [Note: certain contexts in C++ cause the evaluation of a full-expression that results from a syntactic con-
struct other thanexpression(5.18). For example, in 8.5 one syntax forinitializer is

(expression-list)

but the resulting construct is a function call upon a constructor function withexpression-listas an argument
list; such a function call is a full-expression. For example, in 8.5, another syntax forinitializer is

= initializer-clause

but again the resulting construct might be a function call upon a constructor function with oneassignment-
expressionas an argument; again, the function call is a full-expression.]

6) An implementation can offer additional library I/O functions as an extension. Implementations that do so should treat calls to those
functions as ‘‘observable behavior’’ as well.
7) Note that some aspects of sequencing in the abstract machine are unspecified; the preceding restriction upon side effects applies to
that particular execution sequence in which the actual code is generated. Also note that when a call to a library I/O function returns,
the side effect is considered complete, even though some external actions implied by the call (such as the I/O itself) may not have com-
pleted yet.
8) In other words, function executions do not interleave with each other.

6

© ISO/IEC ISO/IEC 14882:1998(E)

1 General 1.9 Program execution

14 [Note: the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default argument expres-
sions (8.3.6) are considered to be created in the expression that calls the function, not the expression that
defines the default argument.]

15 [Note:operators can be regrouped according to the usual mathematical rules only where the operators really
are associative or commutative.9) For example, in the following fragment

int a, b;
/*...*/
a = a + 32760 + b + 5;

the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum(a + 32760) is
next added tob, and that result is then added to 5 which results in the value assigned toa. On a machine in
which overflows produce an exception and in which the range of values representable by anint is
[– 32768,+32767], the implementation cannot rewrite this expression as

a = ((a + b) + 32765);

since if the values fora andb were, respectively,– 32754 and– 15, the suma + b would produce an
exception while the original expression would not; nor can the expression be rewritten either as

a = ((a + 32765) + b);

or

a = (a + (b + 32765));

since the values fora and b might have been, respectively, 4 and– 8 or – 17 and 12. However on a
machine in which overflows do not produce an exception and in which the results of overflows are
reversible, the above expression statement can be rewritten by the implementation in any of the above ways
because the same result will occur.]

16 There is a sequence point at the completion of evaluation of each full-expression10).

17 When calling a function (whether or not the function is inline), there is a sequence point after the evaluation
of all function arguments (if any) which takes place before execution of any expressions or statements in
the function body. There is also a sequence point after the copying of a returned value and before the exe-
cution of any expressions outside the function11). Several contexts in C++ cause evaluation of a function
call, even though no corresponding function call syntax appears in the translation unit. [Example:evalua-
tion of anew expression invokes one or more allocation and constructor functions; see 5.3.4. For another
example, invocation of a conversion function (12.3.2) can arise in contexts in which no function call syntax
appears.] The sequence points at function-entry and function-exit (as described above) are features of the
function calls as evaluated, whatever the syntax of the expression that calls the function might be.

18 In the evaluation of each of the expressions

a && b
a || b
a ? b : c
a , b

using the built-in meaning of the operators in these expressions (5.14, 5.15, 5.16, 5.18), there is a sequence

9) Overloaded operators are never assumed to be associative or commutative.
10) As specified in 12.2, after the "end-of-full-expression" sequence point, a sequence of zero or more invocations of destructor func-
tions for temporary objects takes place, usually in reverse order of the construction of each temporary object.
11) The sequence point at the function return is not explicitly specified in ISO C, and can be considered redundant with sequence
points at full-expressions, but the extra clarity is important in C++. In C++, there are more ways in which a called function can termi-
nate its execution, such as the throw of an exception.

7

ISO/IEC 14882:1998(E) © ISO/IEC

1.9 Program execution 1 General

point after the evaluation of the first expression12).

[intro.ack] 1.10 Acknowledgments

1 The C++ programming language as described in this International Standard is based on the language as
described in Chapter R (Reference Manual) of Stroustrup:The C++ Programming Language(second edi-
tion, Addison-Wesley Publishing Company, ISBN 0– 201– 53992– 6, copyright © 1991 AT&T). That, in
turn, is based on the C programming language as described in Appendix A of Kernighan and Ritchie:The C
Programming Language(Prentice-Hall, 1978, ISBN 0– 13– 110163– 3, copyright © 1978 AT&T).

2 Portions of the library clauses of this International Standard are based on work by P.J. Plauger, which was
published asThe Draft Standard C++ Library (Prentice-Hall, ISBN 0– 13– 117003– 1, copyright © 1995
P.J. Plauger).

3 All rights in these originals are reserved.

12) The operators indicated in this paragraph are the built-in operators, as described in clause 5. When one of these operators is over-
loaded (clause 13) in a valid context, thus designating a user-defined operator function, the expression designates a function invocation,
and the operands form an argument list, without an implied sequence point between them.

8

© ISO/IEC ISO/IEC 14882:1998(E)

2 Lexical conventions [lex]

1 The text of the program is kept in units calledsource filesin this International Standard. A source file
together with all the headers (17.4.1.2) and source files included (16.2) via the preprocessing directive
#include , less any source lines skipped by any of the conditional inclusion (16.1) preprocessing direc-
tives, is called atranslation unit. [Note:a C++ program need not all be translated at the same time.]

2 [Note: previously translated translation units and instantiation units can be preserved individually or in
libraries. The separate translation units of a program communicate (3.5) by (for example) calls to functions
whose identifiers have external linkage, manipulation of objects whose identifiers have external linkage, or
manipulation of data files. Translation units can be separately translated and then later linked to produce an
executable program. (3.5).]

[lex.phases] 2.1 Phases of translation

1 The precedence among the syntax rules of translation is specified by the following phases.13)

1 Physical source file characters are mapped, in an implementation-defined manner, to the basic source
character set (introducing new-line characters for end-of-line indicators) if necessary. Trigraph
sequences (2.3) are replaced by corresponding single-character internal representations. Any source file
character not in the basic source character set (2.2) is replaced by the universal-character-name that des-
ignates that character. (An implementation may use any internal encoding, so long as an actual
extended character encountered in the source file, and the same extended character expressed in the
source file as a universal-character-name (i.e. using the\uXXXX notation), are handled equivalently.)

2 Each instance of a new-line character and an immediately preceding backslash character is deleted,
splicing physical source lines to form logical source lines. If, as a result, a character sequence that
matches the syntax of a universal-character-name is produced, the behavior is undefined. If a source
file that is not empty does not end in a new-line character, or ends in a new-line character immediately
preceded by a backslash character, the behavior is undefined.

3 The source file is decomposed into preprocessing tokens (2.4) and sequences of white-space characters
(including comments). A source file shall not end in a partial preprocessing token or partial com-
ment14). Each comment is replaced by one space character. New-line characters are retained. Whether
each nonempty sequence of white-space characters other than new-line is retained or replaced by one
space character is implementation-defined. The process of dividing a source file’s characters into pre-
processing tokens is context-dependent. [Example:see the handling of< within a #include prepro-
cessing directive.]

4 Preprocessing directives are executed and macro invocations are expanded. If a character sequence that
matches the syntax of a universal-character-name is produced by token concatenation (16.3.3), the
behavior is undefined. A#include preprocessing directive causes the named header or source file to
be processed from phase 1 through phase 4, recursively.

5 Each source character set member, escape sequence, or universal-character-name in character literals
and string literals is converted to a member of the execution character set (2.13.2, 2.13.4).

6 Adjacent ordinary string literal tokens are concatenated. Adjacent wide string literal tokens are concate-
nated.

7 White-space characters separating tokens are no longer significant. Each preprocessing token is

13) Implementations must behave as if these separate phases occur, although in practice different phases might be folded together.
14)A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that requires a ter-
minating sequence of characters, such as aheader-namethat is missing the closing" or >. A partial comment would arise from a
source file ending with an unclosed/* comment.

9

ISO/IEC 14882:1998(E) © ISO/IEC

2.1 Phases of translation 2 Lexical conventions

converted into a token. (2.6). The resulting tokens are syntactically and semantically analyzed and
translated. [Note:Source files, translation units and translated translation units need not necessarily be
stored as files, nor need there be any one-to-one correspondence between these entities and any external
representation. The description is conceptual only, and does not specify any particular implementation.
]

8 Translated translation units and instantiation units are combined as follows: [Note:some or all of these
may be supplied from a library.] Each translated translation unit is examined to produce a list of
required instantiations. [Note: this may include instantiations which have been explicitly requested
(14.7.2).] The definitions of the required templates are located. It is implementation-defined whether
the source of the translation units containing these definitions is required to be available. [Note: an
implementation could encode sufficient information into the translated translation unit so as to ensure
the source is not required here.] All the required instantiations are performed to produceinstantiation
units. [Note: these are similar to translated translation units, but contain no references to uninstantiated
templates and no template definitions.] The program is ill-formed if any instantiation fails.

9 All external object and function references are resolved. Library components are linked to satisfy exter-
nal references to functions and objects not defined in the current translation. All such translator output
is collected into a program image which contains information needed for execution in its execution
environment.

[lex.charset] 2.2 Character sets

1 The basic source character setconsists of 96 characters: the space character, the control characters repre-
senting horizontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical characters:15)

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9
_ { } [] # () < > % : ; . ? * + - / ^ & | ~ ! = , \ " ’

2 Theuniversal-character-nameconstruct provides a way to name other characters.

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

The character designated by the universal-character-name\UNNNNNNNNis that character whose character
short name in ISO/IEC 10646 isNNNNNNNN; the character designated by the universal-character-name
\uNNNN is that character whose character short name in ISO/IEC 10646 is0000NNNN. If the hexadecimal
value for a universal character name is less than 0x20 or in the range 0x7F-0x9F (inclusive), or if the uni-
versal character name designates a character in the basic source character set, then the program is ill-
formed.

3 The basic execution character setand thebasic execution wide-character setshall each contain all the
members of the basic source character set, plus control characters representing alert, backspace, and car-
riage return, plus anull character(respectively,null wide character), whose representation has all zero bits.
For each basic execution character set, the values of the members shall be non-negative and distinct from
one another. Theexecution character setand theexecution wide-character setare supersets of the basic
execution character set and the basic execution wide-character set, respectively. The values of the members
of the execution character sets are implementation-defined, and any additional members are locale-specific.

15) The glyphs for the members of the basic source character set are intended to identify characters from the subset of ISO/IEC 10646
which corresponds to the ASCII character set. However, because the mapping from source file characters to the source character set
(described in translation phase 1) is specified as implementation-defined, an implementation is required to document how the basic
source characters are represented in source files.

10

© ISO/IEC ISO/IEC 14882:1998(E)

2 Lexical conventions 2.3 Trigraph sequences

[lex.trigraph] 2.3 Trigraph sequences

1 Before any other processing takes place, each occurrence of one of the following sequences of three charac-
ters (“trigraph sequences”) is replaced by the single character indicated in Table 1.

Table 1—trigraph sequences
_ __
trigraph replacement trigraph replacement trigraph replacement_ ___ __

??= # ??([??< {_ __
??/ \ ??)] ??> }_ __
??’ ^ ??! | ??- ~_ __

2 [Example:

??=define arraycheck(a,b) a??(b??) ??!??! b??(a??)

becomes

#define arraycheck(a,b) a[b] || b[a]

—end example]

3 No other trigraph sequence exists. Each? that does not begin one of the trigraphs listed above is not
changed.

[lex.pptoken] 2.4 Preprocessing tokens

preprocessing-token:
header-name
identifier
pp-number
character-literal
string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

1 Each preprocessing token that is converted to a token (2.6) shall have the lexical form of a keyword, an
identifier, a literal, an operator, or a punctuator.

2 A preprocessing tokenis the minimal lexical element of the language in translation phases 3 through 6.
The categories of preprocessing token are:header names, identifiers, preprocessing numbers, character
literals, string literals, preprocessing-op-or-punc, and single non-white-space characters that do not lexi-
cally match the other preprocessing token categories. If a’ or a" character matches the last category, the
behavior is undefined. Preprocessing tokens can be separated bywhite space; this consists of comments
(2.7), orwhite-space characters(space, horizontal tab, new-line, vertical tab, and form-feed), or both. As
described in clause 16, in certain circumstances during translation phase 4, white space (or the absence
thereof) serves as more than preprocessing token separation. White space can appear within a preprocess-
ing token only as part of a header name or between the quotation characters in a character literal or string
literal.

3 If the input stream has been parsed into preprocessing tokens up to a given character, the next preprocessing
token is the longest sequence of characters that could constitute a preprocessing token, even if that would
cause further lexical analysis to fail.

4 [Example:The program fragment1Ex is parsed as a preprocessing number token (one that is not a valid
floating or integer literal token), even though a parse as the pair of preprocessing tokens1 andEx might
produce a valid expression (for example, ifEx were a macro defined as+1). Similarly, the program frag-
ment1E1 is parsed as a preprocessing number (one that is a valid floating literal token), whether or notE is
a macro name.]

11

ISO/IEC 14882:1998(E) © ISO/IEC

2.4 Preprocessing tokens 2 Lexical conventions

5 [Example:The program fragmentx+++++y is parsed asx ++ ++ + y , which, if x andy are of built-in
types, violates a constraint on increment operators, even though the parsex ++ + ++ y might yield a
correct expression.]

[lex.digraph] 2.5 Alternative tokens

1 Alternative token representations are provided for some operators and punctuators16).

2 In all respects of the language, each alternative token behaves the same, respectively, as its primary token,
except for its spelling17). The set of alternative tokens is defined in Table 2.

Table 2—alternative tokens
_ __
alternative primary alternative primary alternative primary_ ___ __

<% { and && and_eq &=_ __
%> } bitor | or_eq |=_ __
<: [or || xor_eq ^=_ __
:>] xor ^ not !_ __
%: # compl ~ not_eq !=_ __

%:%: ## bitand &_ __

[lex.token] 2.6 Tokens

token:
identifier
keyword
literal
operator
punctuator

1 There are five kinds of tokens: identifiers, keywords, literals,18) operators, and other separators. Blanks,
horizontal and vertical tabs, newlines, formfeeds, and comments (collectively,“white space”), as described
below, are ignored except as they serve to separate tokens. [Note:Some white space is required to separate
otherwise adjacent identifiers, keywords, numeric literals, and alternative tokens containing alphabetic
characters.]

[lex.comment] 2.7 Comments

1 The characters/* start a comment, which terminates with the characters*/ . These comments do not nest.
The characters// start a comment, which terminates with the next new-line character. If there is a form-
feed or a vertical-tab character in such a comment, only white-space characters shall appear between it and
the new-line that terminates the comment; no diagnostic is required. [Note: The comment characters// ,
/* , and*/ have no special meaning within a// comment and are treated just like other characters. Simi-
larly, the comment characters// and/* have no special meaning within a/* comment.]

16) These include“digraphs” and additional reserved words. The term“digraph” (token consisting of two characters) is not perfectly
descriptive, since one of the alternative preprocessing-tokens is%:%: and of course several primary tokens contain two characters.
Nonetheless, those alternative tokens that aren’t lexical keywords are colloquially known as“digraphs”.
17) Thus the“stringized” values (16.3.2) of[and<: will be different, maintaining the source spelling, but the tokens can otherwise be
freely interchanged.
18)Literals include strings and character and numeric literals.

12

© ISO/IEC ISO/IEC 14882:1998(E)

2 Lexical conventions 2.8 Header names

[lex.header] 2.8 Header names

header-name:
<h-char-sequence>
" q-char-sequence"

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except

new-line and>

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member of the source character set except

new-line and"

1 Header name preprocessing tokens shall only appear within a#include preprocessing directive (16.2).
The sequences in both forms ofheader-names are mapped in an implementation-defined manner to headers
or to external source file names as specified in 16.2.

2 If either of the characters’ or \ , or either of the character sequences/* or // appears in aq-char-
sequenceor a h-char-sequence, or the character" appears in ah-char-sequence, the behavior is unde-
fined.19)

[lex.ppnumber] 2.9 Preprocessing numbers

pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-numbere sign
pp-numberE sign
pp-number.

1 Preprocessing number tokens lexically include all integral literal tokens (2.13.1) and all floating literal
tokens (2.13.3).

2 A preprocessing number does not have a type or a value; it acquires both after a successful conversion (as
part of translation phase 7, 2.1) to an integral literal token or a floating literal token.

[lex.name] 2.10 Identifiers

identifier:
nondigit
identifier nondigit
identifier digit

19)Thus, sequences of characters that resemble escape sequences cause undefined behavior.

13

ISO/IEC 14882:1998(E) © ISO/IEC

2.10 Identifiers 2 Lexical conventions

nondigit: one of
universal-character-name
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

1 An identifier is an arbitrarily long sequence of letters and digits. Each universal-character-name in an iden-
tifier shall designate a character whose encoding in ISO 10646 falls into one of the ranges specified in
Annex E. Upper- and lower-case letters are different. All characters are significant.20)

2 In addition, some identifiers are reserved for use by C++ implementations and standard libraries (17.4.3.1.2)
and shall not be used otherwise; no diagnostic is required.

[lex.key] 2.11 Keywords

1 The identifiers shown in Table 3 are reserved for use as keywords (that is, they are unconditionally treated
as keywords in phase 7):

Table 3—keywords
_ __
asm do if return typedef
auto double inline short typeid
bool dynamic_cast int signed typename
break else long sizeof union
case enum mutable static unsigned
catch explicit namespace static_cast using
char export new struct virtual
class extern operator switch void
const false private template volatile
const_cast float protected this wchar_t
continue for public throw while
default friend register true
delete goto reinterpret_cast try_ __

2 Furthermore, the alternative representations shown in Table 4 for certain operators and punctuators (2.5) are
reserved and shall not be used otherwise:

Table 4—alternative representations
_ ___
and and_eq bitand bitor compl not
not_eq or or_eq xor xor_eq_ ___

20) On systems in which linkers cannot accept extended characters, an encoding of the universal-character-name may be used in form-
ing valid external identifiers. For example, some otherwise unused character or sequence of characters may be used to encode the \u
in a universal-character-name. Extended characters may produce a long external identifier, but C++ does not place a translation limit
on significant characters for external identifiers. In C++, upper- and lower-case letters are considered different for all identifiers,
including external identifiers.

14

© ISO/IEC ISO/IEC 14882:1998(E)

2 Lexical conventions 2.12 Operators and punctuators

[lex.operators] 2.12 Operators and punctuators

1 The lexical representation of C++ programs includes a number of preprocessing tokens which are used in
the syntax of the preprocessor or are converted into tokens for operators and punctuators:

preprocessing-op-or-punc: one of
{ } [] # ## ()
<: :> <% %> %: %:%: ; : ...
new delete ? :: . .*
+ - * / % ^ & | ~
! = < > += -= *= /= %=
^= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
and and_eq bitand bitor compl not not_eq
or or_eq xor xor_eq

Eachpreprocessing-op-or-puncis converted to a single token in translation phase 7 (2.1).

[lex.literal] 2.13 Literals

1 There are several kinds of literals.21)

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal

[lex.icon] 2.13.1 Integer literals

integer-literal:
decimal-literal integer-suffixopt

octal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

21)The term“literal” generally designates, in this International Standard, those tokens that are called“constants” in ISO C.

15

ISO/IEC 14882:1998(E) © ISO/IEC

2.13.1 Integer literals 2 Lexical conventions

hexadecimal-digit:one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

unsigned-suffix:one of
u U

long-suffix: one of
l L

1 An integer literal is a sequence of digits that has no period or exponent part. An integer literal may have a
prefix that specifies its base and a suffix that specifies its type. The lexically first digit of the sequence of
digits is the most significant. Adecimalinteger literal (base ten) begins with a digit other than0 and con-
sists of a sequence of decimal digits. Anoctal integer literal (base eight) begins with the digit0 and con-
sists of a sequence of octal digits.22) A hexadecimalinteger literal (base sixteen) begins with0x or 0X and
consists of a sequence of hexadecimal digits, which include the decimal digits and the lettersa throughf
andA throughF with decimal values ten through fifteen. [Example:the number twelve can be written12 ,
014 , or0XC.]

2 The type of an integer literal depends on its form, value, and suffix. If it is decimal and has no suffix, it has
the first of these types in which its value can be represented:int , long int ; if the value cannot be repre-
sented as along int , the behavior is undefined. If it is octal or hexadecimal and has no suffix, it has the
first of these types in which its value can be represented:int , unsigned int , long int , unsigned
long int . If it is suffixed byu or U, its type is the first of these types in which its value can be repre-
sented:unsigned int , unsigned long int . If it is suffixed byl or L, its type is the first of these
types in which its value can be represented:long int , unsigned long int . If it is suffixed byul ,
lu , uL , Lu , Ul , lU , UL, orLU, its type isunsigned long int .

3 A program is ill-formed if one of its translation units contains an integer literal that cannot be represented
by any of the allowed types.

[lex.ccon] 2.13.2 Character literals

character-literal:
’ c-char-sequence’
L’ c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote’ , backslash\ , or new-line character
escape-sequence
universal-character-name

22)The digits8 and9 are not octal digits.

16

© ISO/IEC ISO/IEC 14882:1998(E)

2 Lexical conventions 2.13.2 Character literals

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence:one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

1 A character literal is one or more characters enclosed in single quotes, as in’x’ , optionally preceded by
the letterL, as inL’x’ . A character literal that does not begin withL is an ordinary character literal, also
referred to as a narrow-character literal. An ordinary character literal that contains a singlec-charhas type
char , with value equal to the numerical value of the encoding of thec-char in the execution character set.
An ordinary character literal that contains more than onec-char is amulticharacter literal. A multicharac-
ter literal has typeint and implementation-defined value.

2 A character literal that begins with the letterL, such asL’x’ , is a wide-character literal. A wide-character
literal has typewchar_t .23) The value of a wide-character literal containing a singlec-char has value
equal to the numerical value of the encoding of thec-char in the execution wide-character set. The value of
a wide-character literal containing multiplec-chars is implementation-defined.

3 Certain nongraphic characters, the single quote’ , the double quote" , the question mark?, and the back-
slash\ , can be represented according to Table 5.

Table 5—escape sequences
_ ______________________________
new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark ? \?
single quote ’ \’
double quote " \"
octal number ooo \ooo
hex number hhh \xhhh_ ______________________________

The double quote" and the question mark?, can be represented as themselves or by the escape sequences
\" and \? respectively, but the single quote’ and the backslash\ shall be represented by the escape
sequences\’ and\\ respectively. If the character following a backslash is not one of those specified, the
behavior is undefined. An escape sequence specifies a single character.

23)They are intended for character sets where a character does not fit into a single byte.

17

ISO/IEC 14882:1998(E) © ISO/IEC

2.13.2 Character literals 2 Lexical conventions

4 The escape\ oooconsists of the backslash followed by one, two, or three octal digits that are taken to spec-
ify the value of the desired character. The escape\x hhhconsists of the backslash followed byx followed
by one or more hexadecimal digits that are taken to specify the value of the desired character. There is no
limit to the number of digits in a hexadecimal sequence. A sequence of octal or hexadecimal digits is ter-
minated by the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a
character literal is implementation-defined if it falls outside of the implementation-defined range defined
for char (for ordinary literals) orwchar_t (for wide literals).

5 A universal-character-name is translated to the encoding, in the execution character set, of the character
named. If there is no such encoding, the universal-character-name is translated to an implementation-
defined encoding. [Note: in translation phase 1, a universal-character-name is introduced whenever an
actual extended character is encountered in the source text. Therefore, all extended characters are described
in terms of universal-character-names. However, the actual compiler implementation may use its own
native character set, so long as the same results are obtained.]

[lex.fcon] 2.13.3 Floating literals

floating-literal:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

1 A floating literal consists of an integer part, a decimal point, a fraction part, ane or E, an optionally signed
integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) can be omitted; either the
decimal point or the lettere (or E) and the exponent (not both) can be omitted. The integer part, the
optional decimal point and the optional fraction part form thesignificant partof the floating literal. The
exponent, if present, indicates the power of 10 by which the significant part is to be scaled. If the scaled
value is in the range of representable values for its type, the result is the scaled value if representable, else
the larger or smaller representable value nearest the scaled value, chosen in an implementation-defined
manner. The type of a floating literal isdouble unless explicitly specified by a suffix. The suffixesf and
F specify float , the suffixesl andL specify long double . If the scaled value is not in the range of
representable values for its type, the program is ill-formed.

18

© ISO/IEC ISO/IEC 14882:1998(E)

2 Lexical conventions 2.13.3 Floating literals

[lex.string] 2.13.4 String literals

string-literal:
" s-char-sequenceopt"
L" s-char-sequenceopt"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote" , backslash\ , or new-line character
escape-sequence
universal-character-name

1 A string literal is a sequence of characters (as defined in 2.13.2) surrounded by double quotes, optionally
beginning with the letterL, as in"..." or L"..." . A string literal that does not begin withL is an ordi-
nary string literal, also referred to as a narrow string literal. An ordinary string literal has type“array ofn
const char ” andstaticstorage duration (3.7), wheren is the size of the string as defined below, and is
initialized with the given characters. A string literal that begins withL, such asL"asdf" , is a wide string
literal. A wide string literal has type“array ofn const wchar_t ” and has static storage duration, where
n is the size of the string as defined below, and is initialized with the given characters.

2 Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is implementation-
defined. The effect of attempting to modify a string literal is undefined.

3 In translation phase 6 (2.1), adjacent narrow string literals are concatenated and adjacent wide string literals
are concatenated. If a narrow string literal token is adjacent to a wide string literal token, the behavior is
undefined. Characters in concatenated strings are kept distinct. [Example:

"\xA" "B"

contains the two characters’\xA’ and ’B’ after concatenation (and not the single hexadecimal character
’\xAB’).]

4 After any necessary concatenation, in translation phase 7 (2.1),’\0’ is appended to every string literal so
that programs that scan a string can find its end.

5 Escape sequences and universal-character-names in string literals have the same meaning as in character lit-
erals (2.13.2), except that the single quote’ is representable either by itself or by the escape sequence\’ ,
and the double quote" shall be preceded by a\ . In a narrow string literal, a universal-character-name may
map to more than onechar element due tomultibyte encoding. The size of a wide string literal is the total
number of escape sequences, universal-character-names, and other characters, plus one for the terminating
L’\0’ . The size of a narrow string literal is the total number of escape sequences and other characters,
plus at least one for the multibyte encoding of each universal-character-name, plus one for the terminating
’\0’ .

[lex.bool] 2.13.5 Boolean literals

boolean-literal:
false
true

1 The Boolean literals are the keywordsfalse andtrue . Such literals have typebool . They are not lval-
ues.

19

ISO/IEC 14882:1998(E) © ISO/IEC

20

(Blank page)

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3 Basic concepts

3 Basic concepts [basic]

1 [Note: this clause presents the basic concepts of the C++ language. It explains the difference between an
objectand anameand how they relate to the notion of anlvalue. It introduces the concepts of adeclaration
and adefinitionand presents C++’s notion oftype, scope, linkage, andstorage duration. The mechanisms
for starting and terminating a program are discussed. Finally, this clause presents the fundamental types of
the language and lists the ways of constructingcompoundtypes from these.

2 This clause does not cover concepts that affect only a single part of the language. Such concepts are dis-
cussed in the relevant clauses.]

3 An entity is a value, object, subobject, base class subobject, array element, variable, function, instance of a
function, enumerator, type, class member, template, or namespace.

4 A nameis a use of an identifier (2.10) that denotes an entity orlabel (6.6.4, 6.1). Avariable is introduced
by the declaration of an object. The variable’s name denotes the object.

5 Every name that denotes an entity is introduced by adeclaration. Every name that denotes a label is intro-
duced either by agoto statement (6.6.4) or alabeled-statement(6.1).

6 Some names denote types, classes, enumerations, or templates. In general, it is necessary to determine
whether or not a name denotes one of these entities before parsing the program that contains it. The process
that determines this is calledname lookup(3.4).

7 Two names arethe sameif

— they are identifiers composed of the same character sequence; or

— they are the names of overloaded operator functions formed with the same operator; or

— they are the names of user-defined conversion functions formed with the same type.

8 An identifier used in more than one translation unit can potentially refer to the same entity in these transla-
tion units depending on the linkage (3.5) of the identifier specified in each translation unit.

[basic.def] 3.1 Declarations and definitions

1 A declaration (clause 7) introduces names into a translation unit or redeclares names introduced by previous
declarations. A declaration specifies the interpretation and attributes of these names.

2 A declaration is adefinition unless it declares a function without specifying the function’s body (8.4), it
contains theextern specifier (7.1.1) or alinkage-specification24) (7.5) and neither aninitializer nor a
function-body, it declares a static data member in a class declaration (9.4), it is a class name declaration
(9.1), or it is atypedef declaration (7.1.3), ausing-declaration(7.3.3), or ausing-directive(7.3.4).

24) Appearing inside the braced-encloseddeclaration-seqin a linkage-specificationdoes not affect whether a declaration is a defini-
tion.

21

ISO/IEC 14882:1998(E) © ISO/IEC

3.1 Declarations and definitions 3 Basic concepts

3 [Example:all but one of the following are definitions:

int a; // definesa
extern const int c = 1; // definesc
int f(int x) { return x+a; } // definesf and definesx
struct S { int a; int b; }; // definesS, S::a , andS::b
struct X { // definesX

int x; // defines nonstatic data memberx
static int y; // declares static data membery
X(): x(0) { } // defines a constructor ofX

};
int X::y = 1; // definesX::y
enum { up, down }; // definesup and down
namespace N { int d; } // definesN and N::d
namespace N1 = N; // definesN1
X anX; // definesanX

whereas these are just declarations:

extern int a; // declaresa
extern const int c; // declaresc
int f(int); // declaresf
struct S; // declaresS
typedef int Int; // declaresInt
extern X anotherX; // declaresanotherX
using N::d; // declaresN::d

—end example]

4 [Note: in some circumstances, C++ implementations implicitly define the default constructor (12.1), copy
constructor (12.8), assignment operator (12.8), or destructor (12.4) member functions. [Example:given

struct C {
string s; // string is the standard library class (clause 21)

};

int main()
{

C a;
C b = a;
b = a;

}

the implementation will implicitly define functions to make the definition ofCequivalent to

struct C {
string s;
C(): s() { }
C(const C& x): s(x.s) { }
C& operator=(const C& x) { s = x.s; return *this; }
~C() { }

};

—end example] —end note]

5 [Note:a class name can also be implicitly declared by anelaborated-type-specifier(3.3.1).]

6 A program is ill-formed if the definition of any object gives the object an incomplete type (3.9).

[basic.def.odr] 3.2 One definition rule

1 No translation unit shall contain more than one definition of any variable, function, class type, enumeration
type or template.

22

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.2 One definition rule

2 An expression ispotentially evaluatedunless either it is the operand of thesizeof operator (5.3.3), or it is
the operand of thetypeid operator and does not designate an lvalue of polymorphic class type (5.2.8).
An object or non-overloaded function isusedif its name appears in a potentially-evaluated expression. A
virtual member function is used if it is not pure. An overloaded function is used if it is selected by overload
resolution when referred to from a potentially-evaluated expression. [Note: this covers calls to named func-
tions (5.2.2), operator overloading (clause 13), user-defined conversions (12.3.2), allocation function for
placement new (5.3.4), as well as non-default initialization (8.5). A copy constructor is used even if the call
is actually elided by the implementation.] An allocation or deallocation function for a class is used by a
new expression appearing in a potentially-evaluated expression as specified in 5.3.4 and 12.5. A dealloca-
tion function for a class is used by a delete expression appearing in a potentially-evaluated expression as
specified in 5.3.5 and 12.5. A copy-assignment function for a class is used by an implicitly-defined copy-
assignment function for another class as specified in 12.8. A default constructor for a class is used by
default initialization as specified in 8.5. A constructor for a class is used as specified in 8.5. A destructor
for a class is used as specified in 12.4.

3 Every program shall contain exactly one definition of every non-inline function or object that is used in that
program; no diagnostic required. The definition can appear explicitly in the program, it can be found in the
standard or a user-defined library, or (when appropriate) it is implicitly defined (see 12.1, 12.4 and 12.8).
An inline function shall be defined in every translation unit in which it is used.

4 Exactly one definition of a class is required in a translation unit if the class is used in a way that requires the
class type to be complete. [Example:the following complete translation unit is well-formed, even though it
never definesX:

struct X; // declareX as a struct type
struct X* x1; // useX in pointer formation
X* x2; // useX in pointer formation

—end example] [Note:the rules for declarations and expressions describe in which contexts complete class
types are required. A class typeT must be complete if:

— an object of typeT is defined (3.1, 5.3.4), or

— an lvalue-to-rvalue conversion is applied to an lvalue referring to an object of typeT (4.1), or

— an expression is converted (either implicitly or explicitly) to typeT (clause 4, 5.2.3, 5.2.7, 5.2.9, 5.4), or

— an expression that is not a null pointer constant, and has type other thanvoid * , is converted to the
type pointer toT or reference toT using an implicit conversion (clause 4), adynamic_cast (5.2.7) or
astatic_cast (5.2.9), or

— a class member access operator is applied to an expression of typeT (5.2.5), or

— thetypeid operator (5.2.8) or thesizeof operator (5.3.3) is applied to an operand of typeT, or

— a function with a return type or argument type of typeT is defined (3.1) or called (5.2.2), or

— an lvalue of typeT is assigned to (5.17).]

5 There can be more than one definition of a class type (clause 9), enumeration type (7.2), inline function
with external linkage (7.1.2), class template (clause 14), non-static function template (14.5.5), static data
member of a class template (14.5.1.3), member function template (14.5.1.1), or template specialization for
which some template parameters are not specified (14.7, 14.5.4) in a program provided that each definition
appears in a different translation unit, and provided the definitions satisfy the following requirements.
Given such an entity namedDdefined in more than one translation unit, then

— each definition ofDshall consist of the same sequence of tokens; and

— in each definition ofD, corresponding names, looked up according to 3.4, shall refer to an entity defined
within the definition ofD, or shall refer to the same entity, after overload resolution (13.3) and after
matching of partial template specialization (14.8.3), except that a name can refer to aconst object
with internal or no linkage if the object has the same integral or enumeration type in all definitions ofD,

23

ISO/IEC 14882:1998(E) © ISO/IEC

3.2 One definition rule 3 Basic concepts

and the object is initialized with a constant expression (5.19), and the value (but not the address) of the
object is used, and the object has the same value in all definitions ofD; and

— in each definition ofD, the overloaded operators referred to, the implicit calls to conversion functions,
constructors, operator new functions and operator delete functions, shall refer to the same function, or to
a function defined within the definition ofD; and

— in each definition ofD, a default argument used by an (implicit or explicit) function call is treated as if
its token sequence were present in the definition ofD; that is, the default argument is subject to the three
requirements described above (and, if the default argument has sub-expressions with default arguments,
this requirement applies recursively).25)

— if D is a class with an implicitly-declared constructor (12.1), it is as if the constructor was implicitly
defined in every translation unit where it is used, and the implicit definition in every translation unit
shall call the same constructor for a base class or a class member ofD. [Example:

// translation unit 1:
struct X {

X(int);
X(int, int);

};
X::X(int = 0) { }
class D: public X { };
D d2; // X(int) called byD()

// translation unit 2:
struct X {

X(int);
X(int, int);

};
X::X(int = 0, int = 0) { }
class D: public X { }; // X(int, int) called byD();

// D() ’s implicit definition
// violates the ODR

—end example] If D is a template, and is defined in more than one translation unit, then the last four
requirements from the list above shall apply to names from the template’s enclosing scope used in the
template definition (14.6.3), and also to dependent names at the point of instantiation (14.6.2). If the
definitions ofD satisfy all these requirements, then the program shall behave as if there were a single
definition ofD. If the definitions ofDdo not satisfy these requirements, then the behavior is undefined.

[basic.scope] 3.3 Declarative regions and scopes

1 Every name is introduced in some portion of program text called adeclarative region, which is the largest
part of the program in which that name isvalid, that is, in which that name may be used as an unqualified
name to refer to the same entity. In general, each particular name is valid only within some possibly dis-
contiguous portion of program text called itsscope. To determine the scope of a declaration, it is some-
times convenient to refer to thepotential scopeof a declaration. The scope of a declaration is the same as
its potential scope unless the potential scope contains another declaration of the same name. In that case,
the potential scope of the declaration in the inner (contained) declarative region is excluded from the scope
of the declaration in the outer (containing) declarative region.

25)8.3.6 describes how default argument names are looked up.

24

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.3 Declarative regions and scopes

2 [Example:in

int j = 24;
int main()
{

int i = j, j;
j = 42;

}

the identifierj is declared twice as a name (and used twice). The declarative region of the firstj includes
the entire example. The potential scope of the firstj begins immediately after thatj and extends to the end
of the program, but its (actual) scope excludes the text between the, and the} . The declarative region of
the second declaration ofj (the j immediately before the semicolon) includes all the text between{ and} ,
but its potential scope excludes the declaration ofi . The scope of the second declaration ofj is the same
as its potential scope.]

3 The names declared by a declaration are introduced into the scope in which the declaration occurs, except
that the presence of afriend specifier (11.4), certain uses of theelaborated-type-specifier(3.3.1), and
using-directives (7.3.4) alter this general behavior.

4 Given a set of declarations in a single declarative region, each of which specifies the same unqualified
name,

— they shall all refer to the same entity, or all refer to functions and function templates; or

— exactly one declaration shall declare a class name or enumeration name that is not a typedef name and
the other declarations shall all refer to the same object or enumerator, or all refer to functions and func-
tion templates; in this case the class name or enumeration name is hidden (3.3.7). [Note: a namespace
name or a class template name must be unique in its declarative region (7.3.2, clause 14).]

[Note:these restrictions apply to the declarative region into which a name is introduced, which is not neces-
sarily the same as the region in which the declaration occurs. In particular,elaborated-type-specifiers
(3.3.1) and friend declarations (11.4) may introduce a (possibly not visible) name into an enclosing name-
space; these restrictions apply to that region. Local extern declarations (3.5) may introduce a name into the
declarative region where the declaration appears and also introduce a (possibly not visible) name into an
enclosing namespace; these restrictions apply to both regions.]

5 [Note:the name lookup rules are summarized in 3.4.]

[basic.scope.pdecl] 3.3.1 Point of declaration

1 The point of declarationfor a name is immediately after its complete declarator (clause 8) and before its
initializer (if any), except as noted below. [Example:

int x = 12;
{ int x = x; }

Here the secondx is initialized with its own (indeterminate) value.]

2 [Note: a nonlocal name remains visible up to the point of declaration of the local name that hides it.
[Example:

const int i = 2;
{ int i[i]; }

declares a local array of two integers.]]

3 The point of declaration for an enumerator is immediately after itsenumerator-definition. [Example:

const int x = 12;
{ enum { x = x }; }

Here, the enumeratorx is initialized with the value of the constantx , namely 12.]

25

ISO/IEC 14882:1998(E) © ISO/IEC

3.3.1 Point of declaration 3 Basic concepts

4 After the point of declaration of a class member, the member name can be looked up in the scope of its
class. [Note:this is true even if the class is an incomplete class. For example,

struct X {
enum E { z = 16 };
int b[X::z]; // OK

};

—end note]

5 The point of declaration of a class first declared in anelaborated-type-specifieris as follows:

— for anelaborated-type-specifierof the form

class-key identifier;

the elaborated-type-specifierdeclares theidentifier to be aclass-namein the scope that contains the
declaration, otherwise

— for anelaborated-type-specifierof the form

class-key identifier

if the elaborated-type-specifieris used in thedecl-specifier-seqor parameter-declaration-clauseof a
function defined in namespace scope, theidentifier is declared as aclass-namein the namespace that
contains the declaration; otherwise, except as a friend declaration, theidentifier is declared in the small-
est non-class, non-function-prototype scope that contains the declaration. [Note: if the elaborated-
type-specifierdesignates an enumeration, theidentifier must refer to an already declaredenum-name. If
the identifier in the elaborated-type-specifieris a qualified-id, it must refer to an already declared
class-nameor enum-name. See 3.4.4.]

6 [Note:friend declarations refer to functions or classes that are members of the nearest enclosing namespace,
but they do not introduce new names into that namespace (7.3.1.2). Function declarations at block scope
and object declarations with theextern specifier at block scope refer to delarations that are members of
an enclosing namespace, but they do not introduce new names into that scope.]

7 [Note:For point of instantiation of a template, see 14.7.1.]

[basic.scope.local] 3.3.2 Local scope

1 A name declared in a block (6.3) is local to that block. Its potential scope begins at its point of declaration
(3.3.1) and ends at the end of its declarative region.

2 The potential scope of a function parameter name in a function definition (8.4) begins at its point of decla-
ration. If the function has afunction try-blockthe potential scope of a parameter ends at the end of the last
associated handler, else it ends at the end of the outermost block of the function definition. A parameter
name shall not be redeclared in the outermost block of the function definition nor in the outermost block of
any handler associated with afunction try-block .

3 The name in acatch exception-declaration is local to the handler and shall not be redeclared in the outer-
most block of the handler.

4 Names declared in thefor-init-statement, and in theconditionof if , while , for , andswitch statements
are local to theif , while , for , or switch statement (including the controlled statement), and shall not
be redeclared in a subsequent condition of that statement nor in the outermost block (or, for theif state-
ment, any of the outermost blocks) of the controlled statement; see 6.4.

[basic.scope.proto] 3.3.3 Function prototype scope

1 In a function declaration, or in any function declarator except the declarator of a function definition (8.4),
names of parameters (if supplied) have function prototype scope, which terminates at the end of the nearest
enclosing function declarator.

26

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.3.4 Function scope

[basic.funscope] 3.3.4 Function scope

1 Labels (6.1) havefunction scopeand may be used anywhere in the function in which they are declared.
Only labels have function scope.

[basic.scope.namespace] 3.3.5 Namespace scope

1 The declarative region of anamespace-definitionis itsnamespace-body. The potential scope denoted by an
original-namespace-nameis the concatenation of the declarative regions established by each of the
namespace-definitionsin the same declarative region with thatoriginal-namespace-name. Entities declared
in a namespace-bodyare said to bemembersof the namespace, and names introduced by these declarations
into the declarative region of the namespace are said to bemember namesof the namespace. A namespace
member name has namespace scope. Its potential scope includes its namespace from the name’s point of
declaration (3.3.1) onwards; and for eachusing-directive(7.3.4) that nominates the member’s namespace,
the member’s potential scope includes that portion of the potential scope of theusing-directivethat follows
the member’s point of declaration. [Example:

namespace N {
int i;
int g(int a) { return a; }
int j();
void q();

}
namespace { int l=1; }
// the potential scope ofl is from its point of declaration
// to the end of the translation unit

namespace N {
int g(char a) // overloadsN::g(int)
{

return l+a; // l is from unnamed namespace
}

int i; // error: duplicate definition
int j(); // OK: duplicate function declaration

int j() // OK: definition ofN::j()
{

return g(i); // calls N::g(int)
}
int q(); // error: different return type

}

—end example]

2 A namespace member can also be referred to after the:: scope resolution operator (5.1) applied to the
name of its namespace or the name of a namespace which nominates the member’s namespace in ausing-
directive;see 3.4.3.2.

3 A name declared outside all named or unnamed namespaces (7.3), blocks (6.3), function declarations
(8.3.5), function definitions (8.4) and classes (clause 9) hasglobal namespace scope(also calledglobal
scope). The potential scope of such a name begins at its point of declaration (3.3.1) and ends at the end of
the translation unit that is its declarative region. Names declared in the global namespace scope are said to
beglobal.

[basic.scope.class] 3.3.6 Class scope

1 The following rules describe the scope of names declared in classes.

1) The potential scope of a name declared in a class consists not only of the declarative region following
the name’s declarator, but also of all function bodies, default arguments, and constructorctor-

27

ISO/IEC 14882:1998(E) © ISO/IEC

3.3.6 Class scope 3 Basic concepts

initializers in that class (including such things in nested classes).

2) A nameNused in a classS shall refer to the same declaration in its context and when re-evaluated in the
completed scope ofS. No diagnostic is required for a violation of this rule.

3) If reordering member declarations in a class yields an alternate valid program under (1) and (2), the pro-
gram is ill-formed, no diagnostic is required.

4) A name declared within a member function hides a declaration of the same name whose scope extends
to or past the end of the member function’s class.

5) The potential scope of a declaration that extends to or past the end of a class definition also extends to
the regions defined by its member definitions, even if the members are defined lexically outside the
class (this includes static data member definitions, nested class definitions, member function definitions
(including the member function body and, for constructor functions (12.1), the ctor-initializer (12.6.2))
and any portion of the declarator part of such definitions which follows the identifier, including a
parameter-declaration-clauseand any default arguments (8.3.6). [Example:

typedef int c;
enum { i = 1 };

class X {
char v[i]; // error: i refers to::i

// but when reevaluated isX::i
int f() { return sizeof(c); } // OK: X::c
char c;
enum { i = 2 };

};

typedef char* T;
struct Y {

T a; // error: T refers to::T
// but when reevaluated isY::T

typedef long T;
T b;

};

typedef int I;
class D {

typedef I I; // error, even though no reordering involved
};

—end example]

2 The name of a class member shall only be used as follows:

— in the scope of its class (as described above) or a class derived (clause 10) from its class,

— after the. operator applied to an expression of the type of its class (5.2.5) or a class derived from its
class,

— after the-> operator applied to a pointer to an object of its class (5.2.5) or a class derived from its class,

— after the:: scope resolution operator (5.1) applied to the name of its class or a class derived from its
class.

[basic.scope.hiding] 3.3.7 Name hiding

1 A name can be hidden by an explicit declaration of that same name in a nested declarative region or derived
class (10.2).

2 A class name (9.1) or enumeration name (7.2) can be hidden by the name of an object, function, or enumer-
ator declared in the same scope. If a class or enumeration name and an object, function, or enumerator are

28

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.3.7 Name hiding

declared in the same scope (in any order) with the same name, the class or enumeration name is hidden
wherever the object, function, or enumerator name is visible.

3 In a member function definition, the declaration of a local name hides the declaration of a member of the
class with the same name; see 3.3.6. The declaration of a member in a derived class (clause 10) hides the
declaration of a member of a base class of the same name; see 10.2.

4 During the lookup of a name qualified by a namespace name, declarations that would otherwise be made
visible by ausing-directivecan be hidden by declarations with the same name in the namespace containing
theusing-directive;see (3.4.3.2).

5 If a name is in scope and is not hidden it is said to bevisible.

[basic.lookup] 3.4 Name lookup

1 The name lookup rules apply uniformly to all names (includingtypedef-names(7.1.3),namespace-names
(7.3) andclass-names(9.1)) wherever the grammar allows such names in the context discussed by a partic-
ular rule. Name lookup associates the use of a name with a declaration (3.1) of that name. Name lookup
shall find an unambiguous declaration for the name (see 10.2). Name lookup may associate more than one
declaration with a name if it finds the name to be a function name; the declarations are said to form a set of
overloaded functions (13.1). Overload resolution (13.3) takes place after name lookup has succeeded. The
access rules (clause 11) are considered only once name lookup and function overload resolution (if applica-
ble) have succeeded. Only after name lookup, function overload resolution (if applicable) and access
checking have succeeded are the attributes introduced by the name’s declaration used further in expression
processing (clause 5).

2 A name“looked up in the context of an expression” is looked up as an unqualified name in the scope where
the expression is found.

3 Because the name of a class is inserted in its class scope (clause 9), the name of a class is also considered a
member of that class for the purposes of name hiding and lookup.

4 [Note: 3.5 discusses linkage issues. The notions of scope, point of declaration and name hiding are dis-
cussed in 3.3.]

[basic.lookup.unqual] 3.4.1 Unqualified name lookup

1 In all the cases listed in 3.4.1, the scopes are searched for a declaration in the order listed in each of the
respective categories; name lookup ends as soon as a declaration is found for the name. If no declaration is
found, the program is ill-formed.

2 The declarations from the namespace nominated by ausing-directivebecome visible in a namespace
enclosing theusing-directive; see 7.3.4. For the purpose of the unqualified name lookup rules described in
3.4.1, the declarations from the namespace nominated by theusing-directiveare considered members of
that enclosing namespace.

3 The lookup for an unqualified name used as thepostfix-expressionof a function call is described in 3.4.2.
[Note: for purposes of determining (during parsing) whether an expression is apostfix-expressionfor a
function call, the usual name lookup rules apply. The rules in 3.4.2 have no effect on the syntactic interpre-
tation of an expression. For example,

typedef int f;
struct A {

friend void f(A &);
operator int();
void g(A a) {

f(a);
}

};

The expressionf(a) is acast-expressionequivalent toint(a) . Because the expression is not a function

29

ISO/IEC 14882:1998(E) © ISO/IEC

3.4.1 Unqualified name lookup 3 Basic concepts

call, the argument-dependent name lookup (3.4.2) does not apply and the friend functionf is not found.]

4 A name used in global scope, outside of any function, class or user-declared namespace, shall be declared
before its use in global scope.

5 A name used in a user-declared namespace outside of the definition of any function or class shall be
declared before its use in that namespace or before its use in a namespace enclosing its namespace.

6 A name used in the definition of a function26) that is a member of namespaceN (where, only for the pur-
pose of exposition,Ncould represent the global scope) shall be declared before its use in the block in which
it is used or in one of its enclosing blocks (6.3) or, shall be declared before its use in namespaceNor, if N is
a nested namespace, shall be declared before its use in one ofN’s enclosing namespaces.
[Example:

namespace A {
namespace N {

void f();
}

}
void A::N::f() {

i = 5;
// The following scopes are searched for a declaration ofi :
// 1) outermost block scope ofA::N::f , before the use ofi
// 2) scope of namespaceN
// 3) scope of namespaceA
// 4) global scope, before the definition ofA::N::f

}

—end example]

7 A name used in the definition of a classX outside of a member function body or nested class definition27)

shall be declared in one of the following ways:

— before its use in classX or be a member of a base class ofX (10.2), or

— if X is a nested class of classY (9.7), before the definition ofX in Y, or shall be a member of a base class
of Y (this lookup applies in turn toY’s enclosing classes, starting with the innermost enclosing class),28)

or

— if X is a local class (9.8) or is a nested class of a local class, before the definition of classX in a block
enclosing the definition of classX, or

— if X is a member of namespaceN, or is a nested class of a class that is a member ofN, or is a local class
or a nested class within a local class of a function that is a member ofN, before the definition of classX
in namespaceNor in one ofN’s enclosing namespaces.

[Example:

namespace M {
class B { };

}

26) This refers to unqualified names following the function declarator; such a name may be used as a type or as a default argument
name in theparameter-declaration-clause, or may be used in the function body.
27) This refers to unqualified names following the class name; such a name may be used in thebase-clauseor may be used in the class
definition.
28) This lookup applies whether the definition ofX is nested withinY’s definition or whetherX’s definition appears in a namespace
scope enclosingY’s definition (9.7).

30

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.4.1 Unqualified name lookup

namespace N {
class Y : public M::B {

class X {
int a[i];

};
};

}

// The following scopes are searched for a declaration ofi:
// 1) scope of classN::Y::X , before the use ofi
// 2) scope of classN::Y , before the definition ofN::Y::X
// 3) scope ofN::Y ’s base classM::B
// 4) scope of namespaceN, before the definition ofN::Y
// 5) global scope, before the definition ofN

—end example] [Note:when looking for a prior declaration of a class or function introduced by afriend
declaration, scopes outside of the innermost enclosing namespace scope are not considered; see 7.3.1.2.]
[Note:3.3.6 further describes the restrictions on the use of names in a class definition. 9.7 further describes
the restrictions on the use of names in nested class definitions. 9.8 further describes the restrictions on the
use of names in local class definitions.]

8 A name used in the definition of a function that is a member function (9.3)29) of classX shall be declared in
one of the following ways:

— before its use in the block in which it is used or in an enclosing block (6.3), or

— shall be a member of classX or be a member of a base class ofX (10.2), or

— if X is a nested class of classY (9.7), shall be a member ofY, or shall be a member of a base class ofY
(this lookup applies in turn toY’s enclosing classes, starting with the innermost enclosing class),30) or

— if X is a local class (9.8) or is a nested class of a local class, before the definition of classX in a block
enclosing the definition of classX, or

— if X is a member of namespaceN, or is a nested class of a class that is a member ofN, or is a local class
or a nested class within a local class of a function that is a member ofN, before the member function
definition, in namespaceNor in one ofN’s enclosing namespaces.

[Example:

class B { };
namespace M {

namespace N {
class X : public B {

void f();
};

}
}
void M::N::X::f() {

i = 16;
}

29)That is, an unqualified name following the function declarator; such a name may be used as a type or as a default argument name in
theparameter-declaration-clause, or may be used in the function body, or, if the function is a constructor, may be used in the expres-
sion of amem-initializer .
30) This lookup applies whether the member function is defined within the definition of classX or whether the member function is
defined in a namespace scope enclosingX’s definition.

31

ISO/IEC 14882:1998(E) © ISO/IEC

3.4.1 Unqualified name lookup 3 Basic concepts

// The following scopes are searched for a declaration ofi:
// 1) outermost block scope ofM::N::X::f , before the use ofi
// 2) scope of classM::N::X
// 3) scope ofM::N::X ’s base classB
// 4) scope of namespaceM::N
// 5) scope of namespaceM
// 6) global scope, before the definition ofM::N::X::f

—end example] [Note:9.3 and 9.4 further describe the restrictions on the use of names in member function
definitions. 9.7 further describes the restrictions on the use of names in the scope of nested classes. 9.8 fur-
ther describes the restrictions on the use of names in local class definitions.]

9 Name lookup for a name used in the definition of afriend function (11.4) defined inline in the class
granting friendship shall proceed as described for lookup in member function definitions. If thefriend
function is not defined in the class granting friendship, name lookup in thefriend function definition
shall proceed as described for lookup in namespace member function definitions.

10 In a friend declaration naming a member function, a name used in the function declarator and not part of
a template-argumentin a template-idis first looked up in the scope of the member function’s class. If it is
not found, or if the name is part of atemplate-argumentin a template-id, the look up is as described for
unqualified names in the definition of the class granting friendship. [Example:

struct A {
typedef int AT;
void f1(AT);
void f2(float);

};
struct B {

typedef float BT;
friend void A::f1(AT); // parameter type isA::AT
friend void A::f2(BT); // parameter type isB::BT

};

—end example]

11 During the lookup for a name used as a default argument (8.3.6) in a functionparameter-declaration-clause
or used in theexpressionof a mem-initializerfor a constructor (12.6.2), the function parameter names are
visible and hide the names of entities declared in the block, class or namespace scopes containing the func-
tion declaration. [Note: 8.3.6 further describes the restrictions on the use of names in default arguments.
12.6.2 further describes the restrictions on the use of names in actor-initializer.]

12 A name used in the definition of astatic data member of classX (9.4.2) (after thequalified-id of the
static member) is looked up as if the name was used in a member function ofX. [Note: 9.4.2 further
describes the restrictions on the use of names in the definition of astatic data member.]

13 A name used in the handler for afunction-try-block(clause 15) is looked up as if the name was used in the
outermost block of the function definition. In particular, the function parameter names shall not be rede-
clared in theexception-declarationnor in the outermost block of a handler for thefunction-try-block.
Names declared in the outermost block of the function definition are not found when looked up in the scope
of a handler for thefunction-try-block. [Note:but function parameter names are found.]

14 [Note:the rules for name lookup in template definitions are described in 14.6.]

[basic.lookup.koenig] 3.4.2 Argument-dependent name lookup

1 When an unqualified name is used as thepostfix-expressionin a function call (5.2.2), other namespaces not
considered during the usual unqualified lookup (3.4.1) may be searched, and namespace-scope friend func-
tion declarations (11.4) not otherwise visible may be found. These modifications to the search depend on
the types of the arguments (and for template template arguments, the namespace of the template argument).

32

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.4.2 Argument-dependent name lookup

2 For each argument typeT in the function call, there is a set of zero or more associated namespaces and a set
of zero or more associated classes to be considered. The sets of namespaces and classes is determined
entirely by the types of the function arguments (and the namespace of any template template argument).
Typedef names andusing-declarations used to specify the types do not contribute to this set. The sets of
namespaces and classes are determined in the following way:

— If T is a fundamental type, its associated sets of namespaces and classes are both empty.

— If T is a class type, its associated classes are the class itself and its direct and indirect base classes. Its
associated namespaces are the namespaces in which its associated classes are defined.

— If T is a union or enumeration type, its associated namespace is the namespace in which it is defined. If
it is a class member, its associated class is the member’s class; else it has no associated class.

— If T is a pointer toUor an array ofU, its associated namespaces and classes are those associated withU.

— If T is a function type, its associated namespaces and classes are those associated with the function
parameter types and those associated with the return type.

— If T is a pointer to a member function of a classX, its associated namespaces and classes are those asso-
ciated with the function parameter types and return type, together with those associated withX.

— If T is a pointer to a data member of classX, its associated namespaces and classes are those associated
with the member type together with those associated withX.

— If T is a template-id, its associated namespaces and classes are the namespace in which the template is
defined; for member templates, the member template’s class; the namespaces and classes associated
with the types of the template arguments provided for template type parameters (excluding template
template parameters); the namespaces in which any template template arguments are defined; and the
classes in which any member templates used as template template arguments are defined. [Note: non-
type template arguments do not contribute to the set of associated namespaces.]

If the ordinary unqualified lookup of the name finds the declaration of a class member function, the associ-
ated namespaces and classes are not considered. Otherwise the set of declarations found by the lookup of
the function name is the union of the set of declarations found using ordinary unqualified lookup and the set
of declarations found in the namespaces and classes associated with the argument types. [Example:

namespace NS {
class T { };
void f(T);

}
NS::T parm;
int main() {

f(parm); // OK: callsNS::f
}

—end example]

3 When considering an associated namespace, the lookup is the same as the lookup performed when the asso-
ciated namespace is used as a qualifier (3.4.3.2) except that:

— Any using-directives in the associated namespace are ignored.

— Any namespace-scope friend functions declared in associated classes are visible within their respective
namespaces even if they are not visible during an ordinary lookup (11.4).

[basic.lookup.qual] 3.4.3 Qualified name lookup

1 The name of a class or namespace member can be referred to after the:: scope resolution operator (5.1)
applied to anested-name-specifierthat nominates its class or namespace. During the lookup for a name
preceding the:: scope resolution operator, object, function, and enumerator names are ignored. If the
name found is not aclass-name(clause 9) ornamespace-name(7.3.1), the program is ill-formed. [Exam-
ple:

33

ISO/IEC 14882:1998(E) © ISO/IEC

3.4.3 Qualified name lookup 3 Basic concepts

class A {
public:

static int n;
};
int main()
{

int A;
A::n = 42; // OK
A b; // ill-formed: A does not name a type

}

—end example]

2 [Note: Multiply qualified names, such asN1::N2::N3::n , can be used to refer to members of nested
classes (9.7) or members of nested namespaces.]

3 In a declaration in which thedeclarator-id is a qualified-id, names used before thequalified-id being
declared are looked up in the defining namespace scope; names following thequalified-idare looked up in
the scope of the member’s class or namespace. [Example:

class X { };
class C {

class X { };
static const int number = 50;
static X arr[number];

};
X C::arr[number]; // ill-formed:

// equivalent to:::X C::arr[C::number];
// not to: C::X C::arr[C::number];

—end example]

4 A name prefixed by the unary scope operator:: (5.1) is looked up in global scope, in the translation unit
where it is used. The name shall be declared in global namespace scope or shall be a name whose declara-
tion is visible in global scope because of ausing-directive(3.4.3.2). The use of:: allows a global name to
be referred to even if its identifier has been hidden (3.3.7).

5 If a pseudo-destructor-name(5.2.4) contains anested-name-specifier, the type-names are looked up as
types in the scope designated by thenested-name-specifier. In aqualified-idof the form:

:: opt nested-name-specifier~ class-name

where thenested-name-specifierdesignates a namespace scope, and in aqualified-idof the form:

:: opt nested-name-specifier class-name:: ~ class-name

theclass-names are looked up as types in the scope designated by thenested-name-specifier. [Example:

struct C {
typedef int I;

};
typedef int I1, I2;
extern int* p;
extern int* q;
p->C::I::~I(); // I is looked up in the scope ofC
q->I1::~I2(); // I2 is looked up in the scope of

// the postfix-expression

34

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.4.3 Qualified name lookup

struct A {
~A();

};
typedef A AB;
int main()
{

AB *p;
p->AB::~AB(); // explicitly calls the destructor forA

}

—end example] [Note:3.4.5 describes how name lookup proceeds after the. and-> operators.]

[class.qual] 3.4.3.1 Class members

1 If the nested-name-specifierof a qualified-id nominates a class, the name specified after thenested-name-
specifieris looked up in the scope of the class (10.2), except for the cases listed below. The name shall rep-
resent one or more members of that class or of one of its base classes (clause 10). [Note: a class member
can be referred to using aqualified-id at any point in its potential scope (3.3.6).] The exceptions to the
name lookup rule above are the following:

— a destructor name is looked up as specified in 3.4.3;

— a conversion-type-idof an operator-function-idis looked up both in the scope of the class and in the
context in which the entirepostfix-expressionoccurs and shall refer to the same type in both contexts;

— the template-argumentsof a template-idare looked up in the context in which the entirepostfix-
expressionoccurs.

2 A class member name hidden by a name in a nested declarative region or by the name of a derived class
member can still be found if qualified by the name of its class followed by the:: operator.

[namespace.qual] 3.4.3.2 Namespace members

1 If the nested-name-specifierof a qualified-id nominates a namespace, the name specified after thenested-
name-specifieris looked up in the scope of the namespace, except that thetemplate-argumentsof a
template-idare looked up in the context in which the entirepostfix-expressionoccurs.

2 GivenX::m (whereX is a user-declared namespace), or given::m (where X is the global namespace), let
S be the set of all declarations ofm in X and in the transitive closure of all namespaces nominated by
using-directives in X and its used namespaces, except thatusing-directives are ignored in any namespace,
including X, directly containing one or more declarations ofm. No namespace is searched more than once
in the lookup of a name. IfS is the empty set, the program is ill-formed. Otherwise, ifS has exactly one
member, or if the context of the reference is ausing-declaration(7.3.3),S is the required set of declarations
of m. Otherwise if the use ofmis not one that allows a unique declaration to be chosen fromS, the program
is ill-formed. [Example:

int x;
namespace Y {

void f(float);
void h(int);

}

namespace Z {
void h(double);

}

35

ISO/IEC 14882:1998(E) © ISO/IEC

3.4.3.2 Namespace members 3 Basic concepts

namespace A {
using namespace Y;
void f(int);
void g(int);
int i;

}

namespace B {
using namespace Z;
void f(char);
int i;

}

namespace AB {
using namespace A;
using namespace B;
void g();

}

void h()
{

AB::g(); // g is declared directly inAB,
// thereforeS is { AB::g() } andAB::g() is chosen

AB::f(1); // f is not declared directly inABso the rules are
// applied recursively toA andB;
// namespaceY is not searched andY::f(float)
// is not considered;
// S is { A::f(int) , B::f(char) } and overload
// resolution choosesA::f(int)

AB::f(’c’); // as above but resolution choosesB::f(char)

AB::x++; // x is not declared directly inAB, and
// is not declared inA or B, so the rules are
// applied recursively toY andZ,
// S is { } so the program is ill-formed

AB::i++; // i is not declared directly inABso the rules are
// applied recursively toA andB,
// S is { A::i , B::i } so the use is ambiguous
// and the program is ill-formed

AB::h(16.8); // h is not declared directly inABand
// not declared directly inA or B so the rules are
// applied recursively toY andZ,
// S is { Y::h(int) , Z::h(double) } and overload
// resolution choosesZ::h(double)

}

3 The same declaration found more than once is not an ambiguity (because it is still a unique declaration).
For example:

namespace A {
int a;

}

namespace B {
using namespace A;

}

namespace C {
using namespace A;

}

36

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.4.3.2 Namespace members

namespace BC {
using namespace B;
using namespace C;

}

void f()
{

BC::a++; // OK: S is { A::a , A::a }
}

namespace D {
using A::a;

}

namespace BD {
using namespace B;
using namespace D;

}

void g()
{

BD::a++; // OK: S is {A::a , A::a }
}

4 Because each referenced namespace is searched at most once, the following is well-defined:

namespace B {
int b;

}

namespace A {
using namespace B;
int a;

}

namespace B {
using namespace A;

}

void f()
{

A::a++; // OK: a declared directly inA, S is { A::a }
B::a++; // OK: bothA andB searched (once),S is { A::a }
A::b++; // OK: bothA andB searched (once),S is { B::b }
B::b++; // OK: b declared directly inB, S is { B::b }

}

—end example]

5 During the lookup of a qualified namespace member name, if the lookup finds more than one declaration of
the member, and if one declaration introduces a class name or enumeration name and the other declarations
either introduce the same object, the same enumerator or a set of functions, the non-type name hides the
class or enumeration name if and only if the declarations are from the same namespace; otherwise (the dec-
larations are from different namespaces), the program is ill-formed. [Example:

namespace A {
struct x { };
int x;
int y;

}

37

ISO/IEC 14882:1998(E) © ISO/IEC

3.4.3.2 Namespace members 3 Basic concepts

namespace B {
struct y {};

}

namespace C {
using namespace A;
using namespace B;
int i = C::x; // OK, A::x (of typeint)
int j = C::y; // ambiguous,A::y or B::y

}

—end example]

6 In a declaration for a namespace member in which thedeclarator-id is a qualified-id, given that the
qualified-id for the namespace member has the form

nested-name-specifier unqualified-id

theunqualified-idshall name a member of the namespace designated by thenested-name-specifier. [Exam-
ple:

namespace A {
namespace B {

void f1(int);
}
using namespace B;

}
void A::f1(int) { } // ill-formed, f1 is not a member ofA

—end example] However, in such namespace member declarations, thenested-name-specifiermay rely on
using-directives to implicitly provide the initial part of thenested-name-specifier. [Example:

namespace A {
namespace B {

void f1(int);
}

}

namespace C {
namespace D {

void f1(int);
}

}

using namespace A;
using namespace C::D;
void B::f1(int){} // OK, definesA::B::f1(int)

—end example]

[basic.lookup.elab] 3.4.4 Elaborated type specifiers

1 An elaborated-type-specifiermay be used to refer to a previously declaredclass-nameor enum-nameeven
though the name has been hidden by a non-type declaration (3.3.7). Theclass-nameor enum-namein the
elaborated-type-specifiermay either be a simpleidentiferor be aqualified-id.

2 If the name in theelaborated-type-specifieris a simpleidentifer, and unless theelaborated-type-specifier
has the following form:

class-key identifier;

the identifier is looked up according to 3.4.1 but ignoring any non-type names that have been declared. If
this name lookup finds atypedef-name, theelaborated-type-specifieris ill-formed. If theelaborated-type-
specifier refers to anenum-nameand this lookup does not find a previously declaredenum-name, the

38

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.4.4 Elaborated type specifiers

elaborated-type-specifieris ill-formed. If theelaborated-type-specifierrefers to anclass-nameand this
lookup does not find a previously declaredclass-name, or if theelaborated-type-specifierhas the form:

class-key identifier;

theelaborated-type-specifieris a declaration that introduces theclass-nameas described in 3.3.1.

3 If the name is aqualified-id, the name is looked up according its qualifications, as described in 3.4.3, but
ignoring any non-type names that have been declared. If this name lookup finds atypedef-name,the
elaborated-type-specifieris ill-formed. If this name lookup does not find a previously declaredclass-name
or enum-name, theelaborated-type-specifieris ill-formed. [Example:

struct Node {
struct Node* Next; // OK: Refers toNode at global scope
struct Data* Data; // OK: Declares typeData

// at global scope and memberData
};

struct Data {
struct Node* Node; // OK: Refers toNode at global scope
friend struct ::Glob; // error: Glob is not declared

// cannot introduce a qualified type (7.1.5.3)
friend struct Glob; // OK: Refers to (as yet) undeclaredGlob

// at global scope.
/* ... */

};

struct Base {
struct Data; // OK: Declares nestedData
struct ::Data* thatData; // OK: Refers to::Data
struct Base::Data* thisData; // OK: Refers to nestedData
friend class ::Data; // OK: globalData is a friend
friend class Data; // OK: nestedData is a friend
struct Data { /* ... */ }; // Defines nestedData
struct Data; // OK: Redeclares nestedData

};

struct Data; // OK: RedeclaresData at global scope
struct ::Data; // error: cannot introduce a qualified type (7.1.5.3)
struct Base::Data; // error: cannot introduce a qualified type (7.1.5.3)
struct Base::Datum; // error: Datum undefined
struct Base::Data* pBase; // OK: refers to nestedData

—end example]

[basic.lookup.classref] 3.4.5 Class member access

1 In a class member access expression (5.2.5), if the. or -> token is immediately followed by anidentifier
followed by a<, the identifier must be looked up to determine whether the< is the beginning of a template
argument list (14.2) or a less-than operator. The identifier is first looked up in the class of the object
expression. If the identifier is not found, it is then looked up in the context of the entirepostfix-expression
and shall name a class or function template. If the lookup in the class of the object expression finds a tem-
plate, the name is also looked up in the context of the entirepostfix-expressionand

— if the name is not found, the name found in the class of the object expression is used, otherwise

— if the name is found in the context of the entirepostfix-expressionand does not name a class template,
the name found in the class of the object expression is used, otherwise

— if the name found is a class template, it must refer to the same entity as the one found in the class of the
object expression, otherwise the program is ill-formed.

39

ISO/IEC 14882:1998(E) © ISO/IEC

3.4.5 Class member access 3 Basic concepts

2 If the id-expressionin a class member access (5.2.5) is anunqualified-id, and the type of the object expres-
sion is of a class typeC (or of pointer to a class typeC), theunqualified-idis looked up in the scope of class
C. If the type of the object expression is of pointer to scalar type, theunqualified-idis looked up in the con-
text of the completepostfix-expression.

3 If the unqualified-idis ˜type-name, and the type of the object expression is of a class typeC (or of pointer to
a class typeC), thetype-nameis looked up in the context of the entirepostfix-expressionand in the scope of
classC. Thetype-nameshall refer to aclass-name. If type-nameis found in both contexts, the name shall
refer to the same class type. If the type of the object expression is of scalar type, thetype-nameis looked
up in the scope of the completepostfix-expression.

4 If the id-expressionin a class member access is aqualified-idof the form

class-name-or-namespace-name::...

theclass-name-or-namespace-namefollowing the. or -> operator is looked up both in the context of the
entirepostfix-expressionand in the scope of the class of the object expression. If the name is found only in
the scope of the class of the object expression, the name shall refer to aclass-name. If the name is found
only in the context of the entirepostfix-expression, the name shall refer to aclass-nameor namespace-
name. If the name is found in both contexts, theclass-name-or-namespace-nameshall refer to the same
entity. [Note: the result of looking up theclass-name-or-namespace-nameis not required to be a unique
base class of the class type of the object expression, as long as the entity or entities named by thequalified-
id are members of the class type of the object expression and are not ambiguous according to 10.2.

struct A {
int a;

};
struct B: virtual A { };
struct C: B { };
struct D: B { };
struct E: public C, public D { };
struct F: public A { };

void f() {
E e;
e.B::a = 0; // OK, only oneA::a in E

F f;
f.A::a = 1; // OK, A::a is a member ofF

}

—end note]

5 If the qualified-idhas the form

::class-name-or-namespace-name::...

theclass-name-or-namespace-nameis looked up in global scope as aclass-nameor namespace-name.

6 If the nested-name-specifiercontains a classtemplate-id(14.2), itstemplate-arguments are evaluated in the
context in which the entirepostfix-expressionoccurs.

7 If the id-expressionis a conversion-function-id, its conversion-type-idshall denote the same type in both
the context in which the entirepostfix-expressionoccurs and in the context of the class of the object expres-
sion (or the class pointed to by the pointer expression).

[basic.lookup.udir] 3.4.6 Using-directives and namespace aliases

1 When looking up anamespace-namein a using-directiveor namespace-alias-definition, only namespace
names are considered.

40

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.5 Program and linkage

[basic.link] 3.5 Program and linkage

1 A programconsists of one or moretranslation units(clause 2) linked together. A translation unit consists
of a sequence of declarations.

translation-unit:
declaration-seqopt

2 A name is said to havelinkagewhen it might denote the same object, reference, function, type, template,
namespace or value as a name introduced by a declaration in another scope:

— When a name hasexternal linkage, the entity it denotes can be referred to by names from scopes of
other translation units or from other scopes of the same translation unit.

— When a name hasinternal linkage, the entity it denotes can be referred to by names from other scopes in
the same translation unit.

— When a name hasno linkage, the entity it denotes cannot be referred to by names from other scopes.

3 A name having namespace scope (3.3.5) has internal linkage if it is the name of

— an object, reference, function or function template that is explicitly declaredstatic or,

— an object or reference that is explicitly declaredconst and neither explicitly declaredextern nor
previously declared to have external linkage; or

— a data member of an anonymous union.

4 A name having namespace scope has external linkage if it is the name of

— an object or reference, unless it has internal linkage; or

— a function, unless it has internal linkage; or

— a named class (clause 9), or an unnamed class defined in a typedef declaration in which the class has the
typedef name for linkage purposes (7.1.3); or

— a named enumeration (7.2), or an unnamed enumeration defined in a typedef declaration in which the
enumeration has the typedef name for linkage purposes (7.1.3); or

— an enumerator belonging to an enumeration with external linkage; or

— a template, unless it is a function template that has internal linkage (clause 14); or

— a namespace (7.3), unless it is declared within an unnamed namespace.

5 In addition, a member function, static data member, class or enumeration of class scope has external link-
age if the name of the class has external linkage.

6 The name of a function declared in block scope, and the name of an object declared by a block scope
extern declaration, have linkage. If there is a visible declaration of an entity with linkage having the
same name and type, ignoring entities declared outside the innermost enclosing namespace scope, the block
scope declaration declares that same entity and receives the linkage of the previous declaration. If there is
more than one such matching entity, the program is ill-formed. Otherwise, if no matching entity is found,
the block scope entity receives external linkage.

41

ISO/IEC 14882:1998(E) © ISO/IEC

3.5 Program and linkage 3 Basic concepts

[Example:

static void f();
static int i = 0; // 1
void g() {

extern void f(); // internal linkage
int i; // 2: i has no linkage
{

extern void f(); // internal linkage
extern int i; // 3: external linkage

}
}

There are three objects namedi in this program. The object with internal linkage introduced by the decla-
ration in global scope (line//1), the object with automatic storage duration and no linkage introduced by
the declaration on line//2 , and the object with static storage duration and external linkage introduced by
the declaration on line//3 .]

7 When a block scope declaration of an entity with linkage is not found to refer to some other declaration,
then that entity is a member of the innermost enclosing namespace. However such a declaration does not
introduce the member name in its namespace scope. [Example:

namespace X {
void p()
{

q(); // error: q not yet declared
extern void q(); // q is a member of namespaceX

}

void middle()
{

q(); // error: q not yet declared
}

void q() { /* ... */ } // definition ofX::q
}

void q() { /* ... */ } // some other, unrelatedq

—end example]

8 Names not covered by these rules have no linkage. Moreover, except as noted, a name declared in a local
scope (3.3.2) has no linkage. A name with no linkage (notably, the name of a class or enumeration declared
in a local scope (3.3.2)) shall not be used to declare an entity with linkage. If a declaration uses a typedef
name, it is the linkage of the type name to which the typedef refers that is considered. [Example:

void f()
{

struct A { int x; }; // no linkage
extern A a; // ill-formed
typedef A B;
extern B b; // ill-formed

}

—end example] This implies that names with no linkage cannot be used as template arguments (14.3).

9 Two names that are the same (clause 3) and that are declared in different scopes shall denote the same
object, reference, function, type, enumerator, template or namespace if

— both names have external linkage or else both names have internal linkage and are declared in the same
translation unit; and

— both names refer to members of the same namespace or to members, not by inheritance, of the same
class; and

42

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.5 Program and linkage

— when both names denote functions, the function types are identical for purposes of overloading; and

— when both names denote function templates, the signatures (14.5.5.1) are the same.

10 After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types
specified by all declarations referring to a given object or function shall be identical, except that declara-
tions for an array object can specify array types that differ by the presence or absence of a major array
bound (8.3.4). A violation of this rule on type identity does not require a diagnostic.

11 [Note: linkage to non-C++ declarations can be achieved using alinkage-specification(7.5).]

[basic.start] 3.6 Start and termination

[basic.start.main] 3.6.1 Main function

1 A program shall contain a global function calledmain , which is the designated start of the program. It is
implementation-defined whether a program in a freestanding environment is required to define amain
function. [Note: in a freestanding environment, start-up and termination is implementation-defined; start-
up contains the execution of constructors for objects of namespace scope with static storage duration; termi-
nation contains the execution of destructors for objects with static storage duration.]

2 An implementation shall not predefine themain function. This function shall not be overloaded. It shall
have a return type of typeint , but otherwise its type is implementation-defined. All implementations
shall allow both of the following definitions ofmain :

int main() { /* ... */ }

and

int main(int argc, char* argv[]) { /* ... */ }

In the latter formargc shall be the number of arguments passed to the program from the environment in
which the program is run. Ifargc is nonzero these arguments shall be supplied inargv[0] through
argv[argc-1] as pointers to the initial characters of null-terminated multibyte strings (NTMBSs)
(17.3.2.1.3.2) andargv[0] shall be the pointer to the initial character of a NTMBS that represents the
name used to invoke the program or"" . The value ofargc shall be nonnegative. The value of
argv[argc] shall be 0. [Note: it is recommended that any further (optional) parameters be added after
argv .]

3 The function main shall not be used (3.2) within a program. The linkage (3.5) ofmain is
implementation-defined. A program that declaresmain to be inline or static is ill-formed. The
namemain is not otherwise reserved. [Example:member functions, classes, and enumerations can be
calledmain , as can entities in other namespaces.]

4 Calling the function

void exit(int);

declared in<cstdlib> (18.3) terminates the program without leaving the current block and hence with-
out destroying any objects with automatic storage duration (12.4). Ifexit is called to end a program dur-
ing the destruction of an object with static storage duration, the program has undefined behavior.

5 A return statement inmain has the effect of leaving the main function (destroying any objects with auto-
matic storage duration) and callingexit with the return value as the argument. If control reaches the end
of main without encountering areturn statement, the effect is that of executing

return 0;

43

ISO/IEC 14882:1998(E) © ISO/IEC

3.6.2 Initialization of non-local objects 3 Basic concepts

[basic.start.init] 3.6.2 Initialization of non-local objects

1 The storage for objects with static storage duration (3.7.1) shall be zero-initialized (8.5) before any other
initialization takes place. Zero-initialization and initialization with a constant expression are collectively
calledstatic initialization; all other initialization isdynamic initialization. Objects of POD types (3.9) with
static storage duration initialized with constant expressions (5.19) shall be initialized before any dynamic
initialization takes place. Objects with static storage duration defined in namespace scope in the same
translation unit and dynamically initialized shall be initialized in the order in which their definition appears
in the translation unit. [Note: 8.5.1 describes the order in which aggregate members are initialized. The
initialization of local static objects is described in 6.7.]

2 An implementation is permitted to perform the initialization of an object of namespace scope with static
storage duration as a static initialization even if such initialization is not required to be done statically, pro-
vided that

— the dynamic version of the initialization does not change the value of any other object of namespace
scope with static storage duration prior to its initialization, and

— the static version of the initialization produces the same value in the initialized object as would be pro-
duced by the dynamic initialization if all objects not required to be initialized statically were initialized
dynamically.

[Note: as a consequence, if the initialization of an objectobj1 refers to an objectobj2 of namespace
scope with static storage duration potentially requiring dynamic initialization and defined later in the same
translation unit, it is unspecified whether the value ofobj2 used will be the value of the fully initialized
obj2 (becauseobj2 was statically initialized) or will be the value ofobj2 merely zero-initialized. For
example,

inline double fd() { return 1.0; }
extern double d1;
double d2 = d1; // unspecified:

// may be statically initialized to0.0 or
// dynamically initialized to1.0

double d1 = fd(); // may be initialized statically to1.0

—end note]

3 It is implementation-defined whether or not the dynamic initialization (8.5, 9.4, 12.1, 12.6.1) of an object of
namespace scope is done before the first statement ofmain . If the initialization is deferred to some point
in time after the first statement ofmain , it shall occur before the first use of any function or object defined
in the same translation unit as the object to be initialized.31) [Example:

// – File 1 –
#include "a.h"
#include "b.h"
B b;
A::A(){

b.Use();
}

// – File 2 –
#include "a.h"
A a;

31)An object defined in namespace scope having initialization with side-effects must be initialized even if it is not used (3.7.1).

44

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.6.2 Initialization of non-local objects

// – File 3 –
#include "a.h"
#include "b.h"
extern A a;
extern B b;

int main() {
a.Use();
b.Use();

}

It is implementation-defined whether eithera or b is initialized beforemain is entered or whether the
initializations are delayed untila is first used inmain . In particular, ifa is initialized beforemain is
entered, it is not guaranteed thatb will be initialized before it is used by the initialization ofa, that is,
beforeA::A is called. If, however,a is initialized at some point after the first statement ofmain , b will
be initialized prior to its use inA::A .]

4 If construction or destruction of a non-local static object ends in throwing an uncaught exception, the result
is to callterminate (18.6.3.3).

[basic.start.term] 3.6.3 Termination

1 Destructors (12.4) for initialized objects of static storage duration (declared at block scope or at namespace
scope) are called as a result of returning frommain and as a result of callingexit (18.3). These objects
are destroyed in the reverse order of the completion of their constructor or of the completion of their
dynamic initialization. If an object is initialized statically, the object is destroyed in the same order as if the
object was dynamically initialized. For an object of array or class type, all subobjects of that object are
destroyed before any local object with static storage duration initialized during the construction of the sub-
objects is destroyed.

2 If a function contains a local object of static storage duration that has been destroyed and the function is
called during the destruction of an object with static storage duration, the program has undefined behavior
if the flow of control passes through the definition of the previously destroyed local object.

3 If a function is registered withatexit (see<cstdlib> , 18.3) then following the call toexit , any
objects with static storage duration initialized prior to the registration of that function shall not be destroyed
until the registered function is called from the termination process and has completed. For an object with
static storage duration constructed after a function is registered withatexit , then following the call to
exit , the registered function is not called until the execution of the object’s destructor has completed. If
atexit is called during the construction of an object, the complete object to which it belongs shall be
destroyed before the registered function is called.

4 Calling the function

void abort();

declared in<cstdlib> terminates the program without executing destructors for objects of automatic or
static storage duration and without calling the functions passed toatexit() .

[basic.stc] 3.7 Storage duration

1 Storage duration is the property of an object that defines the minimum potential lifetime of the storage con-
taining the object. The storage duration is determined by the construct used to create the object and is one
of the following:

— static storage duration

— automatic storage duration

— dynamic storage duration

45

ISO/IEC 14882:1998(E) © ISO/IEC

3.7 Storage duration 3 Basic concepts

2 Static and automatic storage durations are associated with objects introduced by declarations (3.1) and
implicitly created by the implementation (12.2). The dynamic storage duration is associated with objects
created withoperator new (5.3.4).

3 The storage class specifiersstatic andauto are related to storage duration as described below.

4 The storage duration categories apply to references as well. The lifetime of a reference is its storage dura-
tion.

[basic.stc.static] 3.7.1 Static storage duration

1 All objects which neither have dynamic storage duration nor are local havestatic storage duration. The
storage for these objects shall last for the duration of the program (3.6.2, 3.6.3).

2 If an object of static storage duration has initialization or a destructor with side effects, it shall not be elimi-
nated even if it appears to be unused, except that a class object or its copy may be eliminated as specified in
12.8.

3 The keywordstatic can be used to declare a local variable with static storage duration. [Note: 6.7
describes the initialization of localstatic variables; 3.6.3 describes the destruction of localstatic
variables.]

4 The keywordstatic applied to a class data member in a class definition gives the data member static
storage duration.

[basic.stc.auto] 3.7.2 Automatic storage duration

1 Local objects explicitly declaredauto or register or not explicitly declaredstatic or extern have
automatic storage duration. The storage for these objects lasts until the block in which they are created
exits.

2 [Note:these objects are initialized and destroyed as described in 6.7.]

3 If a named automatic object has initialization or a destructor with side effects, it shall not be destroyed
before the end of its block, nor shall it be eliminated as an optimization even if it appears to be unused,
except that a class object or its copy may be eliminated as specified in 12.8.

[basic.stc.dynamic] 3.7.3 Dynamic storage duration

1 Objects can be created dynamically during program execution (1.9), usingnew-expressions (5.3.4), and
destroyed usingdelete-expressions (5.3.5). A C++ implementation provides access to, and management of,
dynamic storage via the globalallocation functionsoperator new and operator new[] and the
globaldeallocation functionsoperator delete andoperator delete[] .

2 The library provides default definitions for the global allocation and deallocation functions. Some global
allocation and deallocation functions are replaceable (18.4.1). A C++ program shall provide at most one
definition of a replaceable allocation or deallocation function. Any such function definition replaces the
default version provided in the library (17.4.3.4). The following allocation and deallocation functions
(18.4) are implicitly declared in global scope in each translation unit of a program

void* operator new(std::size_t) throw(std::bad_alloc);
void* operator new[](std::size_t) throw(std::bad_alloc);
void operator delete(void*) throw();
void operator delete[](void*) throw();

These implicit declarations introduce only the function namesoperator new , operator new[] ,
operator delete , operator delete[] . [Note: the implicit declarations do not introduce the
namesstd , std::bad_alloc , andstd::size_t , or any other names that the library uses to declare
these names. Thus, anew-expression, delete-expressionor function call that refers to one of these functions
without including the header<new> is well-formed. However, referring tostd , std::bad_alloc , and
std::size_t is ill-formed unless the name has been declared by including the appropriate header.]

46

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.7.3 Dynamic storage duration

Allocation and/or deallocation functions can also be declared and defined for any class (12.5).

3 Any allocation and/or deallocation functions defined in a C++ program shall conform to the semantics spec-
ified in 3.7.3.1 and 3.7.3.2.

[basic.stc.dynamic.allocation] 3.7.3.1 Allocation functions

1 An allocation function shall be a class member function or a global function; a program is ill-formed if an
allocation function is declared in a namespace scope other than global scope or declared static in global
scope. The return type shall bevoid* . The first parameter shall have typesize_t (18.1). The first
parameter shall not have an associated default argument (8.3.6). The value of the first parameter shall be
interpreted as the requested size of the allocation. An allocation function can be a function template. Such
a template shall declare its return type and first parameter as specified above (that is, template parameter
types shall not be used in the return type and first parameter type). Template allocation functions shall have
two or more parameters.

2 The allocation function attempts to allocate the requested amount of storage. If it is successful, it shall
return the address of the start of a block of storage whose length in bytes shall be at least as large as the
requested size. There are no constraints on the contents of the allocated storage on return from the alloca-
tion function. The order, contiguity, and initial value of storage allocated by successive calls to an alloca-
tion function is unspecified. The pointer returned shall be suitably aligned so that it can be converted to a
pointer of any complete object type and then used to access the object or array in the storage allocated (until
the storage is explicitly deallocated by a call to a corresponding deallocation function). If the size of the
space requested is zero, the value returned shall not be a null pointer value (4.10). The results of derefer-
encing a pointer returned as a request for zero size are undefined.32)

3 An allocation function that fails to allocate storage can invoke the currently installednew_handler
(18.4.2.2), if any. [Note: A program-supplied allocation function can obtain the address of the currently
installednew_handler using theset_new_handler function (18.4.2.3).] If an allocation function
declared with an emptyexception-specification(15.4),throw() , fails to allocate storage, it shall return a
null pointer. Any other allocation function that fails to allocate storage shall only indicate failure by throw-
ing an exception of classstd::bad_alloc (18.4.2.1) or a class derived fromstd::bad_alloc .

4 A global allocation function is only called as the result of a new expression (5.3.4), or called directly using
the function call syntax (5.2.2), or called indirectly through calls to the functions in the C++ standard
library. [Note: in particular, a global allocation function is not called to allocate storage for objects with
static storage duration (3.7.1), for objects of typetype_info (5.2.8), for the copy of an object thrown by
a throw expression (15.1).]

[basic.stc.dynamic.deallocation] 3.7.3.2 Deallocation functions

1 Deallocation functions shall be class member functions or global functions; a program is ill-formed if deal-
location functions are declared in a namespace scope other than global scope or declared static in global
scope.

2 Each deallocation function shall returnvoid and its first parameter shall bevoid* . A deallocation func-
tion can have more than one parameter. If a classT has a member deallocation function namedoperator
delete with exactly one parameter, then that function is a usual (non-placement) deallocation function. If
classT does not declare such anoperator delete but does declare a member deallocation function
namedoperator delete with exactly two parameters, the second of which has typestd::size_t
(18.1), then this function is a usual deallocation function. Similarly, if a classT has a member deallocation
function namedoperator delete[] with exactly one parameter, then that function is a usual (non-
placement) deallocation function. If classT does not declare such anoperator delete[] but does
declare a member deallocation function namedoperator delete[] with exactly two parameters, the

32) The intent is to haveoperator new() implementable by callingmalloc() or calloc() , so the rules are substantially the
same. C++ differs from C in requiring a zero request to return a non-null pointer.

47

ISO/IEC 14882:1998(E) © ISO/IEC

3.7.3.2 Deallocation functions 3 Basic concepts

second of which has typestd::size_t , then this function is a usual deallocation function. A dealloca-
tion function can be an instance of a function template. Neither the first parameter nor the return type shall
depend on a template parameter. [Note:that is, a deallocation function template shall have a first parameter
of type void* and a return type ofvoid (as specified above).] A deallocation function template shall
have two or more function parameters. A template instance is never a usual deallocation function, regard-
less of its signature.

3 The value of the first argument supplied to one of the deallocation functions provided in the standard
library may be a null pointer value; if so, the call to the deallocation function has no effect. Otherwise, the
value supplied tooperator delete(void*) in the standard library shall be one of the values returned
by a previous invocation of eitheroperator new(size_t) or operator new(size_t, const
std::nothrow_t&) in the standard library, and the value supplied tooperator
delete[](void*) in the standard library shall be one of the values returned by a previous invocation of
eitheroperator new[](size_t) or operator new[](size_t, const std::nothrow_t&)
in the standard library.

4 If the argument given to a deallocation function in the standard library is a pointer that is not the null
pointer value (4.10), the deallocation function shall deallocate the storage referenced by the pointer, render-
ing invalid all pointers referring to any part of thedeallocated storage. The effect of using an invalid
pointer value (including passing it to a deallocation function) is undefined.33)

[basic.stc.inherit] 3.7.4 Duration of sub-objects

1 The storage duration of member subobjects, base class subobjects and array elements is that of their com-
plete object (1.8).

[basic.life] 3.8 Object Lifetime

1 The lifetime of an object is a runtime property of the object. The lifetime of an object of typeT begins
when:

— storage with the proper alignment and size for typeT is obtained, and

— if T is a class type with a non-trivial constructor (12.1), the constructor call has completed.

The lifetime of an object of typeT ends when:

— if T is a class type with a non-trivial destructor (12.4), the destructor call starts, or

— the storage which the object occupies is reused or released.

2 [Note: the lifetime of an array object or of an object of type (3.9) starts as soon as storage with proper size
and alignment is obtained, and its lifetime ends when the storage which the array or object occupies is
reused or released. 12.6.2 describes the lifetime of base and member subobjects.]

3 The properties ascribed to objects throughout this International Standard apply for a given object only dur-
ing its lifetime. [Note: in particular, before the lifetime of an object starts and after its lifetime ends there
are significant restrictions on the use of the object, as described below, in 12.6.2 and in 12.7. Also, the
behavior of an object under construction and destruction might not be the same as the behavior of an object
whose lifetime has started and not ended. 12.6.2 and 12.7 describe the behavior of objects during the con-
struction and destruction phases.]

4 A program may end the lifetime of any object by reusing the storage which the object occupies or by
explicitly calling the destructor for an object of a class type with a non-trivial destructor. For an object of a
class type with a non-trivial destructor, the program is not required to call the destructor explicitly before
the storage which the object occupies is reused or released; however, if there is no explicit call to the
destructor or if adelete-expression(5.3.5) is not used to release the storage, the destructor shall not be
implicitly called and any program that depends on the side effects produced by the destructor has undefined

33)On some implementations, it causes a system-generated runtime fault.

48

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.8 Object Lifetime

behavior.

5 Before the lifetime of an object has started but after the storage which the object will occupy has been allo-
cated34) or, after the lifetime of an object has ended and before the storage which the object occupied is
reused or released, any pointer that refers to the storage location where the object will be or was located
may be used but only in limited ways. Such a pointer refers to allocated storage (3.7.3.2), and using the
pointer as if the pointer were of typevoid* , is well-defined. Such a pointer may be dereferenced but the
resulting lvalue may only be used in limited ways, as described below. If the object will be or was of a
class type with a non-trivial destructor, and the pointer is used as the operand of adelete-expression, the
program has undefined behavior. If the object will be or was of a non-POD class type, the program has
undefined behavior if:

— the pointer is used to access a non-static data member or call a non-static member function of the object,
or

— the pointer is implicitly converted (4.10) to a pointer to a base class type, or

— the pointer is used as the operand of astatic_cast (5.2.9) (except when the conversion is to
void* , or tovoid* and subsequently tochar* , orunsigned char*).

— the pointer is used as the operand of adynamic_cast (5.2.7). [Example:

struct B {
virtual void f();
void mutate();
virtual ~B();

};

struct D1 : B { void f(); };
struct D2 : B { void f(); };

void B::mutate() {
new (this) D2; // reuses storage– ends the lifetime of*this
f(); // undefined behavior
... = this; // OK, this points to valid memory

}

void g() {
void* p = malloc(sizeof(D1) + sizeof(D2));
B* pb = new (p) D1;
pb->mutate();
&pb; // OK: pb points to valid memory
void* q = pb; // OK: pb points to valid memory
pb->f(); // undefined behavior, lifetime of*pb has ended

}

—end example]

6 Similarly, before the lifetime of an object has started but after the storage which the object will occupy has
been allocated or, after the lifetime of an object has ended and before the storage which the object occupied
is reused or released, any lvalue which refers to the original object may be used but only in limited ways.
Such an lvalue refers to allocated storage (3.7.3.2), and using the properties of the lvalue which do not
depend on its value is well-defined. If an lvalue-to-rvalue conversion (4.1) is applied to such an lvalue, the
program has undefined behavior; if the original object will be or was of a non-POD class type, the program
has undefined behavior if:

— the lvalue is used to access a non-static data member or call a non-static member function of the object,
or

34)For example, before the construction of a global object of non-POD class type (12.7).

49

ISO/IEC 14882:1998(E) © ISO/IEC

3.8 Object Lifetime 3 Basic concepts

— the lvalue is implicitly converted (4.10) to a reference to a base class type, or

— the lvalue is used as the operand of astatic_cast (5.2.9) (except when the conversion is ultimately
to char& or unsigned char&), or

— the lvalue is used as the operand of adynamic_cast (5.2.7) or as the operand oftypeid .

7 If, after the lifetime of an object has ended and before the storage which the object occupied is reused or
released, a new object is created at the storage location which the original object occupied, a pointer that
pointed to the original object, a reference that referred to the original object, or the name of the original
object will automatically refer to the new object and, once the lifetime of the new object has started, can be
used to manipulate the new object, if:

— the storage for the new object exactly overlays the storage location which the original object occupied,
and

— the new object is of the same type as the original object (ignoring the top-level cv-qualifiers), and

— the original object was a most derived object (1.8) of typeT and the new object is a most derived object
of typeT (that is, they are not base class subobjects). [Example:

struct C {
int i;
void f();
const C& operator=(const C&);

};

const C& C::operator=(const C& other)
{

if (this != &other) {
this->~C(); // lifetime of*this ends
new (this) C(other); // new object of typeCcreated
f(); // well-defined

}
return *this;

}

C c1;
C c2;
c1 = c2; // well-defined
c1.f(); // well-defined;c1 refers to a new object of typeC

—end example]

8 If a program ends the lifetime of an object of typeT with static (3.7.1) or automatic (3.7.2) storage duration
and ifT has a non-trivial destructor,35) the program must ensure that an object of the original type occupies
that same storage location when the implicit destructor call takes place; otherwise the behavior of the pro-
gram is undefined. This is true even if the block is exited with an exception. [Example:

class T { };
struct B {

~B();
};

void h() {
B b;
new (&b) T;

} // undefined behavior at block exit

—end example]

35) that is, an object for which a destructor will be called implicitly—either either upon exit from the block for an object with auto-
matic storage duration or upon exit from the program for an object with static storage duration.

50

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.8 Object Lifetime

9 Creating a new object at the storage location that aconst object with static or automatic storage duration
occupies or, at the storage location that such aconst object used to occupy before its lifetime ended
results in undefined behavior. [Example:

struct B {
B();
~B();

};

const B b;

void h() {
b.~B();
new (&b) const B; // undefined behavior

}

—end example]

[basic.types] 3.9 Types

1 [Note:3.9 and the subclauses thereof impose requirements on implementations regarding the representation
of types. There are two kinds of types: fundamental types and compound types. Types describe objects
(1.8), references (8.3.2), or functions (8.3.5).]

2 For any complete POD object typeT, whether or not the object holds a valid value of typeT, the underlying
bytes (1.7) making up the object can be copied into an array ofchar or unsigned char .36) If the con-
tent of the array ofchar or unsigned char is copied back into the object, the object shall subsequently
hold its original value. [Example:

#define N sizeof(T)
char buf[N];
T obj; // obj initialized to its original value
memcpy(buf, &obj, N); // between these two calls tomemcpy,

// obj might be modified
memcpy(&obj, buf, N); // at this point, each subobject ofobj of scalar type

// holds its original value

—end example]

3 For any POD typeT, if two pointers toT point to distinctT objectsobj1 andobj2 , if the value ofobj1
is copied intoobj2 , using thememcpy library function,obj2 shall subsequently hold the same value as
obj1 . [Example:

T* t1p;
T* t2p;

// provided thatt2p points to an initialized object ...
memcpy(t1p, t2p, sizeof(T)); // at this point, every subobject of POD type in*t1p contains

// the same value as the corresponding subobject in*t2p

—end example]

4 Theobject representationof an object of typeT is the sequence ofN unsigned char objects taken up by
the object of typeT, whereN equalssizeof(T) . Thevalue representationof an object is the set of bits
that hold the value of typeT. For POD types, the value representation is a set of bits in the object represen-
tation that determines avalue, which is one discrete element of an implementation-defined set of values.37)

5 Object types havealignment requirements(3.9.1, 3.9.2). Thealignmentof a complete object type is an
implementation-defined integer value representing a number of bytes; an object is allocated at an address
that meets the alignment requirements of its object type.

36)By using, for example, the library functions (17.4.1.2)memcpyor memmove.
37)The intent is that the memory model of C++ is compatible with that of ISO/IEC 9899 Programming Language C.

51

ISO/IEC 14882:1998(E) © ISO/IEC

3.9 Types 3 Basic concepts

6 A class that has been declared but not defined, or an array of unknown size or of incomplete element type,
is an incompletely-defined object type.38) Incompletely-defined object types and the void types are incom-
plete types (3.9.1). Objects shall not be defined to have an incomplete type.

7 A class type (such as“class X ”) might be incomplete at one point in a translation unit and complete later
on; the type“class X ” is the same type at both points. The declared type of an array object might be an
array of incomplete class type and therefore incomplete; if the class type is completed later on in the trans-
lation unit, the array type becomes complete; the array type at those two points is the same type. The
declared type of an array object might be an array of unknown size and therefore be incomplete at one point
in a translation unit and complete later on; the array types at those two points (“array of unknown bound of
T” and“array of NT”) are different types. The type of a pointer to array of unknown size, or of a type
defined by atypedef declaration to be an array of unknown size, cannot be completed. [Example:

class X; // X is an incomplete type
extern X* xp; // xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete
typedef int UNKA[]; // UNKAis an incomplete type
UNKA* arrp; // arrp is a pointer to an incomplete type
UNKA** arrpp;

void foo()
{

xp++; // ill-formed: X is incomplete
arrp++; // ill-formed: incomplete type
arrpp++; // OK: sizeofUNKA* is known

}

struct X { int i; }; // nowX is a complete type
int arr[10]; // now the type ofarr is complete

X x;
void bar()
{

xp = &x; // OK; type is ‘‘pointer toX’’
arrp = &arr; // ill-formed: different types
xp++; // OK: X is complete
arrp++; // ill-formed: UNKAcan’t be completed

}

—end example]

8 [Note: the rules for declarations and expressions describe in which contexts incomplete types are prohib-
ited.]

9 An object typeis a (possibly cv-qualified) type that is not a function type, not a reference type, and not a
void type.

10 Arithmetic types (3.9.1), enumeration types, pointer types, and pointer to member types (3.9.2), andcv-
qualifiedversions of these types (3.9.3) are collectively calledscalar types. Scalar types, POD-struct types,
POD-union types (clause 9), arrays of such types andcv-qualifiedversions of these types (3.9.3) are collec-
tively calledPOD types.

11 If two typesT1 andT2 are the same type, thenT1 andT2 are layout-compatibletypes. [Note: Layout-
compatible enumerations are described in 7.2. Layout-compatible POD-structs and POD-unions are
described in 9.2.]

38)The size and layout of an instance of an incompletely-defined object type is unknown.

52

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.9.1 Fundamental types

[basic.fundamental] 3.9.1 Fundamental types

1 Objects declared as characters (char) shall be large enough to store any member of the implementation’s
basic character set. If a character from this set is stored in a character object, the integral value of that char-
acter object is equal to the value of the single character literal form of that character. It is implementation-
defined whether achar object can hold negative values. Characters can be explicitly declaredunsigned
or signed . Plain char , signed char , andunsigned char are three distinct types. Achar , a
signed char , and anunsigned char occupy the same amount of storage and have the same align-
ment requirements (3.9); that is, they have the same object representation. For character types, all bits of
the object representation participate in the value representation. For unsigned character types, all possible
bit patterns of the value representation represent numbers. These requirements do not hold for other types.
In any particular implementation, a plainchar object can take on either the same values as a
signed char or anunsigned char ; which one is implementation-defined.

2 There are foursigned integer types: “signed char ”, “short int ”, “int ”, and“long int .” In this
list, each type provides at least as much storage as those preceding it in the list. Plainint s have the natu-
ral size suggested by the architecture of the execution environment39) ; the other signed integer types are
provided to meet special needs.

3 For each of the signed integer types, there exists a corresponding (but different)unsigned integer type:
“unsigned char ”, “unsigned short int ”, “unsigned int ”, and “unsigned long
int, ” each of which occupies the same amount of storage and has the same alignment requirements (3.9)
as the corresponding signed integer type40) ; that is, each signed integer type has the same object represen-
tation as its corresponding unsigned integer type. The range of nonnegative values of asigned integertype
is a subrange of the correspondingunsigned integertype, and the value representation of each correspond-
ing signed/unsigned type shall be the same.

4 Unsigned integers, declaredunsigned , shall obey the laws of arithmetic modulo 2n wheren is the num-
ber of bits in the value representation of that particular size of integer.41)

5 Typewchar_t is a distinct type whose values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (22.1.1). Typewchar_t shall have the same
size, signedness, and alignment requirements (3.9) as one of the other integral types, called itsunderlying
type.

6 Values of typebool are eithertrue or false .42) [Note: there are nosigned , unsigned , short , or
long bool types or values.] As described below,bool values behave as integral types. Values of type
bool participate in integral promotions (4.5).

7 Typesbool , char , wchar_t , and the signed and unsigned integer types are collectively calledintegral
types.43) A synonym for integral type isinteger type. The representations of integral types shall define val-
ues by use of a pure binary numeration system.44) [Example:this International Standard permits 2’s com-
plement, 1’s complement and signed magnitude representations for integral types.]

8 There are threefloating pointtypes:float , double , andlong double . The typedouble provides
at least as much precision asfloat , and the typelong double provides at least as much precision as
double . The set of values of the typefloat is a subset of the set of values of the typedouble ; the set

39) that is, large enough to contain any value in the range ofINT_MIN andINT_MAX, as defined in the header<climits> .
40)See 7.1.5.2 regarding the correspondence between types and the sequences oftype-specifiers that designate them.
41) This implies that unsigned arithmetic does not overflow because a result that cannot be represented by the resulting unsigned inte-
ger type is reduced modulo the number that is one greater than the largest value that can be represented by the resulting unsigned inte-
ger type.
42) Using abool value in ways described by this International Standard as ‘‘undefined,’’ such as by examining the value of an unini-
tialized automatic variable, might cause it to behave as if is neithertrue nor false .
43) Therefore, enumerations (7.2) are not integral; however, enumerations can be promoted toint , unsigned int , long , or
unsigned long , as specified in 4.5.
44) A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive bits are
additive, begin with 1, and are multiplied by successive integral power of 2, except perhaps for the bit with the highest position.
(Adapted from theAmerican National Dictionary for Information Processing Systems.)

53

ISO/IEC 14882:1998(E) © ISO/IEC

3.9.1 Fundamental types 3 Basic concepts

of values of the typedouble is a subset of the set of values of the typelong double . The value repre-
sentation of floating-point types is implementation-defined.Integral and floating types are collectively
calledarithmetic types. Specializations of the standard templatenumeric_limits (18.2) shall specify
the maximum and minimum values of each arithmetic type for an implementation.

9 Thevoid type has an empty set of values. Thevoid type is an incomplete type that cannot be completed.
It is used as the return type for functions that do not return a value. Any expression can be explicitly con-
verted to typecv void (5.4). An expression of typevoid shall be used only as an expression statement
(6.2), as an operand of a comma expression (5.18), as a second or third operand of?: (5.16), as the operand
of typeid , or as the expression in a return statement (6.6.3) for a function with the return typevoid .

10 [Note: even if the implementation defines two or more basic types to have the same value representation,
they are nevertheless different types.]

[basic.compound] 3.9.2 Compound types

1 Compound types can be constructed in the following ways:

— arraysof objects of a given type, 8.3.4;

— functions, which have parameters of given types and returnvoid or references or objects of a given
type, 8.3.5;

— pointersto void or objects or functions (including static members of classes) of a given type, 8.3.1;

— referencesto objects or functions of a given type, 8.3.2;

— classescontaining a sequence of objects of various types (clause 9), a set of types, enumerations and
functions for manipulating these objects (9.3), and a set of restrictions on the access to these entities
(clause 11);

— unions, which are classes capable of containing objects of different types at different times, 9.5;

— enumerations, which comprise a set of named constant values. Each distinct enumeration constitutes a
differentenumerated type, 7.2;

— pointers to non-static45) class members, which identify members of a given type within objects of a
given class, 8.3.3.

2 These methods of constructing types can be applied recursively; restrictions are mentioned in 8.3.1, 8.3.4,
8.3.5, and 8.3.2.

3 A pointer to objects of typeT is referred to as a“pointer toT.” [Example:a pointer to an object of typeint
is referred to as“pointer toint ” and a pointer to an object of classX is called a“pointer toX.”] Except for
pointers to static members, text referring to“pointers” does not apply to pointers to members. Pointers to
incomplete types are allowed although there are restrictions on what can be done with them (3.9). The
value representation of pointer types is implementation-defined. Pointers to cv-qualified and cv-
unqualified versions (3.9.3) of layout-compatible types shall have the same value representation and align-
ment requirements (3.9).

4 Objects of cv-qualified (3.9.3) or cv-unqualified typevoid* (pointer to void), can be used to point to
objects of unknown type. Avoid* shall be able to hold any object pointer. A cv-qualified or cv-
unqualified (3.9.3)void* shall have the same representation and alignment requirements as a cv-qualified
or cv-unqualifiedchar* .

45)Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.

54

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.9.3 CV-qualifiers

[basic.type.qualifier] 3.9.3 CV-qualifiers

1 A type mentioned in 3.9.1 and 3.9.2 is acv-unqualified type. Each type which is a cv-unqualified complete
or incomplete object type or isvoid (3.9) has three corresponding cv-qualified versions of its type: a
const-qualifiedversion, avolatile-qualifiedversion, and aconst-volatile-qualifiedversion. The termobject
type(1.8) includes the cv-qualifiers specified when the object is created. The presence of aconst speci-
fier in a decl-specifier-seqdeclares an object ofconst-qualified object type; such object is called aconst
object. The presence of avolatile specifier in adecl-specifier-seqdeclares an object ofvolatile-
qualified object type; such object is called avolatile object. The presence of bothcv-qualifiersin a decl-
specifier-seqdeclares an object ofconst-volatile-qualified object type; such object is called aconst volatile
object. The cv-qualified or cv-unqualified versions of a type are distinct types; however, they shall have
the same representation and alignment requirements (3.9).46)

2 A compound type (3.9.2) is not cv-qualified by the cv-qualifiers (if any) of the types from which it is com-
pounded. Any cv-qualifiers applied to an array type affect the array element type, not the array type (8.3.4).

3 Each non-static, non-mutable, non-reference data member of a const-qualified class object is const-
qualified, each non-static, non-reference data member of a volatile-qualified class object is volatile-
qualified and similarly for members of a const-volatile class. See 8.3.5 and 9.3.2 regarding cv-qualified
function types.

4 There is a (partial) ordering on cv-qualifiers, so that a type can be said to bemore cv-qualifiedthan another.
Table 6 shows the relations that constitute this ordering.

Table 6—relations onconst and volatile
_ _____________________________________
no cv-qualifier < const
no cv-qualifier < volatile
no cv-qualifier < const volatile

const < const volatile
volatile < const volatile_ _____________________________________

5 In this International Standard, the notationcv (or cv1, cv2, etc.), used in the description of types, represents
an arbitrary set of cv-qualifiers, i.e., one of {const }, { volatile }, { const, volatile }, or the
empty set. Cv-qualifiers applied to an array type attach to the underlying element type, so the notation
“cvT,” whereT is an array type, refers to an array whose elements are so-qualified. Such array types can
be said to be more (or less) cv-qualified than other types based on the cv-qualification of the underlying ele-
ment types.

[basic.lval] 3.10 Lvalues and rvalues

1 Every expression is either anlvalueor anrvalue.

2 An lvalue refers to an object or function. Some rvalue expressions—those of class or cv-qualified class
type—also refer to objects.47)

3 [Note: some built-in operators and function calls yield lvalues. [Example:if E is an expression of pointer
type, then*E is an lvalue expression referring to the object or function to whichE points. As another
example, the function

int& f();

yields an lvalue, so the callf() is an lvalue expression.]]

46)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions, return values
from functions, and members of unions.
47) Expressions such as invocations of constructors and of functions that return a class type refer to objects, and the implementation
can invoke a member function upon such objects, but the expressions are not lvalues.

55

ISO/IEC 14882:1998(E) © ISO/IEC

3.10 Lvalues and rvalues 3 Basic concepts

4 [Note: some built-in operators expect lvalue operands. [Example:built-in assignment operators all expect
their left hand operands to be lvalues.] Other built-in operators yield rvalues, and some expect them.
[Example:the unary and binary+ operators expect rvalue arguments and yield rvalue results.] The discus-
sion of each built-in operator in clause 5 indicates whether it expects lvalue operands and whether it yields
an lvalue.]

5 The result of calling a function that does not return a reference is an rvalue. User defined operators are
functions, and whether such operators expect or yield lvalues is determined by their parameter and return
types.

6 An expression which holds a temporary object resulting from a cast to a nonreference type is an rvalue (this
includes the explicit creation of an object using functional notation (5.2.3)).

7 Whenever an lvalue appears in a context where an rvalue is expected, the lvalue is converted to an rvalue;
see 4.1, 4.2, and 4.3.

8 The discussion of reference initialization in 8.5.3 and of temporaries in 12.2 indicates the behavior of lval-
ues and rvalues in other significant contexts.

9 Class rvalues can have cv-qualified types; non-class rvalues always have cv-unqualified types. Rvalues
shall always have complete types or thevoid type; in addition to these types, lvalues can also have incom-
plete types.

10 An lvalue for an object is necessary in order to modify the object except that an rvalue of class type can
also be used to modify its referent under certain circumstances. [Example:a member function called for an
object (9.3) can modify the object.]

11 Functions cannot be modified, but pointers to functions can be modifiable.

12 A pointer to an incomplete type can be modifiable. At some point in the program when the pointed to type
is complete, the object at which the pointer points can also be modified.

13 The referent of aconst -qualified expression shall not be modified (through that expression), except that if
it is of class type and has amutable component, that component can be modified (7.1.5.1).

14 If an expression can be used to modify the object to which it refers, the expression is calledmodifiable. A
program that attempts to modify an object through a nonmodifiable lvalue or rvalue expression is ill-
formed.

15 If a program attempts to access the stored value of an object through an lvalue of other than one of the fol-
lowing types the behavior is undefined48):

— the dynamic type of the object,

— a cv-qualified version of the dynamic type of the object,

— a type that is the signed or unsigned type corresponding to the dynamic type of the object,

— a type that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic type of
the object,

— an aggregate or union type that includes one of the aforementioned types among its members (includ-
ing, recursively, a member of a subaggregate or contained union),

— a type that is a (possibly cv-qualified) base class type of the dynamic type of the object,

— achar or unsigned char type.

48)The intent of this list is to specify those circumstances in which an object may or may not be aliased.

56

© ISO/IEC ISO/IEC 14882:1998(E)

4 Standard conversions [conv]

1 Standard conversions are implicit conversions defined for built-in types. Clause 4 enumerates the full set of
such conversions. Astandard conversion sequenceis a sequence of standard conversions in the following
order:

— Zero or one conversion from the following set: lvalue-to-rvalue conversion, array-to-pointer conversion,
and function-to-pointer conversion.

— Zero or one conversion from the following set: integral promotions, floating point promotion, integral
conversions, floating point conversions, floating-integral conversions, pointer conversions, pointer to
member conversions, and boolean conversions.

— Zero or one qualification conversion.

[Note: a standard conversion sequence can be empty, i.e., it can consist of no conversions.] A standard
conversion sequence will be applied to an expression if necessary to convert it to a required destination
type.

2 [Note:expressions with a given type will be implicitly converted to other types in several contexts:

— When used as operands of operators. The operator’s requirements for its operands dictate the destina-
tion type (clause 5).

— When used in the condition of anif statement or iteration statement (6.4, 6.5). The destination type is
bool .

— When used in the expression of aswitch statement. The destination type is integral (6.4).

— When used as the source expression for an initialization (which includes use as an argument in a func-
tion call and use as the expression in areturn statement). The type of the entity being initialized is
(generally) the destination type. See 8.5, 8.5.3.

—end note]

3 An expressione can beimplicitly convertedto a typeT if and only if the declaration“T t=e; ” is well-
formed, for some invented temporary variablet (8.5). The effect of the implicit conversion is the same as
performing the declaration and initialization and then using the temporary variable as the result of the con-
version. The result is an lvalue ifT is a reference type (8.3.2), and an rvalue otherwise. The expressione
is used as an lvalue if and only if the initialization uses it as an lvalue.

4 [Note: For user-defined types, user-defined conversions are considered as well; see 12.3. In general, an
implicit conversion sequence (13.3.3.1) consists of a standard conversion sequence followed by a user-
defined conversion followed by another standard conversion sequence.

5 There are some contexts where certain conversions are suppressed. For example, the lvalue-to-rvalue con-
version is not done on the operand of the unary& operator. Specific exceptions are given in the descrip-
tions of those operators and contexts.]

[conv.lval] 4.1 Lvalue-to-rvalue conversion

1 An lvalue (3.10) of a non-function, non-array typeT can be converted to an rvalue. IfT is an incomplete
type, a program that necessitates this conversion is ill-formed. If the object to which the lvalue refers is not
an object of typeT and is not an object of a type derived fromT, or if the object is uninitialized, a program
that necessitates this conversion has undefined behavior. IfT is a non-class type, the type of the rvalue is
the cv-unqualified version ofT. Otherwise, the type of the rvalue isT. 49)

49) In C++ class rvalues can have cv-qualified types (because they are objects). This differs from ISO C, in which non-lvalues never
have cv-qualified types.

57

ISO/IEC 14882:1998(E) © ISO/IEC

4.1 Lvalue-to-rvalue conversion 4 Standard conversions

2 The value contained in the object indicated by the lvalue is the rvalue result. When an lvalue-to-rvalue con-
version occurs within the operand ofsizeof (5.3.3) the value contained in the referenced object is not
accessed, since that operator does not evaluate its operand.

3 [Note:See also 3.10.]

[conv.array] 4.2 Array-to-pointer conversion

1 An lvalue or rvalue of type“array ofN T” or “array of unknown bound ofT” can be converted to an rvalue
of type“pointer toT.” The result is a pointer to the first element of the array.

2 A string literal (2.13.4) that is not a wide string literal can be converted to an rvalue of type“pointer to
char ”; a wide string literal can be converted to an rvalue of type“pointer towchar_t ”. In either case,
the result is a pointer to the first element of the array. This conversion is considered only when there is an
explicit appropriate pointer target type, and not when there is a general need to convert from an lvalue to an
rvalue. [Note: this conversion is deprecated. See Annex D.] For the purpose of ranking in overload reso-
lution (13.3.3.1.1), this conversion is considered an array-to-pointer conversion followed by a qualification
conversion (4.4). [Example: "abc" is converted to“pointer toconst char ” as an array-to-pointer con-
version, and then to“pointer tochar ” as a qualification conversion.]

[conv.func] 4.3 Function-to-pointer conversion

1 An lvalue of function typeT can be converted to an rvalue of type“pointer toT.” The result is a pointer to
the function.50)

2 [Note:See 13.4 for additional rules for the case where the function is overloaded.]

[conv.qual] 4.4 Qualification conversions

1 An rvalue of type“pointer tocv1T” can be converted to an rvalue of type“pointer tocv2T” if “cv2T” is
more cv-qualified than“cv1T.”

2 An rvalue of type“pointer to member ofX of typecv1T” can be converted to an rvalue of type“pointer to
member ofX of typecv2T” if “cv2T” is more cv-qualified than“cv1T.”

3 [Note: Function types (including those used in pointer to member function types) are never cv-qualified
(8.3.5).]

4 A conversion can add cv-qualifiers at levels other than the first in multi-level pointers, subject to the fol-
lowing rules:51)

Two pointer types T1 and T2 aresimilar if there exists a typeT and integern > 0 such that:

T1 is cv1 , 0 pointer tocv1 , 1 pointer to . . . cv1 ,n − 1 pointer tocv1 ,n T

and

T2 is cv2 , 0 pointer tocv2 , 1 pointer to . . . cv2 ,n − 1 pointer tocv2 ,n T

where eachcvi , j is const , volatile , const volatile , or nothing. The n-tuple of cv-qualifiers
after the first in a pointer type, e.g.,cv1 , 1, cv1 , 2, . . . , cv1 ,n in the pointer type T1, is called thecv-
qualification signatureof the pointer type. An expression of typeT1 can be converted to typeT2 if and
only if the following conditions are satisfied:

— the pointer types are similar.

— for everyj > 0, if const is in cv1 ,j thenconst is in cv2 ,j , and similarly forvolatile .

— if the cv1 ,j andcv2 ,j are different, thenconst is in everycv2 ,k for 0< k < j.

50)This conversion never applies to nonstatic member functions because an lvalue that refers to a nonstatic member function cannot be
obtained.
51)These rules ensure that const-safety is preserved by the conversion.

58

© ISO/IEC ISO/IEC 14882:1998(E)

4 Standard conversions 4.4 Qualification conversions

[Note: if a program could assign a pointer of typeT** to a pointer of typeconst T** (that is, if line//1
below was allowed), a program could inadvertently modify aconst object (as it is done on line//2). For
example,

int main() {
const char c = ’c’;
char* pc;
const char** pcc = &pc; // 1: not allowed
*pcc = &c;
*pc = ’C’; // 2: modifies aconst object

}

—end note]

5 A multi-levelpointer to member type, or amulti-level mixedpointer and pointer to member type has the
form:

cv0 P0 to cv1 P1 to . . . cvn − 1 Pn − 1 to cvn T

wherePi is either a pointer or pointer to member and whereT is not a pointer type or pointer to member
type.

6 Two multi-level pointer to member types or two multi-level mixed pointer and pointer to member types T1
and T2 aresimilar if there exists a typeT and integern > 0 such that:

T1 is cv1 , 0P0 to cv1 , 1P1 to . . . cv1 ,n − 1 Pn − 1 to cv1 ,n T

and

T2 is cv2 , 0P0 to cv2 , 1P1 to . . . cv2 ,n − 1 Pn − 1 to cv2 ,n T

7 For similar multi-level pointer to member types and similar multi-level mixed pointer and pointer to mem-
ber types, the rules for adding cv-qualifiers are the same as those used for similar pointer types.

[conv.prom] 4.5 Integral promotions

1 An rvalue of typechar , signed char , unsigned char , short int , or unsigned short
int can be converted to an rvalue of typeint if int can represent all the values of the source type; other-
wise, the source rvalue can be converted to an rvalue of typeunsigned int .

2 An rvalue of typewchar_t (3.9.1) or an enumeration type (7.2) can be converted to an rvalue of the first
of the following types that can represent all the values of its underlying type:int , unsigned int ,
long , orunsigned long .

3 An rvalue for an integral bit-field (9.6) can be converted to an rvalue of typeint if int can represent all
the values of the bit-field; otherwise, it can be converted tounsigned int if unsigned int can rep-
resent all the values of the bit-field. If the bit-field is larger yet, no integral promotion applies to it. If the
bit-field has an enumerated type, it is treated as any other value of that type for promotion purposes.

4 An rvalue of typebool can be converted to an rvalue of typeint , with false becoming zero andtrue
becoming one.

5 These conversions are calledintegral promotions.

[conv.fpprom] 4.6 Floating point promotion

1 An rvalue of typefloat can be converted to an rvalue of typedouble . The value is unchanged.

2 This conversion is calledfloating point promotion.

59

ISO/IEC 14882:1998(E) © ISO/IEC

4.7 Integral conversions 4 Standard conversions

[conv.integral] 4.7 Integral conversions

1 An rvalue of an integer type can be converted to an rvalue of another integer type. An rvalue of an enumer-
ation type can be converted to an rvalue of an integer type.

2 If the destination type is unsigned, the resulting value is the least unsigned integer congruent to the source
integer (modulo 2n wheren is the number of bits used to represent the unsigned type). [Note: In a two’s
complement representation, this conversion is conceptual and there is no change in the bit pattern (if there
is no truncation).]

3 If the destination type is signed, the value is unchanged if it can be represented in the destination type (and
bit-field width); otherwise, the value is implementation-defined.

4 If the destination type isbool , see 4.12. If the source type isbool , the valuefalse is converted to zero
and the valuetrue is converted to one.

5 The conversions allowed as integral promotions are excluded from the set of integral conversions.

[conv.double] 4.8 Floating point conversions

1 An rvalue of floating point type can be converted to an rvalue of another floating point type. If the source
value can be exactly represented in the destination type, the result of the conversion is that exact representa-
tion. If the source value is between two adjacent destination values, the result of the conversion is an
implementation-defined choice of either of those values. Otherwise, the behavior is undefined.

2 The conversions allowed as floating point promotions are excluded from the set of floating point conver-
sions.

[conv.fpint] 4.9 Floating-integral conversions

1 An rvalue of a floating point type can be converted to an rvalue of an integer type. The conversion trun-
cates; that is, the fractional part is discarded. The behavior is undefined if the truncated value cannot be
represented in the destination type. [Note:If the destination type isbool , see 4.12.]

2 An rvalue of an integer type or of an enumeration type can be converted to an rvalue of a floating point
type. The result is exact if possible. Otherwise, it is an implementation-defined choice of either the next
lower or higher representable value. [Note: loss of precision occurs if the integral value cannot be repre-
sented exactly as a value of the floating type.] If the source type isbool , the valuefalse is converted to
zero and the valuetrue is converted to one.

[conv.ptr] 4.10 Pointer conversions

1 A null pointer constantis an integral constant expression (5.19) rvalue of integer type that evaluates to
zero. A null pointer constant can be converted to a pointer type; the result is thenull pointer valueof that
type and is distinguishable from every other value of pointer to object or pointer to function type. Two null
pointer values of the same type shall compare equal. The conversion of a null pointer constant to a pointer
to cv-qualified type is a single conversion, and not the sequence of a pointer conversion followed by a qual-
ification conversion (4.4).

2 An rvalue of type“pointer tocvT,” whereT is an object type, can be converted to an rvalue of type
“pointer tocvvoid .” The result of converting a“pointer tocvT” to a“pointer tocvvoid ” points to the
start of the storage location where the object of typeT resides, as if the object is a most derived object (1.8)
of typeT (that is, not a base class subobject).

3 An rvalue of type“pointer tocvD,” whereD is a class type, can be converted to an rvalue of type“pointer
to cvB,” whereB is a base class (clause 10) ofD. If B is an inaccessible (clause 11) or ambiguous (10.2)
base class ofD, a program that necessitates this conversion is ill-formed. The result of the conversion is a
pointer to the base class sub-object of the derived class object. The null pointer value is converted to the
null pointer value of the destination type.

60

© ISO/IEC ISO/IEC 14882:1998(E)

4 Standard conversions 4.11 Pointer to member conversions

[conv.mem] 4.11 Pointer to member conversions

1 A null pointer constant (4.10) can be converted to a pointer to member type; the result is thenull member
pointer valueof that type and is distinguishable from any pointer to member not created from a null pointer
constant. Two null member pointer values of the same type shall compare equal. The conversion of a null
pointer constant to a pointer to member of cv-qualified type is a single conversion, and not the sequence of
a pointer to member conversion followed by a qualification conversion (4.4).

2 An rvalue of type“pointer to member ofB of typecvT,” whereB is a class type, can be converted to an
rvalue of type“pointer to member ofD of typecvT,” whereD is a derived class (clause 10) ofB. If B is an
inaccessible (clause 11), ambiguous (10.2) or virtual (10.1) base class ofD, a program that necessitates this
conversion is ill-formed. The result of the conversion refers to the same member as the pointer to member
before the conversion took place, but it refers to the base class member as if it were a member of the
derived class. The result refers to the member inD’s instance ofB. Since the result has type“pointer to
member ofDof typecvT,” it can be dereferenced with aDobject. The result is the same as if the pointer to
member ofB were dereferenced with theB sub-object ofD. The null member pointer value is converted to
the null member pointer value of the destination type.52)

[conv.bool] 4.12 Boolean conversions

1 An rvalue of arithmetic, enumeration, pointer, or pointer to member type can be converted to an rvalue of
type bool . A zero value, null pointer value, or null member pointer value is converted tofalse ; any
other value is converted totrue .

52) The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appears inverted
compared to the rule for pointers to objects (from pointer to derived to pointer to base) (4.10, clause 10). This inversion is necessary to
ensure type safety. Note that a pointer to member is not a pointer to object or a pointer to function and the rules for conversions of
such pointers do not apply to pointers to members. In particular, a pointer to member cannot be converted to avoid* .

61

ISO/IEC 14882:1998(E) © ISO/IEC

62

(Blank page)

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5 Expressions

5 Expressions [expr]

1 [Note: Clause 5 defines the syntax, order of evaluation, and meaning of expressions. An expression is a
sequence of operators and operands that specifies a computation. An expression can result in a value and
can cause side effects.

2 Operators can be overloaded, that is, given meaning when applied to expressions of class type (clause 9) or
enumeration type (7.2). Uses of overloaded operators are transformed into function calls as described in
13.5. Overloaded operators obey the rules for syntax specified in clause 5, but the requirements of operand
type, lvalue, and evaluation order are replaced by the rules for function call. Relations between operators,
such as++a meaninga+=1 , are not guaranteed for overloaded operators (13.5), and are not guaranteed for
operands of typebool . —end note]

3 Clause 5 defines the effects of operators when applied to types for which they have not been overloaded.
Operator overloading shall not modify the rules for thebuilt-in operators, that is, for operators applied to
types for which they are defined by this Standard. However, these built-in operators participate in overload
resolution, and as part of that process user-defined conversions will be considered where necessary to con-
vert the operands to types appropriate for the built-in operator. If a built-in operator is selected, such con-
versions will be applied to the operands before the operation is considered further according to the rules in
clause 5; see 13.3.1.2, 13.6.

4 Except where noted, the order of evaluation of operands of individual operators and subexpressions of indi-
vidual expressions, and the order in which side effects take place, is unspecified.53) Between the previous
and next sequence point a scalar object shall have its stored value modified at most once by the evaluation
of an expression. Furthermore, the prior value shall be accessed only to determine the value to be stored.
The requirements of this paragraph shall be met for each allowable ordering of the subexpressions of a full
expression; otherwise the behavior is undefined. [Example:

i = v[i++]; // the behavior is unspecified
i = 7, i++, i++; // i becomes9

i = ++i + 1; // the behavior is unspecified
i = i + 1; // the value ofi is incremented

—end example]

5 If during the evaluation of an expression, the result is not mathematically defined or not in the range of rep-
resentable values for its type, the behavior is undefined, unless such an expression is a constant expression
(5.19), in which case the program is ill-formed. [Note:most existing implementations of C++ ignore inte-
ger overflows. Treatment of division by zero, forming a remainder using a zero divisor, and all floating
point exceptions vary among machines, and is usually adjustable by a library function.]

6 If an expression initially has the type“reference toT” (8.3.2, 8.5.3), the type is adjusted to“T” prior to any
further analysis, the expression designates the object or function denoted by the reference, and the expres-
sion is an lvalue.

7 An expression designating an object is called anobject-expression.

8 Whenever an lvalue expression appears as an operand of an operator that expects an rvalue for that operand,
the lvalue-to-rvalue (4.1), array-to-pointer (4.2), or function-to-pointer (4.3) standard conversions are
applied to convert the expression to an rvalue. [Note: because cv-qualifiers are removed from the type of
an expression of non-class type when the expression is converted to an rvalue, an lvalue expression of type
const int can, for example, be used where an rvalue expression of typeint is required.]

53)The precedence of operators is not directly specified, but it can be derived from the syntax.

63

ISO/IEC 14882:1998(E) © ISO/IEC

5 Expressions 5 Expressions

9 Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield
result types in a similar way. The purpose is to yield a common type, which is also the type of the result.
This pattern is called theusual arithmetic conversions, which are defined as follows:

— If either operand is of typelong double , the other shall be converted tolong double .

— Otherwise, if either operand isdouble , the other shall be converted todouble .

— Otherwise, if either operand isfloat , the other shall be converted tofloat .

— Otherwise, the integral promotions (4.5) shall be performed on both operands.54)

— Then, if either operand isunsigned long the other shall be converted tounsigned long .

— Otherwise, if one operand is along int and the otherunsigned int , then if along int can rep-
resent all the values of anunsigned int , theunsigned int shall be converted to along int ;
otherwise both operands shall be converted tounsigned long int .

— Otherwise, if either operand islong , the other shall be converted tolong .

— Otherwise, if either operand isunsigned , the other shall be converted tounsigned .

[Note:otherwise, the only remaining case is that both operands areint]

10 The values of the floating operands and the results of floating expressions may be represented in greater
precision and range than that required by the type; the types are not changed thereby.55)

[expr.prim] 5.1 Primary expressions

1 Primary expressions are literals, names, and names qualified by the scope resolution operator:: .

primary-expression:
literal
this
(expression)
id-expression

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
˜ class-name
template-id

2 A literal is a primary expression. Its type depends on its form (2.13). A string literal is an lvalue; all other
literals are rvalues.

3 The keywordthis names a pointer to the object for which a nonstatic member function (9.3.2) is invoked.
The keywordthis shall be used only inside a nonstatic class member function body (9.3) or in a construc-
tor mem-initializer(12.6.2). The type of the expression is a pointer to the function’s class (9.3.2), possibly
with cv-qualifiers on the class type. The expression is an rvalue.

4 The operator:: followed by an identifier, a qualified-id, or an operator-function-id is a primary-
expression. Its type is specified by the declaration of the identifier,qualified-id, or operator-function-id.
The result is the entity denoted by the identifier,qualified-id, or operator-function-id. The result is an
lvalue if the entity is a function or variable. The identifier,qualified-id, or operator-function-idshall have

54)As a consequence, operands of typebool , wchar_t , or an enumerated type are converted to some integral type.
55)The cast and assignment operators must still perform their specific conversions as described in 5.4, 5.2.9 and 5.17.

64

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.1 Primary expressions

global namespace scope or be visible in global scope because of ausing-directive(7.3.4). [Note: the use of
:: allows a type, an object, a function, an enumerator, or a namespace declared in the global namespace to
be referred to even if its identifier has been hidden (3.4.3).]

5 A parenthesized expression is a primary expression whose type and value are identical to those of the
enclosed expression. The presence of parentheses does not affect whether the expression is an lvalue. The
parenthesized expression can be used in exactly the same contexts as those where the enclosed expression
can be used, and with the same meaning, except as otherwise indicated.

6 An id-expressionis a restricted form of aprimary-expression. [Note: an id-expressioncan appear after.
and-> operators (5.2.5).]

7 An identifier is an id-expressionprovided it has been suitably declared (clause 7). [Note: for operator-
function-ids, see 13.5; forconversion-function-ids, see 12.3.2; fortemplate-ids, see 14.2. Aclass-name
prefixed by~ denotes a destructor; see 12.4. Within the definition of a nonstatic member function, an
identifier that names a nonstatic member is transformed to a class member access expression (9.3.1).] The
type of the expression is the type of theidentifier. The result is the entity denoted by the identifier. The
result is an lvalue if the entity is a function, variable, or data member.

qualified-id:
:: opt nested-name-specifiertemplate opt unqualified-id
:: identifier
:: operator-function-id
:: template-id

nested-name-specifier:
class-or-namespace-name:: nested-name-specifieropt

class-or-namespace-name:: template nested-name-specifier

class-or-namespace-name:
class-name
namespace-name

A nested-name-specifierthat names a class, optionally followed by the keywordtemplate (14.8.1), and
then followed by the name of a member of either that class (9.2) or one of its base classes (clause 10), is a
qualified-id; 3.4.3.1 describes name lookup for class members that appear inqualified-ids. The result is the
member. The type of the result is the type of the member. The result is an lvalue if the member is a static
member function or a data member. [Note: a class member can be referred to using aqualified-id at any
point in its potential scope (3.3.6).] Whereclass-name:: class-nameis used, and the twoclass-names
refer to the same class, this notation names the constructor (12.1). Whereclass-name:: ~ class-nameis
used, the twoclass-names shall refer to the same class; this notation names the destructor (12.4). [Note:a
typedef-namethat names a class is aclass-name(7.1.3). Except as theidentifier in the declarator for a con-
structor or destructor definition outside of a classmember-specification(12.1, 12.4), atypedef-namethat
names a class may be used in aqualified-id to refer to a constructor or destructor.]

8 A nested-name-specifierthat names a namespace (7.3), followed by the name of a member of that name-
space (or the name of a member of a namespace made visible by ausing-directive) is aqualified-id; 3.4.3.2
describes name lookup for namespace members that appear inqualified-ids. The result is the member. The
type of the result is the type of the member. The result is an lvalue if the member is a function or a vari-
able.

9 In a qualified-id, if the id-expressionis a conversion-function-id, its conversion-type-idshall denote the
same type in both the context in which the entirequalified-idoccurs and in the context of the class denoted
by thenested-name-specifier.

10 An id-expressionthat denotes a nonstatic data member or nonstatic member function of a class can only be
used:

— as part of a class member access (5.2.5) in which the object-expression refers to the member’s class or a
class derived from that class, or

65

ISO/IEC 14882:1998(E) © ISO/IEC

5.1 Primary expressions 5 Expressions

— to form a pointer to member (5.3.1), or

— in the body of a nonstatic member function of that class or of a class derived from that class (9.3.1), or

— in amem-initializerfor a constructor for that class or for a class derived from that class (12.6.2).

11 A template-idshall be used as anunqualified-idonly as specified in 14.7.2, 14.7, and 14.5.4.

[expr.post] 5.2 Postfix expressions

1 Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(expression-listopt)
simple-type-specifier(expression-listopt)
typename :: opt nested-name-specifier identifier(expression-listopt)
typename :: opt nested-name-specifiertemplate opt template-id (expression-listopt)
postfix-expression. template opt id-expression
postfix-expression-> template opt id-expression
postfix-expression. pseudo-destructor-name
postfix-expression-> pseudo-destructor-name
postfix-expression++
postfix-expression--
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list:
assignment-expression
expression-list, assignment-expression

pseudo-destructor-name:
:: opt nested-name-specifieropt type-name:: ~ type-name
:: opt nested-name-specifiertemplate template-id :: ~ type-name
:: opt nested-name-specifieropt ~ type-name

[expr.sub] 5.2.1 Subscripting

1 A postfix expression followed by an expression in square brackets is a postfix expression. One of the
expressions shall have the type“pointer toT” and the other shall have enumeration or integral type. The
result is an lvalue of type“T.” The type“T” shall be a completely-defined object type.56) The expression
E1[E2] is identical (by definition) to*((E1)+(E2)) . [Note:see 5.3 and 5.7 for details of* and+ and
8.3.4 for details of arrays.]

[expr.call] 5.2.2 Function call

1 There are two kinds of function call: ordinary function call and member function57) (9.3) call. A function
call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the arguments to the function. For an ordinary function call, the postfix
expression shall be either an lvalue that refers to a function (in which case the function-to-pointer standard
conversion (4.3) is suppressed on the postfix expression), or it shall have pointer to function type. Calling a
function through an expression whose function type has a language linkage that is different from the

56)This is true even if the subscript operator is used in the following common idiom:&x[0] .
57)A static member function (9.4) is an ordinary function.

66

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.2.2 Function call

language linkage of the function type of the called function’s definition is undefined (7.5). For a member
function call, the postfix expression shall be an implicit (9.3.1, 9.4) or explicit class member access (5.2.5)
whoseid-expressionis a function member name, or a pointer-to-member expression (5.5) selecting a func-
tion member. The first expression in the postfix expression is then called theobject expression, and the call
is as a member of the object pointed to or referred to. In the case of an implicit class member access, the
implied object is the one pointed to bythis . [Note:a member function call of the formf() is interpreted
as (*this).f() (see 9.3.1).] If a function or member function name is used, the name can be over-
loaded (clause 13), in which case the appropriate function shall be selected according to the rules in 13.3.
The function called in a member function call is normally selected according to the static type of the object
expression (clause 10), but if that function isvirtual and is not specified using aqualified-id then the
function actually called will be the final overrider (10.3) of the selected function in the dynamic type of the
object expression [Note: the dynamic type is the type of the object pointed or referred to by the current
value of the object expression. 12.7 describes the behavior of virtual function calls when the object-
expression refers to an object under construction or destruction.]

2 If no declaration of the called function is visible from the scope of the call the program is ill-formed.

3 The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the
virtual keyword), even if the type of the function actually called is different. This type shall be a com-
plete object type, a reference type or the typevoid .

4 When a function is called, each parameter (8.3.5) shall be initialized (8.5, 12.8, 12.1) with its corresponding
argument. When a function is called, the parameters that have object type shall have completely-defined
object type. [Note: this still allows a parameter to be a pointer or reference to an incomplete class type.
However, it prevents a passed-by-value parameter to have an incomplete class type.] During the initial-
ization of a parameter, an implementation may avoid the construction of extra temporaries by combining
the conversions on the associated argument and/or the construction of temporaries with the initialization of
the parameter (see 12.2). The lifetime of a parameter ends when the function in which it is defined returns.
The initialization and destruction of each parameter occurs within the context of the calling function.
[Example:the access of the constructor, conversion functions or destructor is checked at the point of call in
the calling function. If a constructor or destructor for a function parameter throws an exception, the search
for a handler starts in the scope of the calling function; in particular, if the function called has afunction-
try-block (clause 15) with a handler that could handle the exception, this handler is not considered.] The
value of a function call is the value returned by the called function except in a virtual function call if the
return type of the final overrider is different from the return type of the statically chosen function, the value
returned from the final overrider is converted to the return type of the statically chosen function.

5 [Note:a function can change the values of its non-const parameters, but these changes cannot affect the val-
ues of the arguments except where a parameter is of a reference type (8.3.2); if the reference is to a const-
qualified type,const_cast is required to be used to cast away the constness in order to modify the
argument’s value. Where a parameter is ofconst reference type a temporary object is introduced if
needed (7.1.5, 2.13, 2.13.4, 8.3.4, 12.2). In addition, it is possible to modify the values of nonconstant
objects through pointer parameters.]

6 A function can be declared to accept fewer arguments (by declaring default arguments (8.3.6)) or more
arguments (by using the ellipsis,... 8.3.5) than the number of parameters in the function definition (8.4).
[Note:this implies that, except where the ellipsis (...) is used, a parameter is available for each argument.
]

7 When there is no parameter for a given argument, the argument is passed in such a way that the receiving
function can obtain the value of the argument by invokingva_arg (18.7). The lvalue-to-rvalue (4.1),
array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the argument
expression. After these conversions, if the argument does not have arithmetic, enumeration, pointer,
pointer to member, or class type, the program is ill-formed. If the argument has a non-POD class type
(clause 9), the behavior is undefined. If the argument has integral or enumeration type that is subject to the
integral promotions (4.5), or a floating point type that is subject to the floating point promotion (4.6), the
value of the argument is converted to the promoted type before the call. These promotions are referred to

67

ISO/IEC 14882:1998(E) © ISO/IEC

5.2.2 Function call 5 Expressions

as thedefault argument promotions.

8 The order of evaluation of arguments is unspecified. All side effects of argument expression evaluations
take effect before the function is entered. The order of evaluation of the postfix expression and the argu-
ment expression list is unspecified.

9 Recursive calls are permitted, except to the function namedmain (3.6.1).

10 A function call is an lvalue if and only if the result type is a reference.

[expr.type.conv] 5.2.3 Explicit type conversion (functional notation)

1 A simple-type-specifier(7.1.5) followed by a parenthesizedexpression-listconstructs a value of the speci-
fied type given the expression list. If the expression list is a single expression, the type conversion expres-
sion is equivalent (in definedness, and if defined in meaning) to the corresponding cast expression (5.4). If
thesimple-type-specifierspecifies a class type, the class type shall be complete. If the expression list speci-
fies more than a single value, the type shall be a class with a suitably declared constructor (8.5, 12.1), and
the expressionT(x1, x2, ...) is equivalent in effect to the declarationT t(x1, x2, ...); for
some invented temporary variablet , with the result being the value oft as an rvalue.

2 The expressionT() , whereT is a simple-type-specifier (7.1.5.2) for a non-array complete object type or
the (possibly cv-qualified) void type, creates an rvalue of the specified type, whose value is determined by
default-initialization (8.5; no initialization is done for thevoid() case). [Note: if T is a non-class type
that iscv-qualified, thecv-qualifiers are ignored when determining the type of the resulting rvalue
(3.10).]

[expr.pseudo] 5.2.4 Pseudo destructor call

1 The use of apseudo-destructor-nameafter a dot. or arrow-> operator represents the destructor for the
non-class type named bytype-name. The result shall only be used as the operand for the function call oper-
ator () , and the result of such a call has typevoid . The only effect is the evaluation of thepostfix-
expressionbefore the dot or arrow.

2 The left hand side of the dot operator shall be of scalar type. The left hand side of the arrow operator shall
be of pointer to scalar type. This scalar type is the object type. The type designated by thepseudo-
destructor-nameshall be the same as the object type. Furthermore, the twotype-names in a pseudo-
destructor-nameof the form

:: opt nested-name-specifieropt type-name:: ~ type-name

shall designate the same scalar type. Thecv-unqualified versions of the object type and of the type desig-
nated by thepseudo-destructor-nameshall be the same type.

[expr.ref] 5.2.5 Class member access

1 A postfix expression followed by a dot. or an arrow-> , optionally followed by the keywordtemplate
(14.8.1), and then followed by anid-expression, is a postfix expression. The postfix expression before the
dot or arrow is evaluated;58) the result of that evaluation, together with theid-expression, determine the
result of the entire postfix expression.

2 For the first option (dot) the type of the first expression (theobject expression) shall be“class object” (of a
complete type). For the second option (arrow) the type of the first expression (thepointer expression) shall
be“pointer to class object” (of a complete type). In these cases, theid-expressionshall name a member of
the class or of one of its base classes. [Note: because the name of a class is inserted in its class scope
(clause 9), the name of a class is also considered a nested member of that class.] [Note: 3.4.5 describes
how names are looked up after the. and-> operators.]

58) This evaluation happens even if the result is unnecessary to determine the value of the entire postfix expression, for example if the
id-expressiondenotes a static member.

68

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.2.5 Class member access

3 If E1 has the type“pointer to classX,” then the expressionE1->E2 is converted to the equivalent form
(*(E1)).E2 ; the remainder of 5.2.5 will address only the first option (dot)59). Abbreviatingobject-
expression.id-expressionasE1.E2 , then the type and lvalue properties of this expression are determined as
follows. In the remainder of 5.2.5,cq represents eitherconst or the absence ofconst ; vq represents
eithervolatile or the absence ofvolatile . cv represents an arbitrary set of cv-qualifiers, as defined
in 3.9.3.

4 If E2 is declared to have type“reference toT”, thenE1.E2 is an lvalue; the type ofE1.E2 is T. Other-
wise, one of the following rules applies.

— If E2 is a static data member, and the type ofE2 is T, thenE1.E2 is an lvalue; the expression desig-
nates the named member of the class. The type ofE1.E2 is T.

— If E2 is a non-static data member, and the type ofE1 is “cq1 vq1X”, and the type ofE2 is “cq2 vq2T”,
the expression designates the named member of the object designated by the first expression. IfE1 is
an lvalue, thenE1.E2 is an lvalue. Let the notationvq12stand for the“union” of vq1andvq2 ; that is,
if vq1 or vq2 is volatile , thenvq12 is volatile . Similarly, let the notationcq12stand for the
“union” of cq1andcq2; that is, ifcq1or cq2 is const , thencq12is const . If E2 is declared to be a
mutable member, then the type ofE1.E2 is “vq12T”. If E2 is not declared to be amutable mem-
ber, then the type ofE1.E2 is “cq12 vq12T”.

— If E2 is a (possibly overloaded) member function, function overload resolution (13.3) is used to deter-
mine whetherE1.E2 refers to a static or a non-static member function.

— If it refers to a static member function, and the type ofE2 is “function of (parameter type list)
returningT”, thenE1.E2 is an lvalue; the expression designates the static member function. The
type ofE1.E2 is the same type as that ofE2, namely“function of (parameter type list) returning
T”.

— Otherwise, ifE1.E2 refers to a non-static member function, and the type ofE2 is “function of
(parameter type list)cv returningT”, thenE1.E2 is not an lvalue. The expression designates a
non-static member function. The expression can be used only as the left-hand operand of a member
function call (9.3). [Note: any redundant set of parentheses surrounding the expression is ignored
(5.1).] The type ofE1.E2 is “function of (parameter type list)cv returningT”.

— If E2 is a nested type, the expressionE1.E2 is ill-formed.

— If E2 is a member enumerator, and the type ofE2 is T, the expressionE1.E2 is not an lvalue. The
type ofE1.E2 is T.

5 [Note:“class objects” can be structures (9.2) and unions (9.5). Classes are discussed in clause 9.]

[expr.post.incr] 5.2.6 Increment and decrement

1 The value obtained by applying a postfix++ is the value that the operand had before applying the operator.
[Note: the value obtained is a copy of the original value] The operand shall be a modifiable lvalue. The
type of the operand shall be an arithmetic type or a pointer to a complete object type. After the result is
noted, the value of the object is modified by adding1 to it, unless the object is of typebool , in which case
it is set totrue . [Note: this use is deprecated, see annex D.] The result is an rvalue. The type of the
result is the cv-unqualified version of the type of the operand. See also 5.7 and 5.17.

2 The operand of postfix-- is decremented analogously to the postfix++ operator, except that the operand
shall not be of typebool . [Note:For prefix increment and decrement, see 5.3.2.]

59)Note that ifE1 has the type“pointer to classX”, then(*(E1)) is an lvalue.

69

ISO/IEC 14882:1998(E) © ISO/IEC

5.2.7 Dynamic cast 5 Expressions

[expr.dynamic.cast] 5.2.7 Dynamic cast

1 The result of the expressiondynamic_cast<T>(v) is the result of converting the expressionv to type
T. T shall be a pointer or reference to a complete class type, or“pointer tocv void ”. Types shall not be
defined in adynamic_cast . Thedynamic_cast operator shall not cast away constness (5.2.11).

2 If T is a pointer type,v shall be an rvalue of a pointer to complete class type, and the result is an rvalue of
typeT. If T is a reference type,v shall be an lvalue of a complete class type, and the result is an lvalue of
the type referred to byT.

3 If the type ofv is the same as the required result type (which, for convenience, will be calledR in this
description), or it is the same asR except that the class object type inR is more cv-qualified than the class
object type inv , the result isv (converted if necessary).

4 If the value ofv is a null pointer value in the pointer case, the result is the null pointer value of typeR.

5 If T is “pointer tocv1B” andv has type“pointer tocv2D” such thatB is a base class ofD, the result is a
pointer to the uniqueB sub-object of theD object pointed to byv . Similarly, if T is “reference tocv1 B”
andv has type“cv2D” such thatB is a base class ofD, the result is an lvalue for the unique60) B sub-object
of the D object referred to byv . In both the pointer and reference cases,cv1 shall be the same cv-
qualification as, or greater cv-qualification than,cv2, andB shall be an accessible unambiguous base class
of D. [Example:

struct B {};
struct D : B {};
void foo(D* dp)
{

B* bp = dynamic_cast<B*>(dp); // equivalent toB* bp = dp;
}

—end example]

6 Otherwise,v shall be a pointer to or an lvalue of a polymorphic type (10.3).

7 If T is “pointer tocv void ,” then the result is a pointer to the most derived object pointed to byv . Other-
wise, a run-time check is applied to see if the object pointed or referred to byv can be converted to the type
pointed or referred to byT.

8 The run-time check logically executes as follows:

— If, in the most derived object pointed (referred) to byv , v points (refers) to apublic base class sub-
object of aT object, and if only one object of typeT is derived from the sub-object pointed (referred) to
by v , the result is a pointer (an lvalue referring) to thatT object.

— Otherwise, ifv points (refers) to apublic base class sub-object of the most derived object, and the
type of the most derived object has an unambiguouspublic base class of typeT, the result is a pointer
(an lvalue referring) to theT sub-object of the most derived object.

— Otherwise, the run-time checkfails.

9 The value of a failed cast to pointer type is the null pointer value of the required result type. A failed cast to
reference type throwsbad_cast (18.5.2).

60)The most derived object (1.8) pointed or referred to byv can contain otherB objects as base classes, but these are ignored.

70

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.2.7 Dynamic cast

[Example:

class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B {};
void g()
{

D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // fails
ap = dynamic_cast<A*>(bp); // fails
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<A*>(&d); // succeeds
bp = dynamic_cast<B*>(&d); // fails

}

class E : public D, public B {};
class F : public E, public D {};
void h()
{

F f;
A* ap = &f; // succeeds: finds uniqueA
D* dp = dynamic_cast<D*>(ap); // fails: yields0

// f has twoDsub-objects
E* ep = (E*)ap; // ill-formed:

// cast from virtual base
E* ep1 = dynamic_cast<E*>(ap); // succeeds

}

—end example] [Note:12.7 describes the behavior of adynamic_cast applied to an object under con-
struction or destruction.]

[expr.typeid] 5.2.8 Type identification

1 The result of atypeid expression is an lvalue of static typeconst std::type_info (18.5.1) and
dynamic typeconst std::type_info or const namewhere name is an implementation-defined
class derived fromstd::type_info which preserves the behavior described in 18.5.1.61) The lifetime
of the object referred to by the lvalue extends to the end of the program. Whether or not the destructor is
called for thetype_info object at the end of the program is unspecified.

2 Whentypeid is applied to an lvalue expression whose type is a polymorphic class type (10.3), the result
refers to atype_info object representing the type of the most derived object (1.8) (that is, the dynamic
type) to which the lvalue refers. If the lvalue expression is obtained by applying the unary* operator to a
pointer62) and the pointer is a null pointer value (4.10), thetypeid expression throws thebad_typeid
exception (18.5.3).

3 When typeid is applied to an expression other than an lvalue of a polymorphic class type, the result
refers to atype_info object representing the static type of the expression. Lvalue-to-rvalue (4.1), array-
to-pointer (4.2), and function-to-pointer (4.3) conversions are not applied to the expression. If the type of
the expression is a class type, the class shall be completely-defined. The expression is not evaluated.

4 Whentypeid is applied to atype-id, the result refers to atype_info object representing the type of the
type-id. If the type of thetype-id is a reference type, the result of thetypeid expression refers to a
type_info object representing the referenced type. If the type of thetype-idis a class type or a reference
to a class type, the class shall be completely-defined. Types shall not be defined in thetype-id.

61)The recommended name for such a class isextended_type_info .
62) If p is an expression of pointer type, then*p , (*p) , *(p) , ((*p)) , *((p)) , and so on all meet this requirement.

71

ISO/IEC 14882:1998(E) © ISO/IEC

5.2.8 Type identification 5 Expressions

5 The top-level cv-qualifiers of the lvalue expression or thetype-idthat is the operand oftypeid are always
ignored. [Example:

class D { ... };
D d1;
const D d2;

typeid(d1) == typeid(d2); // yieldstrue
typeid(D) == typeid(const D); // yieldstrue
typeid(D) == typeid(d2); // yieldstrue
typeid(D) == typeid(const D&); // yieldstrue

—end example]

6 If the header<typeinfo> (18.5.1) is not included prior to a use oftypeid , the program is ill-formed.

7 [Note:12.7 describes the behavior oftypeid applied to an object under construction or destruction.]

[expr.static.cast] 5.2.9 Static cast

1 The result of the expressionstatic_cast<T>(v) is the result of converting the expressionv to typeT.
If T is a reference type, the result is an lvalue; otherwise, the result is an rvalue. Types shall not be defined
in astatic_cast . Thestatic_cast operator shall not cast away constness (5.2.11).

2 An expressione can be explicitly converted to a typeT using a static_cast of the form
static_cast<T>(e) if the declaration“T t(e); ” is well-formed, for some invented temporary vari-
ablet (8.5). The effect of such an explicit conversion is the same as performing the declaration and initial-
ization and then using the temporary variable as the result of the conversion. The result is an lvalue ifT is a
reference type (8.3.2), and an rvalue otherwise. The expressione is used as an lvalue if and only if the
initialization uses it as an lvalue.

3 Otherwise, thestatic_cast shall perform one of the conversions listed below. No other conversion
shall be performed explicitly using astatic_cast .

4 Any expression can be explicitly converted to type“cv void .” The expression value is discarded. [Note:
however, if the value is in a temporary variable (12.2), the destructor for that variable is not executed until
the usual time, and the value of the variable is preserved for the purpose of executing the destructor.] The
lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not
applied to the expression.

5 An lvalue of type“cv1 B”, whereB is a class type, can be cast to type“reference tocv2 D”, whereD is a
class derived (clause 10) fromB, if a valid standard conversion from“pointer toD” to “pointer toB” exists
(4.10),cv2 is the same cv-qualification as, or greater cv-qualification than,cv1, andB is not a virtual base
class ofD. The result is an lvalue of type“cv2D.” If the lvalue of type“cv1B” is actually a sub-object of
an object of typeD, the lvalue refers to the enclosing object of typeD. Otherwise, the result of the cast is
undefined. [Example:

struct B {};
struct D : public B {};
D d;
B &br = d;

static_cast<D&>(br); // produces lvalue to the originald object

—end example]

6 The inverse of any standard conversion sequence (clause 4), other than the lvalue-to-rvalue (4.1), array-to-
pointer (4.2), function-to-pointer (4.3), and boolean (4.12) conversions, can be performed explicitly using
static_cast subject to the restriction that the explicit conversion does not cast away constness (5.2.11),
and the following additional rules for specific cases:

72

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.2.9 Static cast

7 A value of integral type can be explicitly converted to an enumeration type. The value is unchanged if the
integral value is within the range of the enumeration values (7.2). Otherwise, the resulting enumeration
value is unspecified.

8 An rvalue of type“pointer tocv1B”, whereB is a class type, can be converted to an rvalue of type“pointer
to cv2D”, whereD is a class derived (clause 10) fromB, if a valid standard conversion from“pointer toD”
to “pointer toB” exists (4.10),cv2 is the same cv-qualification as, or greater cv-qualification than,cv1, and
B is not a virtual base class ofD. The null pointer value (4.10) is converted to the null pointer value of the
destination type. If the rvalue of type“pointer tocv1 B” points to aB that is actually a sub-object of an
object of typeD, the resulting pointer points to the enclosing object of typeD. Otherwise, the result of the
cast is undefined.

9 An rvalue of type“pointer to member ofD of typecv1T” can be converted to an rvalue of type“pointer to
member ofB of typecv2T”, whereB is a base class (clause 10) ofD, if a valid standard conversion from
“pointer to member ofB of typeT” to “pointer to member ofDof typeT” exists (4.11), andcv2 is the same
cv-qualification as, or greater cv-qualification than,cv1.63) The null member pointer value (4.11) is con-
verted to the null member pointer value of the destination type. If classB contains the original member, or
is a base or derived class of the class containing the original member, the resulting pointer to member
points to the original member. Otherwise, the result of the cast is undefined. [Note:although classB need
not contain the original member, the dynamic type of the object on which the pointer to member is derefer-
enced must contain the original member; see 5.5.]

10 An rvalue of type“pointer tocv void ” can be explicitly converted to a pointer to object type. A value of
type pointer to object converted to“pointer tocv void ” and back to the original pointer type will have its
original value.

[expr.reinterpret.cast] 5.2.10 Reinterpret cast

1 The result of the expressionreinterpret_cast<T>(v) is the result of converting the expressionv to
type T. If T is a reference type, the result is an lvalue; otherwise, the result is an rvalue and the lvalue-to-
rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the
the expressionv . Types shall not be defined in areinterpret_cast . Conversions that can be per-
formed explicitly usingreinterpret_cast are listed below. No other conversion can be performed
explicitly usingreinterpret_cast .

2 The reinterpret_cast operator shall not cast away constness. [Note:see 5.2.11 for the definition of
‘‘casting away constness’’. Subject to the restrictions in this section, an expression may be cast to its own
type using areinterpret_cast operator.]

3 The mapping performed byreinterpret_cast is implementation-defined. [Note: it might, or might
not, produce a representation different from the original value.]

4 A pointer can be explicitly converted to any integral type large enough to hold it. The mapping function is
implementation-defined [Note: it is intended to be unsurprising to those who know the addressing structure
of the underlying machine.]

5 A value of integral type or enumeration type can be explicitly converted to a pointer.64) A pointer converted
to an integer of sufficient size (if any such exists on the implementation) and back to the same pointer type
will have its original value; mappings between pointers and integers are otherwise implementation-defined.

6 A pointer to a function can be explicitly converted to a pointer to a function of a different type. The effect
of calling a function through a pointer to a function type (8.3.5) that is not the same as the type used in the
definition of the function is undefined. Except that converting an rvalue of type“pointer toT1” to the type
“pointer toT2” (whereT1 and T2 are function types) and back to its original type yields the original
pointer value, the result of such a pointer conversion is unspecified. [Note:see also 4.10 for more details of

63)Function types (including those used in pointer to member function types) are never cv-qualified; see 8.3.5 .
64) Converting an integral constant expression (5.19) with value zero always yields a null pointer (4.10), but converting other expres-
sions that happen to have value zero need not yield a null pointer.

73

ISO/IEC 14882:1998(E) © ISO/IEC

5.2.10 Reinterpret cast 5 Expressions

pointer conversions.]

7 A pointer to an object can be explicitly converted to a pointer to an object of different type.65) Except that
converting an rvalue of type“pointer toT1” to the type“pointer toT2” (whereT1 andT2 are object types
and where the alignment requirements ofT2 are no stricter than those ofT1) and back to its original type
yields the original pointer value, the result of such a pointer conversion is unspecified.

8 The null pointer value (4.10) is converted to the null pointer value of the destination type.

9 An rvalue of type“pointer to member ofX of type T1” can be explicitly converted to an rvalue of type
“pointer to member ofY of typeT2” if T1 andT2 are both function types or both object types.66) The null
member pointer value (4.11) is converted to the null member pointer value of the destination type. The
result of this conversion is unspecified, except in the following cases:

— converting an rvalue of type“pointer to member function” to a different pointer to member function
type and back to its original type yields the original pointer to member value.

— converting an rvalue of type“pointer to data member ofX of typeT1” to the type“pointer to data mem-
ber ofY of typeT2” (where the alignment requirements ofT2 are no stricter than those ofT1) and back
to its original type yields the original pointer to member value.

10 An lvalue expression of typeT1 can be cast to the type“reference toT2” if an expression of type“pointer
to T1” can be explicitly converted to the type“pointer toT2” using areinterpret_cast . That is, a
reference cast reinterpret_cast<T&>(x) has the same effect as the conversion
reinterpret_cast<T>(&x) with the built-in& and* operators. The result is an lvalue that refers
to the same object as the source lvalue, but with a different type. No temporary is created, no copy is made,
and constructors (12.1) or conversion functions (12.3) are not called.67)

[expr.const.cast] 5.2.11 Const cast

1 The result of the expressionconst_cast<T>(v) is of typeT. If T is a reference type, the result is an
lvalue; otherwise, the result is an rvalue and, the lvalue-to-rvalue (4.1), array-to-pointer (4.2), and
function-to-pointer (4.3) standard conversions are performed on the expressionv . Types shall not be
defined in aconst_cast . Conversions that can be performed explicitly usingconst_cast are listed
below. No other conversion shall be performed explicitly usingconst_cast .

2 [Note: Subject to the restrictions in this section, an expression may be cast to its own type using a
const_cast operator.]

3 For two pointer typesT1 andT2 where

T1 is cv1 , 0 pointer tocv1 , 1 pointer to . . . cv1 ,n − 1 pointer tocv1 ,n T

and

T2 is cv2 , 0 pointer tocv2 , 1 pointer to . . . cv2 ,n − 1 pointer tocv2 ,n T

whereT is any object type or thevoid type and wherecv1 ,k andcv2 ,k may be different cv-qualifications,
an rvalue of typeT1 may be explicitly converted to the typeT2 using aconst_cast . The result of a
pointerconst_cast refers to the original object.

4 An lvalue of type T1 can be explicitly converted to an lvalue of typeT2 using the cast
const_cast<T2&> (whereT1 andT2 are object types) if a pointer toT1 can be explicitly converted to
the type pointer toT2 using aconst_cast . The result of a referenceconst_cast refers to the origi-
nal object.

65) The types may have different cv-qualifiers, subject to the overall restriction that areinterpret_cast cannot cast away const-
ness.
66) T1 andT2 may have different cv-qualifiers, subject to the overall restriction that areinterpret_cast cannot cast away const-
ness.
67)This is sometimes referred to as atype pun.

74

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.2.11 Const cast

5 For aconst_cast involving pointers to data members, multi-level pointers to data members and multi-
level mixed pointers and pointers to data members (4.4), the rules forconst_cast are the same as those
used for pointers; the“member” aspect of a pointer to member is ignored when determining where the cv-
qualifiers are added or removed by theconst_cast . The result of a pointer to data member
const_cast refers to the same member as the original (uncast) pointer to data member.

6 A null pointer value (4.10) is converted to the null pointer value of the destination type. The null member
pointer value (4.11) is converted to the null member pointer value of the destination type.

7 [Note:Depending on the type of the object, a write operation through the pointer, lvalue or pointer to data
member resulting from aconst_cast that casts away a const-qualifier68) may produce undefined behav-
ior (7.1.5.1).]

8 The following rules define the process known ascasting away constness. In these rulesTn andXn repre-
sent types. For two pointer types:

X 1 is T 1cv1 , 1 * . . . cv1 ,N * where T 1 is not a pointer type

X 2 is T 2cv2 , 1 * . . . cv2 ,M * where T 2 is not a pointer type

K is min(N,M)

casting fromX1 to X2 casts away constness if, for a non-pointer typeT there does not exist an implicit con-
version (clause 4) from:

Tcv1 , (N − K + 1) * cv1 , (N − K + 2) * . . . cv1 ,N *

to

Tcv2 , (M − K + 1) * cv2 , (M − K + 2) * . . . cv2 ,M *

9 Casting from an lvalue of typeT1 to an lvalue of typeT2 using a reference cast casts away constness if a
cast from an rvalue of type“pointer toT1” to the type“pointer toT2” casts away constness.

10 Casting from an rvalue of type“pointer to data member ofX of typeT1” to the type“pointer to data mem-
ber of Y of type T2” casts away constness if a cast from an rvalue of type“pointer toT1” to the type
“pointer toT2” casts away constness.

11 For multi-level pointer to members and multi-level mixed pointers and pointer to members (4.4), the
“member” aspect of a pointer to member level is ignored when determining if aconst cv-qualifier has
been cast away.

12 [Note: some conversions which involve only changes in cv-qualification cannot be done using
const_cast. For instance, conversions between pointers to functions are not covered because such
conversions lead to values whose use causes undefined behavior. For the same reasons, conversions
between pointers to member functions, and in particular, the conversion from a pointer to a const member
function to a pointer to a non-const member function, are not covered.]

68)const_cast is not limited to conversions that cast away a const-qualifier.

75

ISO/IEC 14882:1998(E) © ISO/IEC

5.2.11 Const cast 5 Expressions

[expr.unary] 5.3 Unary expressions

1 Expressions with unary operators group right-to-left.

unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & + - ! ~

[expr.unary.op] 5.3.1 Unary operators

1 The unary* operator performsindirection: the expression to which it is applied shall be a pointer to an
object type, or a pointer to a function type and the result is an lvalue referring to the object or function to
which the expression points. If the type of the expression is“pointer toT,” the type of the result is“T.”
[Note:a pointer to an incomplete type (other thancv void) can be dereferenced. The lvalue thus obtained
can be used in limited ways (to initialize a reference, for example); this lvalue must not be converted to an
rvalue, see 4.1.]

2 The result of the unary& operator is a pointer to its operand. The operand shall be an lvalue or aqualified-
id. In the first case, if the type of the expression is“T,” the type of the result is“pointer toT.” In particular,
the address of an object of type“cv T” is “pointer tocv T,” with the same cv-qualifiers. For aqualified-id,
if the member is a static member of type“T”, the type of the result is plain“pointer toT.” If the member is
a nonstatic member of classC of typeT, the type of the result is“pointer to member ofclass C of type
T.” [Example:

struct A { int i; };
struct B : A { };
... &B::i ... // has typeint A::*

—end example] [Note:a pointer to member formed from amutable nonstatic data member (7.1.1) does
not reflect themutable specifier associated with the nonstatic data member.]

3 A pointer to member is only formed when an explicit& is used and its operand is aqualified-id not
enclosed in parentheses. [Note: that is, the expression&(qualified-id) , where thequalified-id is
enclosed in parentheses, does not form an expression of type“pointer to member.” Neither does
qualified-id , because there is no implicit conversion from aqualified-id for a nonstatic member func-
tion to the type“pointer to member function” as there is from an lvalue of function type to the type“pointer
to function” (4.3). Nor is &unqualified-id a pointer to member, even within the scope of the
unqualified-id’s class.]

4 The address of an object of incomplete type can be taken, but if the complete type of that object is a class
type that declaresoperator&() as a member function, then the behavior is undefined (and no diagnostic
is required). The operand of& shall not be a bit-field.

5 The address of an overloaded function (clause 13) can be taken only in a context that uniquely determines
which version of the overloaded function is referred to (see 13.4). [Note:since the context might determine
whether the operand is a static or nonstatic member function, the context can also affect whether the expres-
sion has type“pointer to function” or “pointer to member function.”]

6 The operand of the unary+ operator shall have arithmetic, enumeration, or pointer type and the result is the
value of the argument. Integral promotion is performed on integral or enumeration operands. The type of
the result is the type of the promoted operand.

76

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.3.1 Unary operators

7 The operand of the unary- operator shall have arithmetic or enumeration type and the result is the negation
of its operand. Integral promotion is performed on integral or enumeration operands. The negative of an
unsigned quantity is computed by subtracting its value from 2n, wheren is the number of bits in the pro-
moted operand. The type of the result is the type of the promoted operand.

8 The operand of the logical negation operator! is implicitly converted tobool (clause 4); its value is
true if the converted operand isfalse andfalse otherwise. The type of the result isbool .

9 The operand of~ shall have integral or enumeration type; the result is the one’s complement of its operand.
Integral promotions are performed. The type of the result is the type of the promoted operand. There is an
ambiguity in theunary-expression~X() , whereX is aclass-name. The ambiguity is resolved in favor of
treating~ as a unary complement rather than treating~X as referring to a destructor.

[expr.pre.incr] 5.3.2 Increment and decrement

1 The operand of prefix++ is modified by adding1, or set totrue if it is bool (this use is deprecated).
The operand shall be a modifiable lvalue. The type of the operand shall be an arithmetic type or a pointer
to a completely-defined object type. The value is the new value of the operand; it is an lvalue. Ifx is not
of typebool , the expression++x is equivalent tox+=1 . [Note:see the discussions of addition (5.7) and
assignment operators (5.17) for information on conversions.]

2 The operand of prefix-- is modified by subtracting1. The operand shall not be of typebool . The
requirements on the operand of prefix-- and the properties of its result are otherwise the same as those of
prefix ++. [Note:For postfix increment and decrement, see 5.2.6.]

[expr.sizeof] 5.3.3 Sizeof

1 Thesizeof operator yields the number of bytes in the object representation of its operand. The operand
is either an expression, which is not evaluated, or a parenthesizedtype-id. Thesizeof operator shall not
be applied to an expression that has function or incomplete type, or to an enumeration type before all its
enumerators have been declared, or to the parenthesized name of such types, or to an lvalue that designates
a bit-field. sizeof(char) , sizeof(signed char) andsizeof(unsigned char) are1; the
result ofsizeof applied to any other fundamental type (3.9.1) is implementation-defined. [Note: in par-
ticular, sizeof(bool) and sizeof(wchar_t) are implementation-defined.69)] [Note: See 1.7 for
the definition ofbyteand 3.9 for the definition ofobject representation.]

2 When applied to a reference or a reference type, the result is the size of the referenced type. When applied
to a class, the result is the number of bytes in an object of that class including any padding required for
placing objects of that type in an array. The size of a most derived class shall be greater than zero (1.8).
The result of applyingsizeof to a base class subobject is the size of the base class type.70) When applied
to an array, the result is the total number of bytes in the array. This implies that the size of an array ofn
elements isn times the size of an element.

3 Thesizeof operator can be applied to a pointer to a function, but shall not be applied directly to a func-
tion.

4 The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not
applied to the operand ofsizeof .

5 Types shall not be defined in asizeof expression.

6 The result is a constant of typesize_t . [Note: size_t is defined in the standard header
<cstddef> (18.1).]

69)sizeof(bool) is not required to be1.
70) The actual size of a base class subobject may be less than the result of applyingsizeof to the subobject, due to virtual base
classes and less strict padding requirements on base class subobjects.

77

ISO/IEC 14882:1998(E) © ISO/IEC

5.3.4 New 5 Expressions

[expr.new] 5.3.4 New

1 The new-expressionattempts to create an object of thetype-id(8.1) ornew-type-idto which it is applied.
The type of that object is theallocated type. This type shall be a complete object type, but not an abstract
class type or array thereof (1.8, 3.9, 10.4). [Note: because references are not objects, references cannot be
created bynew-expressions.] [Note: the type-idmay be a cv-qualified type, in which case the object cre-
ated by thenew-expressionhas a cv-qualified type.]

new-expression:
:: opt new new-placementopt new-type-id new-initializeropt

:: opt new new-placementopt (type-id) new-initializeropt

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaratoropt

new-declarator:
ptr-operator new-declaratoropt

direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator[constant-expression]

new-initializer:
(expression-listopt)

Entities created by anew-expressionhave dynamic storage duration (3.7.3). [Note: the lifetime of such an
entity is not necessarily restricted to the scope in which it is created.] If the entity is a non-array object, the
new-expressionreturns a pointer to the object created. If it is an array, thenew-expressionreturns a pointer
to the initial element of the array.

2 Thenew-type-idin a new-expressionis the longest possible sequence ofnew-declarators. [Note: this pre-
vents ambiguities between declarator operators&, * , [] , and their expression counterparts.] [Example:

new int * i; // syntax error: parsed as(new int*) i
// not as(new int)*i

The* is the pointer declarator and not the multiplication operator.]

3 [Note:parentheses in anew-type-idof anew-expressioncan have surprising effects. [Example:

new int(*[10])(); // error

is ill-formed because the binding is

(new int) (*[10])(); // error

Instead, the explicitly parenthesized version of thenew operator can be used to create objects of compound
types (3.9.2):

new (int (*[10])());

allocates an array of10 pointers to functions (taking no argument and returningint).]]

4 Thetype-specifier-seqshall not contain class declarations, or enumeration declarations.

5 When the allocated object is an array (that is, thedirect-new-declaratorsyntax is used or thenew-type-idor
type-id denotes an array type), thenew-expressionyields a pointer to the initial element (if any) of the
array. [Note:bothnew int andnew int[10] have typeint* and the type ofnew int[i][10] is
int (*)[10] .]

78

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.3.4 New

6 Every constant-expressionin a direct-new-declaratorshall be an integral constant expression (5.19) and
evaluate to a strictly positive value. Theexpressionin a direct-new-declaratorshall have integral type
(3.9.1) with a non-negative value. [Example:if n is a variable of typeint , thennew float[n][5] is
well-formed (becausen is the expressionof a direct-new-declarator), but new float[5][n] is ill-
formed (becausen is not aconstant-expression). If n is negative, the effect ofnew float[n][5] is
undefined.]

7 When the value of theexpressionin adirect-new-declaratoris zero, the allocation function is called to allo-
cate an array with no elements. The pointer returned by thenew-expressionis non-null. [Note: If the
library allocation function is called, the pointer returned is distinct from the pointer to any other object.]

8 A new-expressionobtains storage for the object by calling anallocation function(3.7.3.1). If thenew-
expressionterminates by throwing an exception, it may release storage by calling a deallocation function
(3.7.3.2). If the allocated type is a non-array type, the allocation function’s name isoperator new and
the deallocation function’s name isoperator delete . If the allocated type is an array type, the alloca-
tion function’s name is operator new[] and the deallocation function’s name is
operator delete[] . [Note:an implementation shall provide default definitions for the global alloca-
tion functions (3.7.3, 18.4.1.1, 18.4.1.2). A C++ program can provide alternative definitions of these func-
tions (17.4.3.4) and/or class-specific versions (12.5).]

9 If the new-expressionbegins with a unary:: operator, the allocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class typeT or array thereof, the allocation function’s
name is looked up in the scope ofT. If this lookup fails to find the name, or if the allocated type is not a
class type, the allocation function’s name is looked up in the global scope.

10 A new-expressionpasses the amount of space requested to the allocation function as the first argument of
type std::size_t . That argument shall be no less than the size of the object being created; it may be
greater than the size of the object being created only if the object is an array. For arrays ofchar and
unsigned char , the difference between the result of thenew-expressionand the address returned by the
allocation function shall be an integral multiple of the most stringent alignment requirement (3.9) of any
object type whose size is no greater than the size of the array being created. [Note: Because allocation
functions are assumed to return pointers to storage that is appropriately aligned for objects of any type, this
constraint on array allocation overhead permits the common idiom of allocating character arrays into which
objects of other types will later be placed.]

11 Thenew-placementsyntax is used to supply additional arguments to an allocation function. If used, over-
load resolution is performed on a function call created by assembling an argument list consisting of the
amount of space requested (the first argument) and the expressions in thenew-placementpart of thenew-
expression(the second and succeeding arguments). The first of these arguments has typesize_t and the
remaining arguments have the corresponding types of the expressions in thenew-placement.

12 [Example:

— new T results in a call ofoperator new(sizeof(T)) ,

— new(2,f) T results in a call ofoperator new(sizeof(T),2,f) ,

— new T[5] results in a call ofoperator new[](sizeof(T)*5+x) , and

— new(2,f) T[5] results in a call ofoperator new[](sizeof(T)*5+y,2,f) .

Here,x andy are non-negative unspecified values representing array allocation overhead; the result of the
new-expressionwill be offset by this amount from the value returned byoperator new[] . This over-
head may be applied in all arraynew-expressions, including those referencing the library function
operator new[](std::size_t, void*) and other placement allocation functions. The amount
of overhead may vary from one invocation ofnew to another.]

13 [Note:unless an allocation function is declared with an emptyexception-specification(15.4),throw() , it
indicates failure to allocate storage by throwing abad_alloc exception (clause 15, 18.4.2.1); it returns a
non-null pointer otherwise. If the allocation function is declared with an emptyexception-specification,

79

ISO/IEC 14882:1998(E) © ISO/IEC

5.3.4 New 5 Expressions

throw() , it returns null to indicate failure to allocate storage and a non-null pointer otherwise.] If the
allocation function returns null, initialization shall not be done, the deallocation function shall not be called,
and the value of thenew-expressionshall be null.

14 [Note:when the allocation function returns a value other than null, it must be a pointer to a block of storage
in which space for the object has been reserved. The block of storage is assumed to be appropriately
aligned and of the requested size. The address of the created object will not necessarily be the same as that
of the block if the object is an array.]

15 A new-expressionthat creates an object of typeT initializes that object as follows:

— If the new-initializeris omitted:

— If T is a (possibly cv-qualified) non-POD class type (or array thereof), the object is default-
initialized (8.5) If T is a const-qualified type, the underlying class type shall have a user-declared
default constructor.

— Otherwise, the object created has indeterminate value. IfT is a const-qualified type, or a (possibly
cv-qualified) POD class type (or array thereof) containing (directly or indirectly) a member of
const-qualified type, the program is ill-formed;

— If the new-initializeris of the form() , default-initialization shall be performed (8.5);

— If the new-initializer is of the form (expression-list) andT is a class type, the appropriate constructor is
called, usingexpression-listas the arguments (8.5);

— If the new-initializer is of the form (expression-list) andT is an arithmetic, enumeration, pointer, or
pointer-to-member type andexpression-listcomprises exactly one expression, then the object is initial-
ized to the (possibly converted) value of the expression (8.5);

— Otherwise thenew-expressionis ill-formed.

16 If the new-expressioncreates an object or an array of objects of class type, access and ambiguity control are
done for the allocation function, the deallocation function (12.5), and the constructor (12.1). If the new
expression creates an array of objects of class type, access and ambiguity control are done for the destructor
(12.4).

17 If any part of the object initialization described above71) terminates by throwing an exception and a suitable
deallocation function can be found, the deallocation function is called to free the memory in which the
object was being constructed, after which the exception continues to propagate in the context of thenew-
expression. If no unambiguous matching deallocation function can be found, propagating the exception
does not cause the object’s memory to be freed. [Note:This is appropriate when the called allocation func-
tion does not allocate memory; otherwise, it is likely to result in a memory leak.]

18 If the new-expressionbegins with a unary:: operator, the deallocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class typeT or an array thereof, the deallocation
function’s name is looked up in the scope ofT. If this lookup fails to find the name, or if the allocated type
is not a class type or array thereof, the deallocation function’s name is looked up in the global scope.

19 A declaration of a placement deallocation function matches the declaration of a placement allocation func-
tion if it has the same number of parameters and, after parameter transformations (8.3.5), all parameter
types except the first are identical. Any non-placement deallocation function matches a non-placement
allocation function. If the lookup finds a single matching deallocation function, that function will be called;
otherwise, no deallocation function will be called.

20 If a new-expressioncalls a deallocation function, it passes the value returned from the allocation function
call as the first argument of typevoid* . If a placement deallocation function is called, it is passed the
same additional arguments as were passed to the placement allocation function, that is, the same arguments
as those specified with thenew-placementsyntax. If the implementation is allowed to make a copy of any

71)This may include evaluating anew-initializerand/or calling a constructor.

80

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.3.4 New

argument as part of the call to the allocation function, it is allowed to make a copy (of the same original
value) as part of the call to the deallocation function or to reuse the copy made as part of the call to the allo-
cation function. If the copy is elided in one place, it need not be elided in the other.

21 Whether the allocation function is called before evaluating the constructor arguments or after evaluating the
constructor arguments but before entering the constructor is unspecified. It is also unspecified whether the
arguments to a constructor are evaluated if the allocation function returns the null pointer or exits using an
exception.

[expr.delete] 5.3.5 Delete

1 Thedelete-expressionoperator destroys a most derived object (1.8) or array created by anew-expression.

delete-expression:
:: opt delete cast-expression
:: opt delete [] cast-expression

The first alternative is for non-array objects, and the second is for arrays. The operand shall have a pointer
type, or a class type having a single conversion function (12.3.2) to a pointer type. The result has type
void .

2 If the operand has a class type, the operand is converted to a pointer type by calling the above-mentioned
conversion function, and the converted operand is used in place of the original operand for the remainder of
this section. In either alternative, if the value of the operand ofdelete is the null pointer the operation
has no effect. In the first alternative (delete object), the value of the operand ofdelete shall be a pointer
to a non-array object or a pointer to a sub-object (1.8) representing a base class of such an object (clause
10). If not, the behavior is undefined. In the second alternative (delete array), the value of the operand of
delete shall be the pointer value which resulted from a previous arraynew-expression.72) If not, the
behavior is undefined. [Note:this means that the syntax of thedelete-expressionmust match the type of the
object allocated by new, not the syntax of thenew-expression.] [Note: a pointer to aconst type can be
the operand of adelete-expression; it is not necessary to cast away the constness (5.2.11) of the pointer
expression before it is used as the operand of thedelete-expression.]

3 In the first alternative (delete object), if the static type of the operand is different from its dynamic type, the
static type shall be a base class of the operand’s dynamic type and the static type shall have a virtual
destructor or the behavior is undefined. In the second alternative (delete array) if the dynamic type of the
object to be deleted differs from its static type, the behavior is undefined.73)

4 The cast-expressionin a delete-expressionshall be evaluated exactly once. If thedelete-expressioncalls
the implementation deallocation function (3.7.3.2), and if the operand of the delete expression is not the
null pointer constant, the deallocation function will deallocate the storage referenced by the pointer thus
rendering the pointer invalid. [Note: the value of a pointer that refers to deallocated storage is indetermi-
nate.]

5 If the object being deleted has incomplete class type at the point of deletion and the complete class has a
non-trivial destructor or a deallocation function, the behavior is undefined.

6 The delete-expressionwill invoke the destructor (if any) for the object or the elements of the array being
deleted. In the case of an array, the elements will be destroyed in order of decreasing address (that is, in
reverse order of the completion of their constructor; see 12.6.2).

7 Thedelete-expressionwill call a deallocation function(3.7.3.2).

8 [Note: An implementation provides default definitions of the global deallocation functions
operator delete() for non-arrays (18.4.1.1) andoperator delete[]() for arrays (18.4.1.2).
A C++ program can provide alternative definitions of these functions (17.4.3.4), and/or class-specific

72) For non-zero-length arrays, this is the same as a pointer to the first element of the array created by thatnew-expression. Zero-
length arrays do not have a first element.
73)This implies that an object cannot be deleted using a pointer of typevoid* because there are no objects of typevoid .

81

ISO/IEC 14882:1998(E) © ISO/IEC

5.3.5 Delete 5 Expressions

versions (12.5).] When the keyworddelete in adelete-expressionis preceded by the unary:: operator,
the global deallocation function is used to deallocate the storage.

9 Access and ambiguity control are done for both the deallocation function and the destructor (12.4, 12.5).

[expr.cast] 5.4 Explicit type conversion (cast notation)

1 The result of the expression(T) cast-expressionis of typeT. The result is an lvalue ifT is a reference
type, otherwise the result is an rvalue. [Note: if T is a non-class type that iscv-qualified, thecv-qualifiers
are ignored when determining the type of the resulting rvalue; see 3.10.]

2 An explicit type conversion can be expressed using functional notation (5.2.3), a type conversion operator
(dynamic_cast, static_cast, reinterpret_cast, const_cast), or thecastnotation.

cast-expression:
unary-expression
(type-id) cast-expression

3 Types shall not be defined in casts.

4 Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.

5 The conversions performed by

— aconst_cast (5.2.11),

— astatic_cast (5.2.9),

— astatic_cast followed by aconst_cast ,

— a reinterpret_cast (5.2.10), or

— a reinterpret_cast followed by aconst_cast ,

can be performed using the cast notation of explicit type conversion. The same semantic restrictions and
behaviors apply. If a conversion can be interpreted in more than one of the ways listed above, the interpre-
tation that appears first in the list is used, even if a cast resulting from that interpretation is ill-formed. If a
conversion can be interpreted in more than one way as astatic_cast followed by aconst_cast , the
conversion is ill-formed. [Example:

struct A {};
struct I1 : A {};
struct I2 : A {};
struct D : I1, I2 {};
A *foo(D *p) {

return (A*)(p); // ill-formed static_cast interpretation
}

—end example]

6 The operand of a cast using the cast notation can be an rvalue of type“pointer to incomplete class type”.
The destination type of a cast using the cast notation can be“pointer to incomplete class type”. In such
cases, even if there is a inheritance relationship between the source and destination classes, whether the
static_cast or reinterpret_cast interpretation is used is unspecified.

7 In addition to those conversions, the followingstatic_cast and reinterpret_cast operations
(optionally followed by aconst_cast operation) may be performed using the cast notation of explicit
type conversion, even if the base class type is not accessible:

— a pointer to an object of derived class type or an lvalue of derived class type may be explicitly converted
to a pointer or reference to an unambiguous base class type, respectively;

— a pointer to member of derived class type may be explicitly converted to a pointer to member of an
unambiguous non-virtual base class type;

82

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.4 Explicit type conversion (cast notation)

— a pointer to an object of non-virtual base class type, an lvalue of non-virtual base class type, or a pointer
to member of non-virtual base class type may be explicitly converted to a pointer, a reference, or a
pointer to member of a derived class type, respectively.

[expr.mptr.oper] 5.5 Pointer-to-member operators

1 The pointer-to-member operators->* and.* group left-to-right.

pm-expression:
cast-expression
pm-expression.* cast-expression
pm-expression->* cast-expression

2 The binary operator.* binds its second operand, which shall be of type“pointer to member ofT” (where
T is a completely-defined class type) to its first operand, which shall be of classT or of a class of whichT
is an unambiguous and accessible base class. The result is an object or a function of the type specified by
the second operand.

3 The binary operator->* binds its second operand, which shall be of type“pointer to member ofT” (where
T is a completely-defined class type) to its first operand, which shall be of type“pointer toT” or “pointer to
a class of whichT is an unambiguous and accessible base class.” The result is an object or a function of the
type specified by the second operand.

4 If the dynamic type of the object does not contain the member to which the pointer refers, the behavior is
undefined.

5 The restrictions oncv-qualification, and the manner in which thecv-qualifiers of the operands are combined
to produce thecv-qualifiers of the result, are the same as the rules forE1.E2 given in 5.2.5. [Note: it is not
possible to use a pointer to member that refers to amutable member to modify aconst class object.
For example,

struct S {
mutable int i;

};
const S cs;
int S::* pm = &S::i; // pm refers tomutable memberS::i
cs.*pm = 88; // ill-formed: cs is aconst object

]

6 If the result of.* or ->* is a function, then that result can be used only as the operand for the function
call operator() . [Example:

(ptr_to_obj->*ptr_to_mfct)(10);

calls the member function denoted byptr_to_mfct for the object pointed to byptr_to_obj .] The
result of a.* expression is an lvalue only if its first operand is an lvalue and its second operand is a
pointer to data member. The result of an->* expression is an lvalue only if its second operand is a pointer
to data member. If the second operand is the null pointer to member value (4.11), the behavior is unde-
fined.

[expr.mul] 5.6 Multiplicative operators

1 The multiplicative operators* , / , and%group left-to-right.

multiplicative-expression:
pm-expression
multiplicative-expression* pm-expression
multiplicative-expression/ pm-expression
multiplicative-expression% pm-expression

83

ISO/IEC 14882:1998(E) © ISO/IEC

5.6 Multiplicative operators 5 Expressions

2 The operands of* and/ shall have arithmetic or enumeration type; the operands of%shall have integral or
enumeration type. The usual arithmetic conversions are performed on the operands and determine the type
of the result.

3 The binary* operator indicates multiplication.

4 The binary/ operator yields the quotient, and the binary%operator yields the remainder from the division
of the first expression by the second. If the second operand of/ or %is zero the behavior is undefined; oth-
erwise(a/b)*b + a%b is equal toa. If both operands are nonnegative then the remainder is nonnega-
tive; if not, the sign of the remainder is implementation-defined74).

[expr.add] 5.7 Additive operators

1 The additive operators+ and - group left-to-right. The usual arithmetic conversions are performed for
operands of arithmetic or enumeration type.

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

For addition, either both operands shall have arithmetic or enumeration type, or one operand shall be a
pointer to a completely defined object type and the other shall have integral or enumeration type.

2 For subtraction, one of the following shall hold:

— both operands have arithmetic or enumeration type; or

— both operands are pointers to cv-qualified or cv-unqualified versions of the same completely defined
object type; or

— the left operand is a pointer to a completely defined object type and the right operand has integral or
enumeration type.

3 The result of the binary+ operator is the sum of the operands. The result of the binary- operator is the dif-
ference resulting from the subtraction of the second operand from the first.

4 For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the first
element of an array of length one with the type of the object as its element type.

5 When an expression that has integral type is added to or subtracted from a pointer, the result has the type of
the pointer operand. If the pointer operand points to an element of an array object, and the array is large
enough, the result points to an element offset from the original element such that the difference of the sub-
scripts of the resulting and original array elements equals the integral expression. In other words, if the
expressionP points to thei-th element of an array object, the expressions(P)+N (equivalently,N+(P))
and (P)-N (whereN has the valuen) point to, respectively, thei+n-th andi– n-th elements of the array
object, provided they exist. Moreover, if the expressionP points to the last element of an array object, the
expression(P)+1 points one past the last element of the array object, and if the expressionQ points one
past the last element of an array object, the expression(Q)-1 points to the last element of the array object.
If both the pointer operand and the result point to elements of the same array object, or one past the last ele-
ment of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.

6 When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type; this type shall be the same type that is defined asptrdiff_t in the<cstddef> header (18.1). As
with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is unde-
fined. In other words, if the expressionsP and Q point to, respectively, thei-th andj-th elements of an
array object, the expression(P)-(Q) has the valuei– j provided the value fits in an object of type

74) According to work underway toward the revision of ISO C, the preferred algorithm for integer division follows the rules defined in
the ISO Fortran standard, ISO/IEC 1539:1991, in which the quotient is always rounded toward zero.

84

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.7 Additive operators

ptrdiff_t . Moreover, if the expressionP points either to an element of an array object or one past the
last element of an array object, and the expressionQpoints to the last element of the same array object, the
expression((Q)+1)-(P) has the same value as((Q)-(P))+1 and as-((P)-((Q)+1)) , and has
the value zero if the expressionP points one past the last element of the array object, even though the
expression(Q)+1 does not point to an element of the array object. Unless both pointers point to elements
of the same array object, or one past the last element of the array object, the behavior is undefined.75)

8 If the value 0 is added to or subtracted from a pointer value, the result compares equal to the original
pointer value. If two pointers point to the same object or function or both point one past the end of the
same array or both are null, and the two pointers are subtracted, the result compares equal to the value 0
converted to the typeptrdiff_t .

[expr.shift] 5.8 Shift operators

1 The shift operators<< and>> group left-to-right.

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

The operands shall be of integral or enumeration type and integral promotions are performed. The type of
the result is that of the promoted left operand. The behavior is undefined if the right operand is negative, or
greater than or equal to the length in bits of the promoted left operand.

2 The value ofE1 << E2 is E1 (interpreted as a bit pattern) left-shiftedE2 bit positions; vacated bits are
zero-filled. If E1 has an unsigned type, the value of the result isE1 multiplied by the quantity 2 raised to
the powerE2, reduced moduloULONG_MAX+1if E1 has type unsigned long,UINT_MAX+1 otherwise.
[Note:the constantsULONG_MAXandUINT_MAXare defined in the header<climits>).]

3 The value ofE1 >> E2 is E1 right-shiftedE2 bit positions. IfE1 has an unsigned type or ifE1 has a
signed type and a nonnegative value, the value of the result is the integral part of the quotient ofE1 divided
by the quantity 2 raised to the powerE2. If E1 has a signed type and a negative value, the resulting value
is implementation-defined.

[expr.rel] 5.9 Relational operators

1 The relational operators group left-to-right. [Example: a<b<c means (a<b)<c and not
(a<b)&&(b<c) .]

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<= shift-expression
relational-expression>= shift-expression

The operands shall have arithmetic, enumeration or pointer type. The operators< (less than),> (greater
than),<= (less than or equal to), and>= (greater than or equal to) all yieldfalse or true . The type of
the result isbool .

75)Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the integral value
of the expression added to or subtracted from the converted pointer is first multiplied by the size of the object originally pointed to, and
the resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference between the character
pointers is similarly divided by the size of the object originally pointed to.

7 When viewed in this way, an implementation need only provide one extra byte (which might overlap another object in the program)
just after the end of the object in order to satisfy the“one past the last element” requirements.

85

ISO/IEC 14882:1998(E) © ISO/IEC

5.9 Relational operators 5 Expressions

2 The usual arithmetic conversions are performed on operands of arithmetic or enumeration type. Pointer
conversions (4.10) and qualification conversions (4.4) are performed on pointer operands (or on a pointer
operand and a null pointer constant) to bring them to theircomposite pointer type. If one operand is a null
pointer constant, the composite pointer type is the type of the other operand. Otherwise, if one of the
operands has type“pointer tocv1 void ”, then the other has type“pointer tocv2 T” and the composite
pointer type is“pointer tocv12void ”, wherecv12is the union ofcv1andcv2. Otherwise, the composite
pointer type is a pointer type similar (4.4) to the type of one of the operands, with a cv-qualification signa-
ture (4.4) that is the union of the cv-qualification signatures of the operand types. [Note: this implies that
any pointer can be compared to a null pointer constant and that any object pointer can be compared to a
pointer to (possibly cv-qualified)void .] [Example:

void *p;
const int *q;
int **pi;
const int *const *pci;
void ct()
{

p <= q; // Both converted toconst void * before comparison
pi <= pci; // Both converted toconst int *const * before comparison

}

—end example] Pointers to objects or functions of the same type (after pointer conversions) can be com-
pared, with a result defined as follows:

— If two pointersp andq of the same type point to the same object or function, or both point one past the
end of the same array, or are both null, thenp<=q andp>=q both yieldtrue andp<q andp>q both
yield false .

— If two pointersp andq of the same type point to different objects that are not members of the same
object or elements of the same array or to different functions, or if only one of them is null, the results
of p<q , p>q , p<=q , andp>=q are unspecified.

— If two pointers point to nonstatic data members of the same object, or to subobjects or array elements of
such members, recursively, the pointer to the later declared member compares greater provided the two
members are not separated by anaccess-specifierlabel (11.1) and provided their class is not a union.

— If two pointers point to nonstatic data members of the same object separated by anaccess-specifierlabel
(11.1) the result is unspecified.

— If two pointers point to data members of the same union object, they compare equal (after conversion to
void* , if necessary). If two pointers point to elements of the same array or one beyond the end of the
array, the pointer to the object with the higher subscript compares higher.

— Other pointer comparisons are unspecified.

[expr.eq] 5.10 Equality operators

equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression!= relational-expression

1 The== (equal to) and the!= (not equal to) operators have the same semantic restrictions, conversions, and
result type as the relational operators except for their lower precedence and truth-value result. [Note:a<b
== c<d is true whenevera<b andc<d have the same truth-value.] Pointers to objects or functions of
the same type (after pointer conversions) can be compared for equality. Two pointers of the same type
compare equal if and only if they are both null, both point to the same object or function, or both point one
past the end of the same array.

86

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.10 Equality operators

2 In addition, pointers to members can be compared, or a pointer to member and a null pointer constant.
Pointer to member conversions (4.11) and qualification conversions (4.4) are performed to bring them to a
common type. If one operand is a null pointer constant, the common type is the type of the other operand.
Otherwise, the common type is a pointer to member type similar (4.4) to the type of one of the operands,
with a cv-qualification signature (4.4) that is the union of the cv-qualification signatures of the operand
types. [Note: this implies that any pointer to member can be compared to a null pointer constant.] If both
operands are null, they compare equal. Otherwise if only one is null, they compare unequal. Otherwise if
either is a pointer to a virtual member function, the result is unspecified. Otherwise they compare equal if
and only if they would refer to the same member of the same most derived object (1.8) or the same subob-
ject if they were dereferenced with a hypothetical object of the associated class type. [Example:

struct B {
int f();

};
struct L : B { };
struct R : B { };
struct D : L, R { };

int (B::*pb)() = &B::f;
int (L::*pl)() = pb;
int (R::*pr)() = pb;
int (D::*pdl)() = pl;
int (D::*pdr)() = pr;
bool x = (pdl == pdr); // false

—end example]

[expr.bit.and] 5.11 BitwiseAND operator

and-expression:
equality-expression
and-expression& equality-expression

1 The usual arithmetic conversions are performed; the result is the bitwiseAND function of the operands. The
operator applies only to integral or enumeration operands.

[expr.xor] 5.12 Bitwise exclusiveOR operator

exclusive-or-expression:
and-expression
exclusive-or-expression̂ and-expression

1 The usual arithmetic conversions are performed; the result is the bitwise exclusiveOR function of the
operands. The operator applies only to integral or enumeration operands.

[expr.or] 5.13 Bitwise inclusiveOR operator

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression| exclusive-or-expression

1 The usual arithmetic conversions are performed; the result is the bitwise inclusiveOR function of its
operands. The operator applies only to integral or enumeration operands.

[expr.log.and] 5.14 LogicalAND operator

logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

87

ISO/IEC 14882:1998(E) © ISO/IEC

5.14 LogicalAND operator 5 Expressions

1 The&& operator groups left-to-right. The operands are both implicitly converted to typebool (clause 4).
The result istrue if both operands aretrue andfalse otherwise. Unlike&, &&guarantees left-to-right
evaluation: the second operand is not evaluated if the first operand isfalse .

2 The result is abool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

[expr.log.or] 5.15 LogicalOR operator

logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

1 The || operator groups left-to-right. The operands are both implicitly converted tobool (clause 4). It
returnstrue if either of its operands istrue , andfalse otherwise. Unlike| , || guarantees left-to-
right evaluation; moreover, the second operand is not evaluated if the first operand evaluates totrue .

2 The result is abool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

[expr.cond] 5.16 Conditional operator

conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

1 Conditional expressions group right-to-left. The first expression is implicitly converted tobool (clause 4).
It is evaluated and if it istrue , the result of the conditional expression is the value of the second expres-
sion, otherwise that of the third expression. All side effects of the first expression except for destruction of
temporaries (12.2) happen before the second or third expression is evaluated. Only one of the second and
third expressions is evaluated.

2 If either the second or the third operand has type (possibly cv-qualified)void , then the lvalue-to-rvalue
(4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the second
and third operands, and one of the following shall hold:

— The second or the third operand (but not both) is athrow-expression(15.1); the result is of the type of
the other and is an rvalue.

— Both the second and the third operands have typevoid ; the result is of typevoid and is an rvalue.
[Note:this includes the case where both operands arethrow-expressions.]

3 Otherwise, if the second and third operand have different types, and either has (possibly cv-qualified) class
type, an attempt is made to convert each of those operands to the type of the other. The process for deter-
mining whether an operand expressionE1 of typeT1 can be converted to match an operand expressionE2
of typeT2 is defined as follows:

— If E2 is an lvalue:E1 can be converted to matchE2 if E1 can be implicitly converted (clause 4) to the
type “reference toT2”, subject to the constraint that in the conversion the reference must bind directly
(8.5.3) toE1.

— If E2 is an rvalue, or if the conversion above cannot be done:

— if E1 andE2 have class type, and the underlying class types are the same or one is a base class of
the other:E1 can be converted to matchE2 if the class ofT2 is the same type as, or a base class of,
the class ofT1, and the cv-qualification ofT2 is the same cv-qualification as, or a greater cv-
qualification than, the cv-qualification ofT1. If the conversion is applied,E1 is changed to an
rvalue of typeT2 that still refers to the original source class object (or the appropriate subobject
thereof). [Note:that is, no copy is made.]

— Otherwise (i.e., ifE1 or E2 has a nonclass type, or if they both have class types but the underlying

88

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.16 Conditional operator

classes are not either the same or one a base class of the other):E1 can be converted to matchE2 if
E1 can be implicitly converted to the type that expressionE2 would have ifE2 were converted to an
rvalue (or the type it has, ifE2 is an rvalue).

Using this process, it is determined whether the second operand can be converted to match the third
operand, and whether the third operand can be converted to match the second operand. If both can be con-
verted, or one can be converted but the conversion is ambiguous, the program is ill-formed. If neither can
be converted, the operands are left unchanged and further checking is performed as described below. If
exactly one conversion is possible, that conversion is applied to the chosen operand and the converted
operand is used in place of the original operand for the remainder of this section.

4 If the second and third operands are lvalues and have the same type, the result is of that type and is an
lvalue.

5 Otherwise, the result is an rvalue. If the second and third operand do not have the same type, and either has
(possibly cv-qualified) class type, overload resolution is used to determine the conversions (if any) to be
applied to the operands (13.3.1.2, 13.6). If the overload resolution fails, the program is ill-formed. Other-
wise, the conversions thus determined are applied, and the converted operands are used in place of the orig-
inal operands for the remainder of this section.

6 Lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are per-
formed on the second and third operands. After those conversions, one of the following shall hold:

— The second and third operands have the same type; the result is of that type.

— The second and third operands have arithmetic or enumeration type; the usual arithmetic conversions
are performed to bring them to a common type, and the result is of that type.

— The second and third operands have pointer type, or one has pointer type and the other is a null pointer
constant; pointer conversions (4.10) and qualification conversions (4.4) are performed to bring them to
their composite pointer type (5.9). The result is of the composite pointer type.

— The second and third operands have pointer to member type, or one has pointer to member type and the
other is a null pointer constant; pointer to member conversions (4.11) and qualification conversions
(4.4) are performed to bring them to a common type, whose cv-qualification shall match the cv-
qualification of either the second or the third operand. The result is of the common type.

[expr.ass] 5.17 Assignment operators

1 There are several assignment operators, all of which group right-to-left. All require a modifiable lvalue as
their left operand, and the type of an assignment expression is that of its left operand. The result of the
assignment operation is the value stored in the left operand after the assignment has taken place; the result
is an lvalue.

assignment-expression:
conditional-expression
logical-or-expression assignment-operator assignment-expression
throw-expression

assignment-operator: one of
= *= /= %= += -= >>= <<= &= ^= |=

2 In simple assignment (=), the value of the expression replaces that of the object referred to by the left
operand.

3 If the left operand is not of class type, the expression is implicitly converted (clause 4) to the cv-unqualified
type of the left operand.

4 If the left operand is of class type, the class shall be complete. Assignment to objects of a class is defined
by the copy assignment operator (12.8, 13.5.3).

89

ISO/IEC 14882:1998(E) © ISO/IEC

5.17 Assignment operators 5 Expressions

5 [Note:For class objects, assignment is not in general the same as initialization (8.5, 12.1, 12.6, 12.8).]

6 When the left operand of an assignment operator denotes a reference toT, the operation assigns to the
object of typeT denoted by the reference.

7 The behavior of an expression of the formE1 op= E2 is equivalent toE1 = E1 op E2 except thatE1 is
evaluated only once. In+= and-= , E1 shall either have arithmetic type or be a pointer to a possibly cv-
qualified completely defined object type. In all other cases,E1 shall have arithmetic type.

8 If the value being stored in an object is accessed from another object that overlaps in any way the storage of
the first object, then the overlap shall be exact and the two objects shall have the same type, otherwise the
behavior is undefined.

[expr.comma] 5.18 Comma operator

1 The comma operator groups left-to-right.

expression:
assignment-expression
expression, assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is
discarded. The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conver-
sions are not applied to the left expression. All side effects (1.9) of the left expression, except for the
destruction of temporaries (12.2), are performed before the evaluation of the right expression. The type and
value of the result are the type and value of the right operand; the result is an lvalue if its right operand is.

2 In contexts where comma is given a special meaning, [Example:in lists of arguments to functions (5.2.2)
and lists of initializers (8.5)] the comma operator as described in clause 5 can appear only in parentheses.
[Example:

f(a, (t=3, t+2), c);

has three arguments, the second of which has the value5.]

[expr.const] 5.19 Constant expressions

1 In several places, C++ requires expressions that evaluate to an integral or enumeration constant: as array
bounds (8.3.4, 5.3.4), ascase expressions (6.4.2), as bit-field lengths (9.6), as enumerator initializers (7.2),
as static member initializers (9.4.2), and as integral or enumeration non-type template arguments (14.3).

constant-expression:
conditional-expression

An integral constant-expressioncan involve only literals (2.13), enumerators,const variables or static
data members of integral or enumeration types initialized with constant expressions (8.5), non-type tem-
plate parameters of integral or enumeration types, andsizeof expressions. Floating literals (2.13.3) can
appear only if they are cast to integral or enumeration types. Only type conversions to integral or enumera-
tion types can be used. In particular, except insizeof expressions, functions, class objects, pointers, or
references shall not be used, and assignment, increment, decrement, function-call, or comma operators shall
not be used.

2 Other expressions are consideredconstant-expressions only for the purpose of non-local static object
initialization (3.6.2). Such constant expressions shall evaluate to one of the following:

— a null pointer value (4.10),

— a null member pointer value (4.11),

— an arithmetic constant expression,

— an address constant expression,

— a reference constant expression,

90

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.19 Constant expressions

— an address constant expression for a complete object type, plus or minus an integral constant expression,
or

— a pointer to member constant expression.

3 An arithmetic constant expressionshall have arithmetic or enumeration type and shall only have operands
that are integer literals (2.13.1), floating literals (2.13.3), enumerators, character literals (2.13.2) and
sizeof expressions (5.3.3). Cast operators in an arithmetic constant expression shall only convert arith-
metic or enumeration types to arithmetic or enumeration types, except as part of an operand to thesizeof
operator.

4 An address constant expressionis a pointer to an lvalue designating an object of static storage duration, a
string literal (2.13.4), or a function. The pointer shall be created explicitly, using the unary& operator, or
implicitly using a non-type template parameter of pointer type, or using an expression of array (4.2) or
function (4.3) type. The subscripting operator[] and the class member access. and-> operators, the&
and* unary operators, and pointer casts (exceptdynamic_cast s, 5.2.7) can be used in the creation of an
address constant expression, but the value of an object shall not be accessed by the use of these operators.
If the subscripting operator is used, one of its operands shall be an integral constant expression. An expres-
sion that designates the address of a member or base class of a non-POD class object (clause 9) is not an
address constant expression (12.7). Function calls shall not be used in an address constant expression, even
if the function isinline and has a reference return type.

5 A reference constant expressionis an lvalue designating an object of static storage duration, a non-type
template parameter of reference type, or a function. The subscripting operator[] , the class member access
. and-> operators, the& and* unary operators, and reference casts (except those invoking user-defined
conversion functions (12.3.2) and exceptdynamic_cast s (5.2.7)) can be used in the creation of a refer-
ence constant expression, but the value of an object shall not be accessed by the use of these operators. If
the subscripting operator is used, one of its operands shall be an integral constant expression. An lvalue
expression that designates a member or base class of a non-POD class object (clause 9) is not a reference
constant expression (12.7). Function calls shall not be used in a reference constant expression, even if the
function isinline and has a reference return type.

6 A pointer to member constant expressionshall be created using the unary& operator applied to aqualified-
id operand (5.3.1), optionally preceded by a pointer to member cast (5.2.9).

91

ISO/IEC 14882:1998(E) © ISO/IEC

92

(Blank page)

© ISO/IEC ISO/IEC 14882:1998(E)

6 Statements 6 Statements

6 Statements [stmt.stmt]

1 Except as indicated, statements are executed in sequence.

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

[stmt.label] 6.1 Labeled statement

1 A statement can be labeled.

labeled-statement:
identifier : statement
case constant-expression: statement
default : statement

An identifier label declares the identifier. The only use of an identifier label is as the target of agoto . The
scope of a label is the function in which it appears. Labels shall not be redeclared within a function. A
label can be used in agoto statement before its definition. Labels have their own name space and do not
interfere with other identifiers.

2 Case labels and default labels shall occur only in switch statements.

[stmt.expr] 6.2 Expression statement

1 Expression statements have the form

expression-statement:
expressionopt ;

The expression is evaluated and its value is discarded. The lvalue-to-rvalue (4.1), array-to-pointer (4.2),
and function-to-pointer (4.3) standard conversions are not applied to the expression. All side effects from
an expression statement are completed before the next statement is executed. An expression statement with
the expression missing is called a null statement. [Note: Most statements are expression statements—
usually assignments or function calls. A null statement is useful to carry a label just before the} of a com-
pound statement and to supply a null body to an iteration statement such as awhile statement (6.5.1).]

[stmt.block] 6.3 Compound statement or block

1 So that several statements can be used where one is expected, the compound statement (also, and equiva-
lently, called“block”) is provided.

compound-statement:
{ statement-seqopt }

statement-seq:
statement
statement-seq statement

A compound statement defines a local scope (3.3). [Note:a declaration is astatement(6.7).]

93

ISO/IEC 14882:1998(E) © ISO/IEC

6.4 Selection statements 6 Statements

[stmt.select] 6.4 Selection statements

1 Selection statements choose one of several flows of control.

selection-statement:
if (condition) statement
if (condition) statementelse statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator= assignment-expression

In clause 6, the termsubstatementrefers to the containedstatementor statements that appear in the syntax
notation. The substatement in aselection-statement(both substatements, in theelse form of theif state-
ment) implicitly defines a local scope (3.3). If the substatement in a selection-statement is a single state-
ment and not acompound-statement,it is as if it was rewritten to be a compound-statement containing the
original substatement. [Example:

if (x)
int i;

can be equivalently rewritten as

if (x) {
int i;

}

Thus after theif statement,i is no longer in scope.]

2 The rules forconditions apply both toselection-statements and to thefor and while statements (6.5).
Thedeclaratorshall not specify a function or an array. Thetype-specifier-seqshall not containtypedef
and shall not declare a new class or enumeration.

3 A name introduced by a declaration in acondition (either introduced by thetype-specifier-seqor the
declaratorof the condition) is in scope from its point of declaration until the end of the substatements con-
trolled by the condition. If the name is re-declared in the outermost block of a substatement controlled by
the condition, the declaration that re-declares the name is ill-formed. [Example:

if (int x = f()) {
int x; // ill-formed, redeclaration ofx

}
else {

int x; // ill-formed, redeclaration ofx
}

—end example]

4 The value of acondition that is an initialized declaration in a statement other than aswitch statement is
the value of the declared variable implicitly converted to typebool . If that conversion is ill-formed, the
program is ill-formed. The value of aconditionthat is an initialized declaration in aswitch statement is
the value of the declared variable if it has integral or enumeration type, or of that variable implicitly con-
verted to integral or enumeration type otherwise. The value of aconditionthat is an expression is the value
of the expression, implicitly converted tobool for statements other thanswitch ; if that conversion is
ill-formed, the program is ill-formed. The value of the condition will be referred to as simply“the condi-
tion” where the usage is unambiguous.

5 If a conditioncan be syntactically resolved as either an expression or the declaration of a local name, it is
interpreted as a declaration.

94

© ISO/IEC ISO/IEC 14882:1998(E)

6 Statements 6.4.1 Theif statement

[stmt.if] 6.4.1 Theif statement

1 If the condition (6.4) yieldstrue the first substatement is executed. If theelse part of the selection
statement is present and the condition yieldsfalse , the second substatement is executed. In the second
form of if statement (the one includingelse), if the first substatement is also anif statement then that
inner if statement shall contain anelse part.76)

[stmt.switch] 6.4.2 Theswitch statement

1 Theswitch statement causes control to be transferred to one of several statements depending on the value
of a condition.

2 The condition shall be of integral type, enumeration type, or of a class type for which a single conversion
function to integral or enumeration type exists (12.3). If the condition is of class type, the condition is con-
verted by calling that conversion function, and the result of the conversion is used in place of the original
condition for the remainder of this section. Integral promotions are performed. Any statement within the
switch statement can be labeled with one or more case labels as follows:

case constant-expression:

where theconstant-expressionshall be an integralconstant-expression. The integral constant-expression
(5.19) is implicitly converted to the promoted type of the switch condition. No two of the case constants in
the same switch shall have the same value after conversion to the promoted type of the switch condition.

3 There shall be at most one label of the form

default :

within aswitch statement.

4 Switch statements can be nested; acase or default label is associated with the smallest switch enclos-
ing it.

5 When theswitch statement is executed, its condition is evaluated and compared with each case constant.
If one of the case constants is equal to the value of the condition, control is passed to the statement follow-
ing the matched case label. If no case constant matches the condition, and if there is adefault label,
control passes to the statement labeled by the default label. If no case matches and if there is nodefault
then none of the statements in the switch is executed.

6 case and default labels in themselves do not alter the flow of control, which continues unimpeded
across such labels. To exit from a switch, seebreak , 6.6.1. [Note: usually, the substatement that is the
subject of a switch is compound andcase anddefault labels appear on the top-level statements con-
tained within the (compound) substatement, but this is not required. Declarations can appear in the sub-
statement of aswitch-statement.]

[stmt.iter] 6.5 Iteration statements

1 Iteration statements specify looping.

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt ; expressionopt) statement

for-init-statement:
expression-statement
simple-declaration

[Note:a for-init-statementends with a semicolon.]

76) In other words, theelse is associated with the nearest un-elsedif .

95

ISO/IEC 14882:1998(E) © ISO/IEC

6.5 Iteration statements 6 Statements

2 The substatement in aniteration-statementimplicitly defines a local scope (3.3) which is entered and exited
each time through the loop.

3 If the substatement in an iteration-statement is a single statement and not acompound-statement,it is as if it
was rewritten to be a compound-statement containing the original statement. [Example:

while (--x >= 0)
int i;

can be equivalently rewritten as

while (--x >= 0) {
int i;

}

Thus after thewhile statement,i is no longer in scope.]

4 [Note:The requirements onconditions in iteration statements are described in 6.4.—end note]

[stmt.while] 6.5.1 Thewhile statement

1 In the while statement the substatement is executed repeatedly until the value of the condition (6.4)
becomesfalse . The test takes place before each execution of the substatement.

2 When the condition of a while statement is a declaration, the scope of the variable that is declared extends
from its point of declaration (3.3.1) to the end of the whilestatement. A while statement of the form

while (T t = x) statement

is equivalent to

label:
{ // start of condition scope

T t = x;
if (t) {

statement
goto label;

}
} // end of condition scope

The object created in a condition is destroyed and created with each iteration of the loop. [Example:

struct A {
int val;
A(int i) : val(i) { }
~A() { }
operator bool() { return val != 0; }

};
int i = 1;
while (A a = i) {

// ...
i = 0;

}

In the while-loop, the constructor and destructor are each called twice, once for the condition that succeeds
and once for the condition that fails.]

[stmt.do] 6.5.2 Thedo statement

1 The expression is implicitly converted tobool ; if that is not possible, the program is ill-formed.

2 In the do statement the substatement is executed repeatedly until the value of the expression becomes
false . The test takes place after each execution of the statement.

96

© ISO/IEC ISO/IEC 14882:1998(E)

6 Statements 6.5.3 Thefor statement

[stmt.for] 6.5.3 Thefor statement

1 Thefor statement

for (for-init-statement conditionopt ; expressionopt) statement

is equivalent to

{
for-init-statement
while (condition) {

statement
expression;

}
}

except that names declared in thefor-init-statementare in the same declarative-region as those declared in
the condition, and except that acontinue in statement(not enclosed in another iteration statement) will
executeexpressionbefore re-evaluatingcondition. [Note: Thus the first statement specifies initialization
for the loop; the condition (6.4) specifies a test, made before each iteration, such that the loop is exited
when the condition becomesfalse ; the expression often specifies incrementing that is done after each
iteration.]

2 Either or both of the condition and the expression can be omitted. A missingconditionmakes the implied
while clause equivalent towhile(true) .

3 If the for-init-statementis a declaration, the scope of the name(s) declared extends to the end of thefor-
statement. [Example:

int i = 42;
int a[10];

for (int i = 0; i < 10; i++)
a[i] = i;

int j = i; // j = 42

—end example]

[stmt.jump] 6.6 Jump statements

1 Jump statements unconditionally transfer control.

jump-statement:
break ;
continue ;
return expressionopt ;
goto identifier ;

2 On exit from a scope (however accomplished), destructors (12.4) are called for all constructed objects with
automatic storage duration (3.7.2) (named objects or temporaries) that are declared in that scope, in the
reverse order of their declaration. Transfer out of a loop, out of a block, or back past an initialized variable
with automatic storage duration involves the destruction of variables with automatic storage duration that
are in scope at the point transferred from but not at the point transferred to. (See 6.7 for transfers into
blocks). [Note: However, the program can be terminated (by callingexit() or abort() (18.3), for
example) without destroying class objects with automatic storage duration.]

[stmt.break] 6.6.1 Thebreak statement

1 Thebreak statement shall occur only in aniteration-statementor aswitch statement and causes termi-
nation of the smallest enclosingiteration-statementor switch statement; control passes to the statement
following the terminated statement, if any.

97

ISO/IEC 14882:1998(E) © ISO/IEC

6.6.2 Thecontinue statement 6 Statements

[stmt.cont] 6.6.2 Thecontinue statement

1 Thecontinue statement shall occur only in aniteration-statementand causes control to pass to the loop-
continuation portion of the smallest enclosingiteration-statement, that is, to the end of the loop. More pre-
cisely, in each of the statements

while (foo) { do { for (;;) {
{ { {

// ... // ... // ...
} } }

contin: ; contin: ; contin: ;
} } while (foo); }

acontinue not contained in an enclosed iteration statement is equivalent togoto contin .

[stmt.return] 6.6.3 Thereturn statement

1 A function returns to its caller by thereturn statement.

2 A return statement without an expression can be used only in functions that do not return a value, that is, a
function with the return typevoid , a constructor (12.1), or a destructor (12.4). A return statement with an
expression of non-void type can be used only in functions returning a value; the value of the expression is
returned to the caller of the function. The expression is implicitly converted to the return type of the func-
tion in which it appears. A return statement can involve the construction and copy of a temporary object
(12.2). Flowing off the end of a function is equivalent to areturn with no value; this results in undefined
behavior in a value-returning function.

3 A return statement with an expression of type“cv void ” can be used only in functions with a return type
of cvvoid; the expression is evaluated just before the function returns to its caller.

[stmt.goto] 6.6.4 Thegoto statement

1 Thegoto statement unconditionally transfers control to the statement labeled by the identifier. The identi-
fier shall be a label (6.1) located in the current function.

[stmt.dcl] 6.7 Declaration statement

1 A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
block-declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration
is hidden for the remainder of the block, after which it resumes its force.

2 Variables with automatic storage duration (3.7.2) are initialized each time theirdeclaration-statementis
executed. Variables with automatic storage duration declared in the block are destroyed on exit from the
block (6.6).

3 It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A pro-
gram that jumps77) from a point where a local variable with automatic storage duration is not in scope to a
point where it is in scope is ill-formed unless the variable has POD type (3.9) and is declared without an
initializer (8.5).

77)The transfer from the condition of aswitch statement to acase label is considered a jump in this respect.

98

© ISO/IEC ISO/IEC 14882:1998(E)

6 Statements 6.7 Declaration statement

[Example:

void f()
{

// ...
goto lx; // ill-formed: jump into scope ofa
// ...

ly:
X a = 1;
// ...

lx:
goto ly; // OK, jump implies destructor

// call for a followed by construction
// again immediately following labelly

}

—end example]

4 The zero-initialization (8.5) of all local objects with static storage duration (3.7.1) is performed before any
other initialization takes place. A local object of POD type (3.9) with static storage duration initialized with
constant-expressions is initialized before its block is first entered. An implementation is permitted to per-
form early initialization of other local objects with static storage duration under the same conditions that an
implementation is permitted to statically initialize an object with static storage duration in namespace scope
(3.6.2). Otherwise such an object is initialized the first time control passes through its declaration; such an
object is considered initialized upon the completion of its initialization. If the initialization exits by throw-
ing an exception, the initialization is not complete, so it will be tried again the next time control enters the
declaration. If control re-enters the declaration (recursively) while the object is being initialized, the behav-
ior is undefined. [Example:

int foo(int i)
{

static int s = foo(2*i); // recursive call– undefined
return i+1;

}

—end example]

5 The destructor for a local object with static storage duration will be executed if and only if the variable was
constructed. [Note: 3.6.3 describes the order in which local objects with static storage duration are
destroyed.]

[stmt.ambig] 6.8 Ambiguity resolution

1 There is an ambiguity in the grammar involvingexpression-statements anddeclarations: An expression-
statementwith a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from adeclarationwhere the firstdeclaratorstarts with a(. In those cases thestatementis a
declaration. [Note: To disambiguate, the wholestatementmight have to be examined to determine if it is
anexpression-statementor adeclaration. This disambiguates many examples. [Example:assumingT is a
simple-type-specifier(7.1.5),

T(a)->m = 7; // expression-statement
T(a)++; // expression-statement
T(a,5)<<c; // expression-statement

T(*d)(int); // declaration
T(e)[5]; // declaration
T(f) = { 1, 2 }; // declaration
T(*g)(double(3)); // declaration

In the last example above,g, which is a pointer toT, is initialized todouble(3) . This is of course ill-
formed for semantic reasons, but that does not affect the syntactic analysis.—end example]

99

ISO/IEC 14882:1998(E) © ISO/IEC

6.8 Ambiguity resolution 6 Statements

2 The remaining cases aredeclarations. [Example:

class T {
// ...

public:
T();
T(int);
T(int, int);

};
T(a); // declaration
T(*b)(); // declaration
T(c)=7; // declaration
T(d),e,f=3; // declaration
extern int h;
T(g)(h,2); // declaration

—end example] —end note]

3 The disambiguation is purely syntactic; that is, the meaning of the names occurring in such a statement,
beyond whether they aretype-names or not, is not generally used in or changed by the disambiguation.
Class templates are instantiated as necessary to determine if a qualified name is atype-name. Disambigua-
tion precedes parsing, and a statement disambiguated as a declaration may be an ill-formed declaration. If,
during parsing, a name in a template parameter is bound differently than it would be bound during a trial
parse, the program is ill-formed. No diagnostic is required. [Note: This can occur only when the name is
declared earlier in the declaration.] [Example:

struct T1 {
T1 operator()(int x) { return T1(x); }
int operator=(int x) { return x; }
T1(int) { }

};
struct T2 { T2(int){ } };
int a, (*(*b)(T2))(int), c, d;

void f() {
// disambiguation requires this to be parsed
// as a declaration
T1(a) = 3,
T2(4), // T2 will be declared as
(*(*b)(T2(c)))(int(d)); // a variable of typeT1

// but this will not allow
// the last part of the
// declaration to parse
// properly since it depends
// on T2 being a type-name

}

—end example]

100

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations [dcl.dcl]

1 Declarations specify how names are to be interpreted. Declarations have the form

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive

simple-declaration:
decl-specifier-seqopt init-declarator-listopt ;

[Note: asm-definitions are described in 7.4, andlinkage-specifications are described in 7.5.Function-
definitions are described in 8.4 andtemplate-declarations are described in clause 14.Namespace-
definitions are described in 7.3.1,using-declarations are described in 7.3.3 andusing-directives are
described in 7.3.4.] Thesimple-declaration

decl-specifier-seqopt init-declarator-listopt ;

is divided into two parts:decl-specifiers, the components of adecl-specifier-seq, are described in 7.1 and
declarators, the components of aninit-declarator-list, are described in clause 8.

2 A declaration occurs in a scope (3.3); the scope rules are summarized in 3.4. A declaration that declares a
function or defines a class, namespace, template, or function also has one or more scopes nested within it.
These nested scopes, in turn, can have declarations nested within them. Unless otherwise stated, utterances
in clause 7 about components in, of, or contained by a declaration or subcomponent thereof refer only to
those components of the declaration that arenot nested within scopes nested within the declaration.

3 In a simple-declaration, the optionalinit-declarator-listcan be omitted only when declaring a class (clause
9) or enumeration (7.2), that is, when thedecl-specifier-seqcontains either aclass-specifier, anelaborated-
type-specifierwith a class-key(9.1), or anenum-specifier. In these cases and whenever aclass-specifieror
enum-specifieris present in thedecl-specifier-seq, the identifiers in these specifiers are among the names
being declared by the declaration (asclass-names, enum-names, or enumerators, depending on the syntax).
In such cases, and except for the declaration of an unnamed bit-field (9.6), thedecl-specifier-seqshall intro-
duce one or more names into the program, or shall redeclare a name introduced by a previous declaration.
[Example:

enum { }; // ill-formed
typedef class { }; // ill-formed

—end example]

101

ISO/IEC 14882:1998(E) © ISO/IEC

7 Declarations 7 Declarations

4 Each init-declarator in the init-declarator-list contains exactly onedeclarator-id, which is the name
declared by thatinit-declaratorand hence one of the names declared by the declaration. Thetype-specifiers
(7.1.5) in thedecl-specifier-seqand the recursivedeclaratorstructure of theinit-declaratordescribe a type
(8.3), which is then associated with the name being declared by theinit-declarator.

5 If the decl-specifier-seqcontains thetypedef specifier, the declaration is called atypedef declarationand
the name of eachinit-declarator is declared to be atypedef-name, synonymous with its associated type
(7.1.3). If thedecl-specifier-seqcontains notypedef specifier, the declaration is called afunction
declarationif the type associated with the name is a function type (8.3.5) and anobject declarationother-
wise.

6 Syntactic components beyond those found in the general form of declaration are added to a function decla-
ration to make afunction-definition. An object declaration, however, is also a definition unless it contains
theextern specifier and has no initializer (3.1). A definition causes the appropriate amount of storage to
be reserved and any appropriate initialization (8.5) to be done.

7 Only in function declarations for constructors, destructors, and type conversions can thedecl-specifier-seq
be omitted.78)

[dcl.spec] 7.1 Specifiers

1 The specifiers that can be used in a declaration are

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-seqopt decl-specifier

2 The longest sequence ofdecl-specifiers that could possibly be a type name is taken as thedecl-specifier-seq
of adeclaration. The sequence shall be self-consistent as described below. [Example:

typedef char* Pc;
static Pc; // error: name missing

Here, the declarationstatic Pc is ill-formed because no name was specified for the static variable of
typePc. To get a variable calledPc, a type-specifier(other thanconst or volatile) has to be present
to indicate that thetypedef-namePc is the name being (re)declared, rather than being part of thedecl-
specifiersequence. For another example,

void f(const Pc); // void f(char* const) (not const char*)
void g(const int Pc); // void g(const int)

—end example]

3 [Note:sincesigned , unsigned , long , andshort by default implyint , a type-nameappearing after
one of those specifiers is treated as the name being (re)declared. [Example:

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)

—end example] —end note]

78)The“implicit int” rule of C is no longer supported.

102

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.1 Specifiers

[dcl.stc] 7.1.1 Storage class specifiers

1 The storage class specifiers are

storage-class-specifier:
auto
register
static
extern
mutable

At most onestorage-class-specifiershall appear in a givendecl-specifier-seq. If a storage-class-specifier
appears in adecl-specifier-seq, there can be notypedef specifier in the samedecl-specifier-seqand the
init-declarator-listof the declaration shall not be empty (except for global anonymous unions, which shall
be declaredstatic (9.5)). The storage-class-specifierapplies to the name declared by eachinit-
declaratorin the list and not to any names declared by other specifiers. Astorage-class-specifiershall not
be specified in an explicit specialization (14.7.3) or an explicit instantiation (14.7.2) directive.

2 Theauto or register specifiers can be applied only to names of objects declared in a block (6.3) or to
function parameters (8.4). They specify that the named object has automatic storage duration (3.7.2). An
object declared without astorage-class-specifierat block scope or declared as a function parameter has
automatic storage duration by default. [Note:hence, theauto specifier is almost always redundant and not
often used; one use ofauto is to distinguish adeclaration-statementfrom anexpression-statement(6.8)
explicitly. —end note]

3 A register specifier has the same semantics as anauto specifier together with a hint to the implemen-
tation that the object so declared will be heavily used. [Note: the hint can be ignored and in most imple-
mentations it will be ignored if the address of the object is taken.—end note]

4 The static specifier can be applied only to names of objects and functions and to anonymous unions
(9.5). There can be nostatic function declarations within a block, nor anystatic function parame-
ters. A static specifier used in the declaration of an object declares the object to have static storage
duration (3.7.1). Astatic specifier can be used in declarations of class members; 9.4 describes its effect.
For the linkage of a name declared with astatic specifier, see 3.5.

5 The extern specifier can be applied only to the names of objects and functions. Theextern specifier
cannot be used in the declaration of class members or function parameters. For the linkage of a name
declared with anextern specifier, see 3.5.

6 A name declared in a namespace scope without astorage-class-specifierhas external linkage unless it has
internal linkage because of a previous declaration and provided it is not declaredconst . Objects declared
const and not explicitly declaredextern have internal linkage.

7 The linkages implied by successive declarations for a given entity shall agree. That is, within a given
scope, each declaration declaring the same object name or the same overloading of a function name shall
imply the same linkage. Each function in a given set of overloaded functions can have a different linkage,
however. [Example:

static char* f(); // f() has internal linkage
char* f() // f() still has internal linkage

{ /* ... */ }

char* g(); // g() has external linkage
static char* g() // error: inconsistent linkage

{ /* ... */ }

void h();
inline void h(); // external linkage

inline void l();
void l(); // external linkage

103

ISO/IEC 14882:1998(E) © ISO/IEC

7.1.1 Storage class specifiers 7 Declarations

inline void m();
extern void m(); // external linkage

static void n();
inline void n(); // internal linkage

static int a; // a has internal linkage
int a; // error: two definitions

static int b; // b has internal linkage
extern int b; // b still has internal linkage

int c; // c has external linkage
static int c; // error: inconsistent linkage

extern int d; // d has external linkage
static int d; // error: inconsistent linkage

—end example]

8 The name of a declared but undefined class can be used in anextern declaration. Such a declaration can
only be used in ways that do not require a complete class type. [Example:

struct S;
extern S a;
extern S f();
extern void g(S);

void h()
{

g(a); // error: S is incomplete
f(); // error: S is incomplete

}

—end example] The mutable specifier can be applied only to names of class data members (9.2) and
cannot be applied to names declaredconst or static , and cannot be applied to reference members.
[Example:

class X {
mutable const int* p; // OK
mutable int* const q; // ill-formed

};

—end example]

9 Themutable specifier on a class data member nullifies aconst specifier applied to the containing class
object and permits modification of the mutable class member even though the rest of the object isconst
(7.1.5.1).

[dcl.fct.spec] 7.1.2 Function specifiers

1 Function-specifierscan be used only in function declarations.

function-specifier:
inline
virtual
explicit

2 A function declaration (8.3.5, 9.3, 11.4) with aninline specifier declares aninline function. The inline
specifier indicates to the implementation that inline substitution of the function body at the point of call is
to be preferred to the usual function call mechanism. An implementation is not required to perform this
inline substitution at the point of call; however, even if this inline substitution is omitted, the other rules for

104

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.1.2 Function specifiers

inline functions defined by 7.1.2 shall still be respected.

3 A function defined within a class definition is an inline function. Theinline specifier shall not appear
on a block scope function declaration.79)

4 An inline function shall be defined in every translation unit in which it is used and shall have exactly the
same definition in every case (3.2). [Note:a call to the inline function may be encountered before its defi-
nition appears in the translation unit.] If a function with external linkage is declared inline in one transla-
tion unit, it shall be declared inline in all translation units in which it appears; no diagnostic is required. An
inline function with external linkage shall have the same address in all translation units. Astatic
local variable in anextern inline function always refers to the same object. A string literal in an
extern inline function is the same object in different translation units.

5 Thevirtual specifier shall only be used in declarations of nonstatic class member functions that appear
within amember-specificationof a class declaration; see 10.3.

6 Theexplicit specifier shall be used only in declarations of constructors within a class declaration; see
12.3.1.

[dcl.typedef] 7.1.3 Thetypedef specifier

1 Declarations containing thedecl-specifiertypedef declare identifiers that can be used later for naming
fundamental (3.9.1) or compound (3.9.2) types. Thetypedef specifier shall not be used in afunction-
definition (8.4), and it shall not be combined in adecl-specifier-seqwith any other kind of specifier except
a type-specifier.

typedef-name:
identifier

A name declared with thetypedef specifier becomes atypedef-name. Within the scope of its declaration,
a typedef-nameis syntactically equivalent to a keyword and names the type associated with the identifier in
the way described in clause 8. Atypedef-nameis thus a synonym for another type. Atypedef-namedoes
not introduce a new type the way a class declaration (9.1) or enum declaration does. [Example:after

typedef int MILES, *KLICKSP;

the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the type ofdistance is int ; that ofmetricp is “pointer toint .”]

2 In a given scope, atypedef specifier can be used to redefine the name of any type declared in that scope
to refer to the type to which it already refers. [Example:

typedef struct s { /* ... */ } s;
typedef int I;
typedef int I;
typedef I I;

—end example]

3 In a given scope, atypedef specifier shall not be used to redefine the name of any type declared in that
scope to refer to a different type. [Example:

class complex { /* ... */ };
typedef int complex; // error: redefinition

—end example] Similarly, in a given scope, a class or enumeration shall not be declared with the same
name as atypedef-namethat is declared in that scope and refers to a type other than the class or enumera-
tion itself. [Example:

79)The inline keyword has no effect on the linkage of a function.

105

ISO/IEC 14882:1998(E) © ISO/IEC

7.1.3 Thetypedef specifier 7 Declarations

typedef int complex;
class complex { /* ... */ }; // error: redefinition

—end example]

4 A typedef-namethat names a class is aclass-name(9.1). If atypedef-nameis used following theclass-key
in an elaborated-type-specifier(7.1.5.3) or in theclass-headof a class declaration (9), or is used as the
identifier in the declarator for a constructor or destructor declaration (12.1, 12.4), the program is ill-formed.
[Example:

struct S {
S();
~S();

};

typedef struct S T;

S a = T(); // OK
struct T * p; // error

—end example]

5 If the typedef declaration defines an unnamed class (or enum), the firsttypedef-namedeclared by the decla-
ration to be that class type (or enum type) is used to denote the class type (or enum type) for linkage pur-
poses only (3.5). [Example:

typedef struct { } *ps, S; // S is the class name for linkage purposes

—end example] [Note: if the typedef-nameis used where aclass-name(or enum-name) is required, the
program is ill-formed. For example,

typedef struct {
S(); // error: requires a return type becauseS is

// an ordinary member function, not a constructor
} S;

—end note]

[dcl.friend] 7.1.4 Thefriend specifier

1 Thefriend specifier is used to specify access to class members; see 11.4.

[dcl.type] 7.1.5 Type specifiers

1 The type-specifiers are

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

As a general rule, at most onetype-specifieris allowed in the completedecl-specifier-seqof a declaration.
The only exceptions to this rule are the following:

— const or volatile can be combined with any othertype-specifier. However, redundant cv-
qualifiers are prohibited except when introduced through the use of typedefs (7.1.3) or template type
arguments (14.3), in which case the redundant cv-qualifiers are ignored.

— signed or unsigned can be combined withchar , long , short , or int .

— short or long can be combined withint .

— long can be combined withdouble .

106

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.1.5 Type specifiers

2 At least onetype-specifierthat is not acv-qualifier is required in a declaration unless it declares a construc-
tor, destructor or conversion function.80)

3 [Note: class-specifiers andenum-specifiers are discussed in clause 9 and 7.2, respectively. The remaining
type-specifiers are discussed in the rest of this section.]

[dcl.type.cv] 7.1.5.1 Thecv-qualifiers

1 There are twocv-qualifiers, const andvolatile . If a cv-qualifier appears in adecl-specifier-seq, the
init-declarator-list of the declaration shall not be empty. [Note: 3.9.3 describes how cv-qualifiers affect
object and function types.]

2 An object declared in namespace scope with a const-qualified type has internal linkage unless it is explic-
itly declaredextern or unless it was previously declared to have external linkage. A variable of const-
qualified integral or enumeration type initialized by an integral constant expression can be used in integral
constant expressions (5.19). [Note: as described in 8.5, the definition of an object or subobject of const-
qualified type must specify an initializer or be subject to default-initialization.]

3 A pointer or reference to a cv-qualified type need not actually point or refer to a cv-qualified object, but it is
treated as if it does; a const-qualified access path cannot be used to modify an object even if the object ref-
erenced is a non-const object and can be modified through some other access path. [Note:cv-qualifiers are
supported by the type system so that they cannot be subverted without casting (5.2.11).]

4 Except that any class member declaredmutable (7.1.1) can be modified, any attempt to modify aconst
object during its lifetime (3.8) results in undefined behavior.

5 [Example:

const int ci = 3; // cv-qualified (initialized as required)
ci = 4; // ill-formed: attempt to modifyconst

int i = 2; // not cv-qualified
const int* cip; // pointer toconst int
cip = &i; // OK: cv-qualified access path to unqualified
*cip = 4; // ill-formed: attempt to modify through ptr toconst

int* ip;
ip = const_cast<int*>(cip); // cast needed to convertconst int* to int*
*ip = 4; // defined:*ip points toi , a non-const object

const int* ciq = new const int (3); // initialized as required
int* iq = const_cast<int*>(ciq); // cast required
*iq = 4; // undefined: modifies aconst object

6 For another example

class X {
public:

mutable int i;
int j;

};
class Y {

public:
X x;
Y();

};

80) There is no special provision for adecl-specifier-seqthat lacks atype-specifieror that has atype-specifierthat only specifiescv-
qualifiers. The“implicit int” rule of C is no longer supported.

107

ISO/IEC 14882:1998(E) © ISO/IEC

7.1.5.1 Thecv-qualifiers 7 Declarations

const Y y;
y.x.i++; // well-formed:mutable member can be modified
y.x.j++; // ill-formed: const -qualified member modified
Y* p = const_cast<Y*>(&y); // cast away const-ness ofy
p->x.i = 99; // well-formed:mutable member can be modified
p->x.j = 99; // undefined: modifies aconst member

—end example]

7 If an attempt is made to refer to an object defined with a volatile-qualified type through the use of an lvalue
with a non-volatile-qualified type, the program behaviour is undefined.

8 [Note: volatile is a hint to the implementation to avoid aggressive optimization involving the object
because the value of the object might be changed by means undetectable by an implementation. See 1.9 for
detailed semantics. In general, the semantics ofvolatile are intended to be the same in C++ as they are
in C.]

[dcl.type.simple] 7.1.5.2 Simple type specifiers

1 The simple type specifiers are

simple-type-specifier:
:: opt nested-name-specifieropt type-name
:: opt nested-name-specifiertemplate template-id
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

Thesimple-type-specifiers specify either a previously-declared user-defined type or one of the fundamental
types (3.9.1). Table 7 summarizes the valid combinations ofsimple-type-specifiers and the types they spec-
ify.

108

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.1.5.2 Simple type specifiers

Table 7—simple-type-specifiers and the types they specify
__
Specifier(s) Type__
type-name the type named
char “char ”
unsigned char “unsigned char ”
signed char “signed char ”
bool “bool ”
unsigned “unsigned int ”
unsigned int “unsigned int ”
signed “int ”
signed int “int ”
int “int ”
unsigned short int “unsigned short int ”
unsigned short “unsigned short int ”
unsigned long int “unsigned long int ”
unsigned long “unsigned long int ”
signed long int “long int ”
signed long “long int ”
long int “long int ”
long “long int ”
signed short int “short int ”
signed short “short int ”
short int “short int ”
short “short int ”
wchar_t “wchar_t ”
float “float ”
double “double ”
long double “long double ”
void “void ”__

When multiplesimple-type-specifiersare allowed, they can be freely intermixed with otherdecl-specifiers
in any order. It is implementation-defined whether bit-fields and objects ofchar type are represented as
signed or unsigned quantities. Thesigned specifier forceschar objects and bit-fields to be signed; it is
redundant with other integral types.

[dcl.type.elab] 7.1.5.3 Elaborated type specifiers

elaborated-type-specifier:
class-key :: opt nested-name-specifieropt identifier
enum :: opt nested-name-specifieropt identifier
typename :: opt nested-name-specifier identifier
typename :: opt nested-name-specifiertemplate opt template-id

1 If an elaborated-type-specifieris the sole constituent of a declaration, the declaration is ill-formed unless it
is an explicit specialization (14.7.3), an explicit instantiation (14.7.2) or it has one of the following forms:

class-key identifier;
friend class-key identifier;
friend class-key ::identifier;
friend class-key nested-name-specifier identifier;

2 3.4.4 describes how name lookup proceeds for theidentifier in an elaborated-type-specifier. If the
identifier resolves to aclass-nameor enum-name, theelaborated-type-specifierintroduces it into the decla-
ration the same way asimple-type-specifierintroduces itstype-name. If the identifier resolves to atypedef-

109

ISO/IEC 14882:1998(E) © ISO/IEC

7.1.5.3 Elaborated type specifiers 7 Declarations

nameor a templatetype-parameter, the elaborated-type-specifieris ill-formed. [Note: this implies that,
within a class template with a templatetype-parameterT, the declaration

friend class T;

is ill-formed.] If name lookup does not find a declaration for the name, theelaborated-type-specifieris
ill-formed unless it is of the simple formclass-key identifierin which case theidentifier is declared as
described in 3.3.1.

3 Theclass-keyor enum keyword present in theelaborated-type-specifiershall agree in kind with the decla-
ration to which the name in theelaborated-type-specifierrefers. This rule also applies to the form of
elaborated-type-specifierthat declares aclass-nameor friend class since it can be construed as referring
to the definition of the class. Thus, in anyelaborated-type-specifier, theenum keyword shall be used to
refer to an enumeration (7.2), theunion class-keyshall be used to refer to a union (clause 9), and either
the class or struct class-keyshall be used to refer to a class (clause 9) declared using theclass or
struct class-key.

[dcl.enum] 7.2 Enumeration declarations

1 An enumeration is a distinct type (3.9.1) with named constants. Its name becomes anenum-name, within
its scope.

enum-name:
identifier

enum-specifier:
enum identifieropt { enumerator-listopt }

enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition:
enumerator
enumerator = constant-expression

enumerator:
identifier

The identifiers in anenumerator-listare declared as constants, and can appear wherever constants are
required. Anenumerator-definitionwith = gives the associatedenumeratorthe value indicated by the
constant-expression. The constant-expressionshall be of integral or enumeration type. If the first
enumeratorhas noinitializer, the value of the corresponding constant is zero. Anenumerator-definition
without an initializer gives theenumeratorthe value obtained by increasing the value of the previous
enumeratorby one.

2 [Example:

enum { a, b, c=0 };
enum { d, e, f=e+2 };

definesa, c , andd to be zero,b ande to be1, andf to be3.]

3 The point of declaration for an enumerator is immediately after itsenumerator-definition. [Example:

const int x = 12;
{ enum { x = x }; }

Here, the enumeratorx is initialized with the value of the constantx , namely 12.]

4 Each enumeration defines a type that is different from all other types. Following the closing brace of an
enum-specifier, each enumerator has the type of its enumeration. Prior to the closing brace, the type of
each enumerator is the type of its initializing value. If an initializer is specified for an enumerator, the

110

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.2 Enumeration declarations

initializing value has the same type as the expression. If no initializer is specified for the first enumerator,
the type is an unspecified integral type. Otherwise the type is the same as the type of the initializing value
of the preceding enumerator unless the incremented value is not representable in that type, in which case
the type is an unspecified integral type sufficient to contain the incremented value.

5 The underlying typeof an enumeration is an integral type that can represent all the enumerator values
defined in the enumeration. It is implementation-defined which integral type is used as the underlying type
for an enumeration except that the underlying type shall not be larger thanint unless the value of an enu-
merator cannot fit in anint or unsigned int . If the enumerator-listis empty, the underlying type is
as if the enumeration had a single enumerator with value 0. The value ofsizeof() applied to an enu-
meration type, an object of enumeration type, or an enumerator, is the value ofsizeof() applied to the
underlying type.

6 For an enumeration whereemin is the smallest enumerator andemax is the largest, the values of the enumer-
ation are the values of the underlying type in the rangebmin to bmax, wherebmin andbmax are, respectively,
the smallest and largest values of the smallest bit-field that can storeemin and emax.

81) It is possible to
define an enumeration that has values not defined by any of its enumerators.

7 Two enumeration types are layout-compatible if they have the sameunderlying type.

8 The value of an enumerator or an object of an enumeration type is converted to an integer by integral pro-
motion (4.5). [Example:

enum color { red, yellow, green=20, blue };
color col = red;
color* cp = &col;
if (*cp == blue) // ...

makescolor a type describing various colors, and then declarescol as an object of that type, andcp as a
pointer to an object of that type. The possible values of an object of typecolor are red , yellow ,
green , blue ; these values can be converted to the integral values0, 1, 20 , and21 . Since enumerations
are distinct types, objects of typecolor can be assigned only values of typecolor .

color c = 1; // error: type mismatch,
// no conversion fromint to color

int i = yellow; // OK: yellow converted to integral value1
// integral promotion

—end example]

9 An expression of arithmetic or enumeration type can be converted to an enumeration type explicitly. The
value is unchanged if it is in the range of enumeration values of the enumeration type; otherwise the result-
ing enumeration value is unspecified.

10 The enum-name and each enumerator declared by an enum-specifier is declared in the scope that immedi-
ately contains the enum-specifier. These names obey the scope rules defined for all names in (3.3) and
(3.4). An enumerator declared in class scope can be referred to using the class member access operators
(:: , . (dot) and-> (arrow)), see 5.2.5. [Example:

class X {
public:

enum direction { left=’l’, right=’r’ };
int f(int i)

{ return i==left ? 0 : i==right ? 1 : 2; }
};

81) On a two’s-complement machine,bmax is the smallest value greater than or equal to max (abs(emin) − 1 ,abs(emax)) of the form
2M − 1; bmin is zero ifemin is non-negative and− (bmax + 1) otherwise.

111

ISO/IEC 14882:1998(E) © ISO/IEC

7.2 Enumeration declarations 7 Declarations

void g(X* p)
{

direction d; // error: direction not in scope
int i;
i = p->f(left); // error: left not in scope
i = p->f(X::right); // OK
i = p->f(p->left); // OK
// ...

}

—end example]

[basic.namespace] 7.3 Namespaces

1 A namespace is an optionally-named declarative region. The name of a namespace can be used to access
entities declared in that namespace; that is, the members of the namespace. Unlike other declarative
regions, the definition of a namespace can be split over several parts of one or more translation units.

2 A name declared outside all named namespaces, blocks (6.3) and classes (clause 9) has global namespace
scope (3.3.5).

[namespace.def] 7.3.1 Namespace definition

1 The grammar for anamespace-definitionis

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-definition:
named-namespace-definition
unnamed-namespace-definition

named-namespace-definition:
original-namespace-definition
extension-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body}

extension-namespace-definition:
namespace original-namespace-name{ namespace-body}

unnamed-namespace-definition:
namespace { namespace-body}

namespace-body:
declaration-seqopt

2 The identifier in anoriginal-namespace-definitionshall not have been previously defined in the declarative
region in which theoriginal-namespace-definitionappears. Theidentifier in an original-namespace-
definition is the name of the namespace. Subsequently in that declarative region, it is treated as an
original-namespace-name.

3 Theoriginal-namespace-namein anextension-namespace-definitionshall have previously been defined in
anoriginal-namespace-definitionin the same declarative region.

4 Everynamespace-definitionshall appear in the global scope or in a namespace scope (3.3.5).

112

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.3.1 Namespace definition

5 Because anamespace-definitioncontainsdeclarationsin its namespace-bodyand anamespace-definitionis
itself adeclaration, it follows thatnamespace-definitionscan be nested. [Example:

namespace Outer {
int i;
namespace Inner {

void f() { i++; } // Outer::i
int i;
void g() { i++; } // Inner::i

}
}

—end example]

[namespace.unnamed] 7.3.1.1 Unnamed namespaces

1 An unnamed-namespace-definitionbehaves as if it were replaced by

namespace unique { /* empty body */ }
using namespace unique;
namespace unique { namespace-body}

where all occurrences ofunique in a translation unit are replaced by the same identifier and this identifier
differs from all other identifiers in the entire program.82) [Example:

namespace { int i; } // unique::i
void f() { i++; } // unique::i++

namespace A {
namespace {

int i; // A:: unique::i
int j; // A:: unique::j

}
void g() { i++; } // A:: unique::i++

}

using namespace A;
void h() {

i++; // error: unique::i or A:: unique::i
A::i++; // A:: unique::i
j++; // A:: unique::j

}

—end example]

2 The use of thestatic keyword is deprecated when declaring objects in a namespace scope (see annex D);
theunnamed-namespaceprovides a superior alternative.

[namespace.memdef] 7.3.1.2 Namespace member definitions

1 Members of a namespace can be defined within that namespace. [Example:

namespace X {
void f() { /* ... */ }

}

—end example]

2 Members of a named namespace can also be defined outside that namespace by explicit qualification
(3.4.3.2) of the name being defined, provided that the entity being defined was already declared in the
namespace and the definition appears after the point of declaration in a namespace that encloses the

82) Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name unique to their
translation unit and therefore can never be seen from any other translation unit.

113

ISO/IEC 14882:1998(E) © ISO/IEC

7.3.1.2 Namespace member definitions 7 Declarations

declaration’s namespace. [Example:

namespace Q {
namespace V {

void f();
}
void V::f() { /* ... */ } // OK
void V::g() { /* ... */ } // error: g() is not yet a member ofV
namespace V {

void g();
}

}

namespace R {
void Q::V::g() { /* ... */ } // error: Rdoesn’t encloseQ

}

—end example]

3 Every name first declared in a namespace is a member of that namespace. If afriend declaration in a
non-local class first declares a class or function83) the friend class or function is a member of the innermost
enclosing namespace. The name of the friend is not found by simple name lookup until a matching declara-
tion is provided in that namespace scope (either before or after the class declaration granting friendship). If
a friend function is called, its name may be found by the name lookup that considers functions from name-
spaces and classes associated with the types of the function arguments (3.4.2). When looking for a prior
declaration of a class or a function declared as afriend , scopes outside the innermost enclosing name-
space scope are not considered. [Example:

// Assumef andg have not yet been defined.
void h(int);
namespace A {

class X {
friend void f(X); // A::f is a friend
class Y {

friend void g(); // A::g is a friend
friend void h(int); // A::h is a friend

// ::h not considered
};

};

// A::f , A::g andA::h are not visible here
X x;
void g() { f(x); } // definition ofA::g
void f(X) { /* ... */} // definition ofA::f
void h(int) { /* ... */ } // definition ofA::h
// A::f , A::g andA::h are visible here and known to be friends

}

using A::x;

void h()
{

A::f(x);
A::X::f(x); // error: f is not a member ofA::X
A::X::Y::g(); // error: g is not a member ofA::X::Y

}

—end example]

83) this implies that the name of the class or function is unqualified.

114

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.3.2 Namespace alias

[namespace.alias] 7.3.2 Namespace alias

1 A namespace-alias-definitiondeclares an alternate name for a namespace according to the following gram-
mar:

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
:: opt nested-name-specifieropt namespace-name

2 The identifier in a namespace-alias-definitionis a synonym for the name of the namespace denoted by the
qualified-namespace-specifierand becomes anamespace-alias. [Note: when looking up anamespace-
namein anamespace-alias-definition, only namespace names are considered, see 3.4.6.]

3 In a declarative region, anamespace-alias-definitioncan be used to redefine anamespace-aliasdeclared in
that declarative region to refer only to the namespace to which it already refers. [Example:the following
declarations are well-formed:

namespace Company_with_very_long_name { /* ... */ }
namespace CWVLN = Company_with_very_long_name;
namespace CWVLN = Company_with_very_long_name; // OK: duplicate
namespace CWVLN = CWVLN;

—end example]

4 A namespace-nameor namespace-aliasshall not be declared as the name of any other entity in the same
declarative region. Anamespace-namedefined at global scope shall not be declared as the name of any
other entity in any global scope of the program. No diagnostic is required for a violation of this rule by
declarations in different translation units.

[namespace.udecl] 7.3.3 Theusing declaration

1 A using-declarationintroduces a name into the declarative region in which theusing-declarationappears.
That name is a synonym for the name of some entity declared elsewhere.

using-declaration:
using typename opt :: opt nested-name-specifier unqualified-id;
using :: unqualified-id;

2 The member name specified in ausing-declarationis declared in the declarative region in which theusing-
declarationappears. [Note: only the specified name is so declared; specifying an enumeration name in a
using-declarationdoes not declare its enumerators in theusing-declaration’s declarative region.]

3 Everyusing-declarationis adeclarationand amember-declarationand so can be used in a class definition.
[Example:

struct B {
void f(char);
void g(char);
enum E { e };
union { int x; };

};

struct D : B {
using B::f;
void f(int) { f(’c’); } // calls B::f(char)
void g(int) { g(’c’); } // recursively callsD::g(int)

};

115

ISO/IEC 14882:1998(E) © ISO/IEC

7.3.3 Theusing declaration 7 Declarations

—end example]

4 A using-declarationused as amember-declarationshall refer to a member of a base class of the class being
defined, shall refer to a member of an anonymous union that is a member of a base class of the class being
defined, or shall refer to an enumerator for an enumeration type that is a member of a base class of the class
being defined. [Example:

class C {
int g();

};

class D2 : public B {
using B::f; // OK: B is a base ofD2
using B::e; // OK: e is an enumerator of baseB
using B::x; // OK: x is a union member of baseB
using C::g; // error: C isn’t a base ofD2

};

—end example] [Note: since constructors and destructors do not have names, ausing-declarationcannot
refer to a constructor or a destructor for a base class. Since specializations of member templates for conver-
sion functions are not found by name lookup, they are not considered when ausing-declarationspecifies a
conversion function (14.5.2).] If an assignment operator brought from a base class into a derived class
scope has the signature of a copy-assignment operator for the derived class (12.8), theusing-declaration
does not by itself suppress the implicit declaration of the derived class copy-assignment operator; the
copy-assignment operator from the base class is hidden or overridden by the implicitly-declared copy-
assignment operator of the derived class, as described below.

5 A using-declarationshall not name atemplate-id. [Example:

class A {
public:

template <class T> void f(T);
template <class T> struct X { };

};
class B : public A {
public:

using A::f<double>; // ill-formed
using A::X<int>; // ill-formed

};

—end example]

6 A using-declarationfor a class member shall be amember-declaration. [Example:

struct X {
int i;
static int s;

};

void f()
{

using X::i; // error: X::i is a class member
// and this is not a member declaration.

using X::s; // error: X::s is a class member
// and this is not a member declaration.

}

—end example]

7 Members declared by ausing-declarationcan be referred to by explicit qualification just like other member
names (3.4.3.2). In ausing-declaration, a prefix:: refers to the global namespace. [Example:

116

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.3.3 Theusing declaration

void f();

namespace A {
void g();

}

namespace X {
using ::f; // global f
using A::g; // A’s g

}

void h()
{

X::f(); // calls ::f
X::g(); // calls A::g

}

—end example]

8 A using-declarationis adeclarationand can therefore be used repeatedly where (and only where) multiple
declarations are allowed. [Example:

namespace A {
int i;

}

namespace A1 {
using A::i;
using A::i; // OK: double declaration

}

void f()
{

using A::i;
using A::i; // error: double declaration

}

class B {
public:

int i;
};

class X : public B {
using B::i;
using B::i; // error: double member declaration

};

—end example]

9 The entity declared by ausing-declarationshall be known in the context using it according to its definition
at the point of theusing-declaration. Definitions added to the namespace after theusing-declarationare
not considered when a use of the name is made. [Example:

namespace A {
void f(int);

}

using A::f; // f is a synonym forA::f ;
// that is, forA::f(int) .

namespace A {
void f(char);

}

117

ISO/IEC 14882:1998(E) © ISO/IEC

7.3.3 Theusing declaration 7 Declarations

void foo()
{

f(’a’); // calls f(int) ,
} // even thoughf(char) exists.

void bar()
{

using A::f; // f is a synonym forA::f ;
// that is, forA::f(int) andA::f(char) .

f(’a’); // calls f(char)
}

—end example] [Note:partial specializations of class templates are found by looking up the primary class
template and then considering all partial specializations of that template. If ausing-declarationnames a
class template, partial specializations introduced after theusing-declarationare effectively visible because
the primary template is visible (14.5.4).]

10 Since ausing-declarationis a declaration, the restrictions on declarations of the same name in the same
declarative region (3.3) also apply tousing-declarations. [Example:

namespace A {
int x;

}

namespace B {
int i;
struct g { };
struct x { };
void f(int);
void f(double);
void g(char); // OK: hidesstruct g

}

void func()
{

int i;
using B::i; // error: i declared twice
void f(char);
using B::f; // OK: eachf is a function
f(3.5); // calls B::f(double)
using B::g;
g(’a’); // calls B::g(char)
struct g g1; // g1 has class typeB::g
using B::x;
using A::x; // OK: hidesstruct B::x
x = 99; // assigns toA::x
struct x x1; // x1 has class typeB::x

}

—end example]

11 If a function declaration in namespace scope or block scope has the same name and the same parameter
types as a function introduced by ausing-declaration, the program is ill-formed. [Note: two using-
declarations may introduce functions with the same name and the same parameter types. If, for a call to an
unqualified function name, function overload resolution selects the functions introduced by suchusing-
declarations, the function call is ill-formed.

118

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.3.3 Theusing declaration

[Example:

namespace B {
void f(int);
void f(double);

}
namespace C {

void f(int);
void f(double);
void f(char);

}

void h()
{

using B::f; // B::f(int) andB::f(double)
using C::f; // C::f(int) , C::f(double) , andC::f(char)
f(’h’); // calls C::f(char)
f(1); // error: ambiguous:B::f(int) or C::f(int) ?
void f(int); // error:

// f(int) conflicts withC::f(int) andB::f(int)
}

—end example]]

12 When ausing-declarationbrings names from a base class into a derived class scope, member functions in
the derived class override and/or hide member functions with the same name and parameter types in a base
class (rather than conflicting). [Example:

struct B {
virtual void f(int);
virtual void f(char);
void g(int);
void h(int);

};

struct D : B {
using B::f;
void f(int); // OK: D::f(int) overridesB::f(int) ;

using B::g;
void g(char); // OK

using B::h;
void h(int); // OK: D::h(int) hidesB::h(int)

};

void k(D* p)
{

p->f(1); // calls D::f(int)
p->f(’a’); // calls B::f(char)
p->g(1); // calls B::g(int)
p->g(’a’); // calls D::g(char)

}

—end example] [Note: two using-declarations may introduce functions with the same name and the same
parameter types. If, for a call to an unqualified function name, function overload resolution selects the
functions introduced by suchusing-declarations, the function call is ill-formed.]

13 For the purpose of overload resolution, the functions which are introduced by ausing-declarationinto a
derived class will be treated as though they were members of the derived class. In particular, the implicit
this parameter shall be treated as if it were a pointer to the derived class rather than to the base class.
This has no effect on the type of the function, and in all other respects the function remains a member of the
base class.

119

ISO/IEC 14882:1998(E) © ISO/IEC

7.3.3 Theusing declaration 7 Declarations

14 All instances of the name mentioned in ausing-declarationshall be accessible. In particular, if a derived
class uses ausing-declarationto access a member of a base class, the member name shall be accessible. If
the name is that of an overloaded member function, then all functions named shall be accessible. The base
class members mentioned by ausing-declarationshall be visible in the scope of at least one of the direct
base classes of the class where theusing-declarationis specified. [Note:because ausing-declarationdes-
ignates a base class member (and not a member subobject or a member function of a base class subobject),
ausing-declarationcannot be used to resolve inherited member ambiguities. For example,

struct A { int x(); };
struct B : A { };
struct C : A {

using A::x;
int x(int);

};

struct D : B, C {
using C::x;
int x(double);

};
int f(D* d) {

return d->x(); // ambiguous:B::x or C::x
}

]

15 The alias created by theusing-declarationhas the usual accessibility for amember-declaration. [Example:

class A {
private:

void f(char);
public:

void f(int);
protected:

void g();
};

class B : public A {
using A::f; // error: A::f(char) is inaccessible

public:
using A::g; // B::g is a public synonym forA::g

};

—end example]

16 [Note:use ofaccess-declarations(11.3) is deprecated; memberusing-declarations provide a better alterna-
tive.]

[namespace.udir] 7.3.4 Using directive

using-directive:
using namespace :: opt nested-name-specifieropt namespace-name ;

A using-directiveshall not appear in class scope, but may appear in namespace scope or in block scope.
[Note:when looking up anamespace-namein a using-directive, only namespace names are considered, see
3.4.6.]

1 A using-directivespecifies that the names in the nominated namespace can be used in the scope in which
the using-directiveappears after theusing-directive. During unqualified name lookup (3.4.1), the names
appear as if they were declared in the nearest enclosing namespace which contains both theusing-directive
and the nominated namespace. [Note: in this context,“contains” means“contains directly or indirectly”.]

120

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.3.4 Using directive

A using-directivedoes not add any members to the declarative region in which it appears. [Example:

namespace A {
int i;
namespace B {

namespace C {
int i;

}
using namespace A::B::C;
void f1() {

i = 5; // OK, C::i visible inB and hidesA::i
}

}
namespace D {

using namespace B;
using namespace C;
void f2() {

i = 5; // ambiguous,B::C::i or A::i ?
}

}
void f3() {

i = 5; // usesA::i
}

}
void f4() {

i = 5; // ill-formed; neitheri is visible
}

]

2 The using-directiveis transitive: if a scope contains ausing-directivethat nominates a second namespace
that itself containsusing-directives, the effect is as if theusing-directives from the second namespace also
appeared in the first. [Example:

namespace M {
int i;

}

namespace N {
int i;
using namespace M;

}

void f()
{

using namespace N;
i = 7; // error: bothM::i andN::i are visible

}

121

ISO/IEC 14882:1998(E) © ISO/IEC

7.3.4 Using directive 7 Declarations

For another example,

namespace A {
int i;

}
namespace B {

int i;
int j;
namespace C {

namespace D {
using namespace A;
int j;
int k;
int a = i; // B::i hidesA::i

}
using namespace D;
int k = 89; // no problem yet
int l = k; // ambiguous:C::k or D::k
int m = i; // B::i hidesA::i
int n = j; // D::j hidesB::j

}
}

—end example]

3 If a namespace is extended by anextended-namespace-definitionafter ausing-directivefor that namespace
is given, the additional members of the extended namespace and the members of namespaces nominated by
using-directives in theextended-namespace-definitioncan be used after theextended-namespace-definition.

4 If name lookup finds a declaration for a name in two different namespaces, and the declarations do not
declare the same entity and do not declare functions, the use of the name is ill-formed. [Note: in particular,
the name of an object, function or enumerator does not hide the name of a class or enumeration declared in
a different namespace. For example,

namespace A {
class X { };
extern "C" int g();
extern "C++" int h();

}
namespace B {

void X(int);
extern "C" int g();
extern "C++" int h();

}
using namespace A;
using namespace B;

void f() {
X(1); // error: nameX found in two namespaces
g(); // okay: nameg refers to the same entity
h(); // error: nameh found in two namespaces

}

—end note]

5 During overload resolution, all functions from the transitive search are considered for argument matching.
The set of declarations found by the transitive search is unordered. [Note: in particular, the order in which
namespaces were considered and the relationships among the namespaces implied by theusing-directives
do not cause preference to be given to any of the declarations found by the search.] An ambiguity exists if
the best match finds two functions with the same signature, even if one is in a namespace reachable through
using-directives in the namespace of the other.84)

84) During name lookup in a class hierarchy, some ambiguities may be resolved by considering whether one member hides the other

122

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.3.4 Using directive

[Example:

namespace D {
int d1;
void f(char);

}
using namespace D;

int d1; // OK: no conflict withD::d1

namespace E {
int e;
void f(int);

}

namespace D { // namespace extension
int d2;
using namespace E;
void f(int);

}

void f()
{

d1++; // error: ambiguous::d1 or D::d1 ?
::d1++; // OK
D::d1++; // OK
d2++; // OK: D::d2
e++; // OK: E::e
f(1); // error: ambiguous:D::f(int) or E::f(int) ?
f(’a’); // OK: D::f(char)

}

—end example]

[dcl.asm] 7.4 Theasm declaration

1 An asm declaration has the form

asm-definition:
asm (string-literal) ;

The meaning of anasm declaration is implementation-defined. [Note:Typically it is used to pass informa-
tion through the implementation to an assembler.]

[dcl.link] 7.5 Linkage specifications

1 All function types, function names, and variable names have alanguage linkage. [Note:Some of the prop-
erties associated with an entity with language linkage are specific to each implementation and are not
described here. For example, a particular language linkage may be associated with a particular form of rep-
resenting names of objects and functions with external linkage, or with a particular calling convention, etc.
] The default language linkage of all function types, function names, and variable names is C++ language
linkage. Two function types with different language linkages are distinct types even if they are otherwise
identical.

2 Linkage (3.5) between C++ and non-C++ code fragments can be achieved using alinkage-specification:

along some paths (10.2). There is no such disambiguation when considering the set of names found as a result of followingusing-
directives.

123

ISO/IEC 14882:1998(E) © ISO/IEC

7.5 Linkage specifications 7 Declarations

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

The string-literal indicates the required language linkage. The meaning of thestring-literal is
implementation-defined. Alinkage-specificationwith a string that is unknown to the implementation is
ill-formed. When thestring-literal in a linkage-specificationnames a programming language, the spelling
of the programming language’s name is implementation-defined. [Note: it is recommended that the spel-
ling be taken from the document defining that language, for exampleAda (not ADA) andFortran or
FORTRAN(depending on the vintage). The semantics of a language linkage other than C++ or C are
implementation-defined.]

3 Every implementation shall provide for linkage to functions written in the C programming language,"C" ,
and linkage to C++ functions,"C++" . [Example:

complex sqrt(complex); // C++ linkage by default
extern "C" {

double sqrt(double); // C linkage
}

—end example]

4 Linkage specifications nest. When linkage specifications nest, the innermost one determines the language
linkage. A linkage specification does not establish a scope. Alinkage-specificationshall occur only in
namespace scope (3.3). In alinkage-specification, the specified language linkage applies to the function
types of all function declarators, function names, and variable names introduced by the declaration(s).
[Example:

extern "C" void f1(void(*pf)(int));
// the namef1 and its function type have C language
// linkage;pf is a pointer to a C function

extern "C" typedef void FUNC();
FUNC f2; // the namef2 has C++ language linkage and the

// function’s type has C language linkage
extern "C" FUNC f3; // the name of functionf3 and the function’s type

// have C language linkage
void (*pf2)(FUNC*); // the name of the variablepf2 has C++ linkage and

// the type ofpf2 is pointer to C++ function that
// takes one parameter of type pointer to C function

—end example] A C language linkage is ignored for the names of class members and the member function
type of class member functions. [Example:

extern "C" typedef void FUNC_c();
class C {

void mf1(FUNC_c*); // the name of the functionmf1 and the member
// function’s type have C++ language linkage; the
// parameter has type pointer to C function

FUNC_c mf2; // the name of the functionmf2 and the member
// function’s type have C++ language linkage

static FUNC_c* q; // the name of the data memberq has C++ language
// linkage and the data member’s type is pointer to
// C function

};

124

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.5 Linkage specifications

extern "C" {
class X {

void mf(); // the name of the functionmf and the member
// function’s type have C++ language linkage

void mf2(void(*)()); // the name of the functionmf2 has C++ language
// linkage; the parameter has type pointer to
// C function

};
}

—end example]

5 If two declarations of the same function or object specify differentlinkage-specifications (that is, the
linkage-specifications of these declarations specify differentstring-literals), the program is ill-formed if the
declarations appear in the same translation unit, and the one definition rule (3.2) applies if the declarations
appear in different translation units. Except for functions with C++ linkage, a function declaration without
a linkage specification shall not precede the first linkage specification for that function. A function can be
declared without a linkage specification after an explicit linkage specification has been seen; the linkage
explicitly specified in the earlier declaration is not affected by such a function declaration.

6 At most one function with a particular name can have C language linkage. Two declarations for a function
with C language linkage with the same function name (ignoring the namespace names that qualify it) that
appear in different namespace scopes refer to the same function. Two declarations for an object with C lan-
guage linkage with the same name (ignoring the namespace names that qualify it) that appear in different
namespace scopes refer to the same object. [Note:because of the one definition rule (3.2), only one defini-
tion for a function or object with C linkage may appear in the program; that is, such a function or object
must not be defined in more than one namespace scope. For example,

namespace A {
extern "C" int f();
extern "C" int g() { return 1; }
extern "C" int h();

}

namespace B {
extern "C" int f(); // A::f andB::f refer

// to the same function
extern "C" int g() { return 1; } // ill-formed, the functiong

// with C language linkage
// has two definitions

}

int A::f() { return 98; } // definition for the functionf
// with C language linkage

extern "C" int h() { return 97; }
// definition for the functionh
// with C language linkage
// A::h and ::h refer to the same function

—end note]

7 Except for functions with internal linkage, a function first declared in alinkage-specificationbehaves as a
function with external linkage. [Example:

extern "C" double f();
static double f(); // error

is ill-formed (7.1.1).] The form oflinkage-specificationthat contains a braced-encloseddeclaration-seq
does not affect whether the contained declarations are definitions or not (3.1); the form oflinkage-
specificationdirectly containing a single declaration is treated as anextern specifier (7.1.1) for the pur-
pose of determining whether the contained declaration is a definition. [Example:

125

ISO/IEC 14882:1998(E) © ISO/IEC

7.5 Linkage specifications 7 Declarations

extern "C" int i; // declaration
extern "C" {

int i; // definition
}

—end example] A linkage-specificationdirectly containing a single declaration shall not specify a storage
class. [Example:

extern "C" static void f(); // error

—end example]

8 [Note:because the language linkage is part of a function type, when a pointer to C function (for example) is
dereferenced, the function to which it refers is considered a C function.]

9 Linkage from C++ to objects defined in other languages and to objects defined in C++ from other languages
is implementation-defined and language-dependent. Only where the object layout strategies of two lan-
guage implementations are similar enough can such linkage be achieved.

126

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators [dcl.decl]

1 A declarator declares a single object, function, or type, within a declaration. Theinit-declarator-list
appearing in a declaration is a comma-separated sequence of declarators, each of which can have an initial-
izer.

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

2 The two components of adeclarationare the specifiers (decl-specifier-seq; 7.1) and the declarators (init-
declarator-list). The specifiers indicate the type, storage class or other properties of the objects, functions
or typedefs being declared. The declarators specify the names of these objects, functions or typedefs, and
(optionally) modify the type of the specifiers with operators such as* (pointer to) and() (function return-
ing). Initial values can also be specified in a declarator; initializers are discussed in 8.5 and 12.6.

3 Eachinit-declarator in a declaration is analyzed separately as if it was in a declaration by itself.85)

4 Declarators have the syntax

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-declarator [constant-expressionopt]
(declarator)

ptr-operator:
* cv-qualifier-seqopt

&
:: opt nested-name-specifier* cv-qualifier-seqopt

85) A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a single
declarator. That is

T D1, D2, ... Dn;

is usually equvalent to

T D1; T D2; ... T Dn;

where T is a decl-specifier-seqand eachDi is a init-declarator. The exception occurs when a name introduced by one of the
declaratorshides a type name used by thedcl-specifiers, so that when the samedcl-specifiersare used in a subsequent declaration,
they do not have the same meaning, as in

struct S { ... };
S S, T; // declare two instances ofstruct S

which is not equivalent to

struct S { ... };
S S;
S T; // error

127

ISO/IEC 14882:1998(E) © ISO/IEC

8 Declarators 8 Declarators

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

declarator-id:
id-expression
:: opt nested-name-specifieropt type-name

A class-namehas special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operator:: (5.1, 12.1, 12.4).

[dcl.name] 8.1 Type names

1 To specify type conversions explicitly, and as an argument ofsizeof , new, or typeid , the name of a
type shall be specified. This can be done with atype-id, which is syntactically a declaration for an object or
function of that type that omits the name of the object or function.

type-id:
type-specifier-seq abstract-declaratoropt

type-specifier-seq:
type-specifier type-specifier-seqopt

abstract-declarator:
ptr-operator abstract-declaratoropt

direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratoropt

(parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-abstract-declaratoropt [constant-expressionopt]
(abstract-declarator)

It is possible to identify uniquely the location in theabstract-declaratorwhere the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. [Example:

int // int i
int * // int *pi
int *[3] // int *p[3]
int (*)[3] // int (*p3i)[3]
int *() // int *f()
int (*)(double) // int (*pf)(double)

name respectively the types“int ,” “pointer toint ,” “array of 3 pointers toint ,” “pointer to array of 3
int ,” “function of (no parameters) returning pointer toint ,” and “pointer to a function of (double)
returningint .’’]

2 A type can also be named (often more easily) by using atypedef(7.1.3).

[dcl.ambig.res] 8.2 Ambiguity resolution

1 The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, the choice is between a function declaration
with a redundant set of parentheses around a parameter name and an object declaration with a function-style
cast as the initializer. Just as for the ambiguities mentioned in 6.8, the resolution is to consider any con-
struct that could possibly be a declaration a declaration. [Note: a declaration can be explicitly disam-
biguated by a nonfunction-style cast, by a= to indicate initialization or by removing the redundant

128

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.2 Ambiguity resolution

parentheses around the parameter name.] [Example:

struct S {
S(int);

};

void foo(double a)
{

S w(int(a)); // function declaration
S x(int()); // function declaration
S y((int)a); // object declaration
S z = int(a); // object declaration

}

—end example]

2 The ambiguity arising from the similarity between a function-style cast and atype-idcan occur in different
contexts. The ambiguity appears as a choice between a function-style cast expression and a declaration of a
type. The resolution is that any construct that could possibly be atype-id in its syntactic context shall be
considered atype-id.

3 [Example:

#include <cstddef>
char *p;
void *operator new(size_t, int);
void foo() {

const int x = 63;
new (int(*p)) int; // new-placement expression
new (int(*[x])); // new type-id

}

4 For another example,

template <class T>
struct S {

T *p;
};
S<int()> x; // type-id
S<int(1)> y; // expression (ill-formed)

5 For another example,

void foo()
{

sizeof(int(1)); // expression
sizeof(int()); // type-id (ill-formed)

}

6 For another example,

void foo()
{

(int(1)); // expression
(int())1; // type-id (ill-formed)

}

—end example]

7 Another ambiguity arises in aparameter-declaration-clauseof a function declaration, or in atype-idthat is
the operand of asizeof or typeid operator, when atype-nameis nested in parentheses. In this case, the
choice is between the declaration of a parameter of type pointer to function and the declaration of a parame-
ter with redundant parentheses around thedeclarator-id. The resolution is to consider thetype-nameas a
simple-type-specifierrather than adeclarator-id. [Example:

129

ISO/IEC 14882:1998(E) © ISO/IEC

8.2 Ambiguity resolution 8 Declarators

class C { };
void f(int(C)) { } // void f(int (*fp)(C c)) { }

// not: void f(int C);

int g(C);

void foo() {
f(1); // error: cannot convert1 to function pointer
f(g); // OK

}

For another example,

class C { };
void h(int *(C[10])); // void h(int *(*_fp)(C _parm[10]));

// not: void h(int *C[10]);

—end example]

[dcl.meaning] 8.3 Meaning of declarators

1 A list of declarators appears after an optional (clause 7)decl-specifier-seq(7.1). Each declarator contains
exactly onedeclarator-id; it names the identifier that is declared. Theid-expressionof adeclarator-idshall
be a simpleidentifier except for the declaration of some special functions (12.3, 12.4, 13.5) and for the dec-
laration of template specializations or partial specializations (14.7). Adeclarator-idshall not be qualified
except for the definition of a member function (9.3) or static data member (9.4) or nested class (9.7) outside
of its class, the definition or explicit instantiation of a function, variable or class member of a namespace
outside of its namespace, or the definition of a previously declared explicit specialization outside of its
namespace, or the declaration of a friend function that is a member of another class or namespace (11.4).
When thedeclarator-idis qualified, the declaration shall refer to a previously declared member of the class
or namespace to which the qualifier refers, and the member shall not have been introduced by ausing-
declaration in the scope of the class or namespace nominated by thenested-name-specifierof the
declarator-id. [Note: if the qualifier is the global:: scope resolution operator, thedeclarator-idrefers to a
name declared in the global namespace scope.] In the qualifieddeclarator-id for a class or namespace
member definition that appears outside of the member’s class or namespace, thenested-name-specifiershall
not name any of the namespaces that enclose the member’s definition. [Example:

namespace A {
struct B {

void f();
};
void A::B::f() { } // ill-formed: the declarator must not be

// qualified withA::
}

—end example]

2 An auto , static , extern , register , mutable , friend , inline , virtual , or typedef spec-
ifier applies directly to eachdeclarator-idin a init-declarator-list; the type specified for eachdeclarator-id
depends on both thedecl-specifier-seqand itsdeclarator.

3 Thus, a declaration of a particular identifier has the form

T D

whereT is adecl-specifier-seqandD is a declarator. Following is a recursive procedure for determining the
type specified for the containeddeclarator-idby such a declaration.

4 First, thedecl-specifier-seqdetermines a type. In a declaration

T D

thedecl-specifier-seqT determines the type“T.” [Example:in the declaration

130

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.3 Meaning of declarators

int unsigned i;

the type specifiersint unsigned determine the type“unsigned int ” (7.1.5.2).]

5 In a declarationT DwhereD is an unadorned identifier the type of this identifier is“T.”

6 In a declarationT DwhereDhas the form

(D1)

the type of the containeddeclarator-idis the same as that of the containeddeclarator-idin the declaration

T D1

Parentheses do not alter the type of the embeddeddeclarator-id, but they can alter the binding of complex
declarators.

[dcl.ptr] 8.3.1 Pointers

1 In a declarationT DwhereDhas the form

* cv-qualifier-seqopt D1

and the type of the identifier in the declarationT D1 is “derived-declarator-type-listT,” then the type of the
identifier of D is “derived-declarator-type-list cv-qualifier-seqpointer toT.” Thecv-qualifiers apply to the
pointer and not to the object pointed to.

2 [Example:the declarations

const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;
int i, *p, *const cp = &i;

declareci , a constant integer;pc , a pointer to a constant integer;cpc , a constant pointer to a constant
integer,ppc , a pointer to a pointer to a constant integer;i , an integer;p, a pointer to integer; andcp , a
constant pointer to integer. The value ofci , cpc , andcp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed to bycp . Examples of some correct operations are

i = ci;
*cp = ci;
pc++;
pc = cpc;
pc = p;
ppc = &pc;

Examples of ill-formed operations are

ci = 1; // error
ci++; // error
*pc = 2; // error
cp = &ci; // error
cpc++; // error
p = pc; // error
ppc = &p; // error

Each is unacceptable because it would either change the value of an object declaredconst or allow it to be
changed through a cv-unqualified pointer later, for example:

*ppc = &ci; // OK, but would makep point toci ...
// ... because of previous error

*p = 5; // clobberci

—end example]

3 See also 5.17 and 8.5.

131

ISO/IEC 14882:1998(E) © ISO/IEC

8.3.1 Pointers 8 Declarators

4 [Note: there are no pointers to references; see 8.3.2. Since the address of a bit-field (9.6) cannot be taken, a
pointer can never point to a bit-field.]

[dcl.ref] 8.3.2 References

1 In a declarationT DwhereDhas the form

& D1

and the type of the identifier in the declarationT D1 is “derived-declarator-type-listT,” then the type of the
identifier ofD is “derived-declarator-type-listreference toT.” Cv-qualified references are ill-formed except
when the cv-qualifiers are introduced through the use of a typedef (7.1.3) or of a template type argument
(14.3), in which case the cv-qualifiers are ignored. [Example:in

typedef int& A;
const A aref = 3; // ill-formed;

// non-const reference initialized with rvalue

the type ofaref is “reference toint ”, not “const reference toint ”.] [Note: a reference can be
thought of as a name of an object.] A declarator that specifies the type“reference tocvvoid” is ill-formed.

2 [Example:

void f(double& a) { a += 3.14; }
// ...
double d = 0;
f(d);

declaresa to be a reference parameter off so the callf(d) will add 3.14 to d.

int v[20];
// ...
int& g(int i) { return v[i]; }
// ...
g(3) = 7;

declares the functiong() to return a reference to an integer sog(3)=7 will assign7 to the fourth element
of the arrayv . For another example,

struct link {
link* next;

};

link* first;

void h(link*& p) // p is a reference to pointer
{

p->next = first;
first = p;
p = 0;

}

void k()
{

link* q = new link;
h(q);

}

declaresp to be a reference to a pointer tolink soh(q) will leaveq with the value zero. See also 8.5.3.
]

3 It is unspecified whether or not a reference requires storage (3.7).

132

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.3.2 References

4 There shall be no references to references, no arrays of references, and no pointers to references. The decla-
ration of a reference shall contain aninitializer (8.5.3) except when the declaration contains an explicit
extern specifier (7.1.1), is a class member (9.2) declaration within a class declaration, or is the declara-
tion of a parameter or a return type (8.3.5); see 3.1. A reference shall be initialized to refer to a valid object
or function. [Note: in particular, a null reference cannot exist in a well-defined program, because the only
way to create such a reference would be to bind it to the“object” obtained by dereferencing a null pointer,
which causes undefined behavior. As described in 9.6, a reference cannot be bound directly to a bit-field.]

[dcl.mptr] 8.3.3 Pointers to members

1 In a declarationT DwhereDhas the form

:: opt nested-name-specifier* cv-qualifier-seqopt D1

and thenested-name-specifiernames a class, and the type of the identifier in the declarationT D1 is
“derived-declarator-type-listT,” then the type of the identifier ofD is “derived-declarator-type-list cv-
qualifier-seqpointer to member ofclass nested-name-specifier of typeT.”

2 [Example:

class X {
public:

void f(int);
int a;

};
class Y;

int X::* pmi = &X::a;
void (X::* pmf)(int) = &X::f;
double X::* pmd;
char Y::* pmc;

declarespmi , pmf , pmdandpmc to be a pointer to a member ofX of typeint , a pointer to a member ofX
of typevoid(int) , a pointer to a member ofX of typedouble and a pointer to a member ofY of type
char respectively. The declaration ofpmd is well-formed even thoughX has no members of type
double . Similarly, the declaration ofpmc is well-formed even thoughY is an incomplete type.pmi and
pmf can be used like this:

X obj;
// ...
obj.*pmi = 7; // assign7 to an integer

// member of obj
(obj.*pmf)(7); // call a function member ofobj

// with the argument7

—end example]

3 A pointer to member shall not point to a static member of a class (9.4), a member with reference type, or
“cv void .” [Note: see also 5.3 and 5.5. The type“pointer to member” is distinct from the type“pointer”,
that is, a pointer to member is declared only by the pointer to member declarator syntax, and never by the
pointer declarator syntax. There is no“reference-to-member” type in C++.]

[dcl.array] 8.3.4 Arrays

1 In a declarationT DwhereDhas the form

D1 [constant-expressionopt]

and the type of the identifier in the declarationT D1 is “derived-declarator-type-listT,” then the type of the
identifier ofD is an array type.T is called the arrayelement type; this type shall not be a reference type, the
(possibly cv-qualified) typevoid , a function type or an abstract class type. If theconstant-expression
(5.19) is present, it shall be an integral constant expression and its value shall be greater than zero. The
constant expression specifies theboundof (number of elements in) the array. If the value of the constant

133

ISO/IEC 14882:1998(E) © ISO/IEC

8.3.4 Arrays 8 Declarators

expression isN, the array hasN elements numbered0 to N-1 , and the type of the identifier ofD is
“derived-declarator-type-listarray ofN T.” An object of array type contains a contiguously allocated non-
empty set ofN sub-objects of typeT. If the constant expression is omitted, the type of the identifier ofD is
“derived-declarator-type-listarray of unknown bound ofT,” an incomplete object type. The type
“derived-declarator-type-listarray ofN T ” is a different type from the type“derived-declarator-type-list
array of unknown bound ofT,” see 3.9. Any type of the form“cv-qualifier-seqarray ofN T” is adjusted to
“array ofNcv-qualifier-seqT,” and similarly for“array of unknown bound ofT.” [Example:

typedef int A[5], AA[2][3];
typedef const A CA; // type is ‘‘array of 5 const int’’
typedef const AA CAA; // type is ‘‘array of 2 array of 3 const int’’

—end example] [Note:an“array ofN cv-qualifier-seqT” has cv-qualified type; such an array has internal
linkage unless explicitly declaredextern (7.1.5.1) and must be initialized as specified in 8.5.]

2 An array can be constructed from one of the fundamental types (exceptvoid), from a pointer, from a
pointer to member, from a class, from an enumeration type, or from another array.

3 When several“array of” specifications are adjacent, a multidimensional array is created; the constant
expressions that specify the bounds of the arrays can be omitted only for the first member of the sequence.
[Note: this elision is useful for function parameters of array types, and when the array is external and the
definition, which allocates storage, is given elsewhere.] The firstconstant-expressioncan also be omitted
when the declarator is followed by aninitializer (8.5). In this case the bound is calculated from the number
of initial elements (say,N) supplied (8.5.1), and the type of the identifier ofD is “array ofN T.”

4 [Example:

float fa[17], *afp[17];

declares an array offloat numbers and an array of pointers tofloat numbers. For another example,

static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3×5×7. In complete detail,x3d is an array
of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers.
Any of the expressionsx3d , x3d[i] , x3d[i][j] , x3d[i][j][k] can reasonably appear in an
expression.]

5 [Note: conversions affecting lvalues of array type are described in 4.2. Objects of array types cannot be
modified, see 3.10.]

6 Except where it has been declared for a class (13.5.5), the subscript operator[] is interpreted in such a way
thatE1[E2] is identical to*((E1)+(E2)) . Because of the conversion rules that apply to+, if E1 is an
array andE2 an integer, thenE1[E2] refers to theE2-th member ofE1. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

7 A consistent rule is followed for multidimensional arrays. IfE is an n-dimensional array of rank
i × j × . . . ×k, thenE appearing in an expression is converted to a pointer to an (n − 1)-dimensional array
with rankj × . . . ×k. If the* operator, either explicitly or implicitly as a result of subscripting, is applied to
this pointer, the result is the pointed-to (n − 1)-dimensional array, which itself is immediately converted
into a pointer.

8 [Example:consider

int x[3][5];

Herex is a 3×5 array of integers. Whenx appears in an expression, it is converted to a pointer to (the first
of three) five-membered arrays of integers. In the expressionx[i] , which is equivalent to*(x+i) , x is
first converted to a pointer as described; thenx+i is converted to the type ofx , which involves multiplying
i by the length of the object to which the pointer points, namely five integer objects. The results are added
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the first
of the integers. If there is another subscript the same argument applies again; this time the result is an inte-
ger.]

134

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.3.4 Arrays

9 [Note: it follows from all this that arrays in C++ are stored row-wise (last subscript varies fastest) and that
the first subscript in the declaration helps determine the amount of storage consumed by an array but plays
no other part in subscript calculations.]

[dcl.fct] 8.3.5 Functions

1 In a declarationT DwhereDhas the form

D1 (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

and the type of the containeddeclarator-id in the declarationT D1 is “derived-declarator-type-listT,” the
type of thedeclarator-id in D is “derived-declarator-type-listfunction of (parameter-declaration-clause)
cv-qualifier-seqopt returningT”; a type of this form is afunction type86).

parameter-declaration-clause:
parameter-declaration-listopt ... opt

parameter-declaration-list, ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator= assignment-expression
decl-specifier-seq abstract-declaratoropt

decl-specifier-seq abstract-declaratoropt = assignment-expression

2 The parameter-declaration-clausedetermines the arguments that can be specified, and their processing,
when the function is called. [Note: the parameter-declaration-clauseis used to convert the arguments
specified on the function call; see 5.2.2.] If theparameter-declaration-clauseis empty, the function takes
no arguments. The parameter list(void) is equivalent to the empty parameter list. Except for this spe-
cial case,void shall not be a parameter type (though types derived fromvoid , such asvoid* , can). If
theparameter-declaration-clauseterminates with an ellipsis, the number of arguments shall be equal to or
greater than the number of parameters specified. Where syntactically correct,“, ... ” is synonymous
with “... ”. [Example:the declaration

int printf(const char*, ...);

declares a function that can be called with varying numbers and types of arguments.

printf("hello world");
printf("a=%d b=%d", a, b);

However, the first argument must be of a type that can be converted to aconst char* .] [Note: the stan-
dard header<cstdarg> contains a mechanism for accessing arguments passed using the ellipsis (see
5.2.2 and 18.7).]

3 A single name can be used for several different functions in a single scope; this is function overloading
(clause 13). All declarations for a function with a given parameter list shall agree exactly both in the type
of the value returned and in the number and type of parameters; the presence or absence of the ellipsis is
considered part of the function type. The type of a function is determined using the following rules. The
type of each parameter is determined from its owndecl-specifier-seqanddeclarator. After determining the
type of each parameter, any parameter of type“array of T” or “function returningT” is adjusted to be
“pointer toT” or “pointer to function returningT,” respectively. After producing the list of parameter
types, several transformations take place upon these types to determine the function type. Anycv-qualifier
modifying a parameter type is deleted. [Example: the type void(*)(const int) becomes
void(*)(int) —end example] Suchcv-qualifiers affect only the definition of the parameter within the

86)As indicated by the syntax, cv-qualifiers are a significant component in function return types.

135

ISO/IEC 14882:1998(E) © ISO/IEC

8.3.5 Functions 8 Declarators

body of the function; they do not affect the function type. If astorage-class-specifiermodifies a parameter
type, the specifier is deleted. [Example: register char* becomeschar* —end example] Such
storage-class-specifiers affect only the definition of the parameter within the body of the function; they do
not affect the function type. The resulting list of transformed parameter types is the function’sparameter
type list.

4 A cv-qualifier-seqshall only be part of the function type for a nonstatic member function, the function type
to which a pointer to member refers, or the top-level function type of a function typedef declaration. The
effect of acv-qualifier-seqin a function declarator is not the same as adding cv-qualification on top of the
function type, i.e., it does not create a cv-qualified function type. In fact, if at any time in the determination
of a type a cv-qualified function type is formed, the program is ill-formed. [Example:

typedef void F();
struct S {

const F f; // ill-formed:
// not equivalent to:void f() const;

};

—end example] The return type, the parameter type list and thecv-qualifier-seq, but not the default argu-
ments (8.3.6) or the exception specification (15.4), are part of the function type. [Note: function types are
checked during the assignments and initializations of pointer-to-functions, reference-to-functions, and
pointer-to-member-functions.]

5 [Example:the declaration

int fseek(FILE*, long, int);

declares a function taking three arguments of the specified types, and returningint (7.1.5).]

6 If the type of a parameter includes a type of the form“pointer to array of unknown bound ofT” or “refer-
ence to array of unknown bound ofT,” the program is ill-formed.87) Functions shall not have a return type
of type array or function, although they may have a return type of type pointer or reference to such things.
There shall be no arrays of functions, although there can be arrays of pointers to functions. Types shall not
be defined in return or parameter types. The type of a parameter or the return type for a function declara-
tion that is not a definition may be an incomplete class type.

7 A typedef of function type may be used to declare a function but shall not be used to define a function (8.4).
[Example:

typedef void F();
F fv; // OK: equivalent tovoid fv();
F fv { } // ill-formed
void fv() { } // OK: definition offv

—end example] A typedef of a function type whose declarator includes acv-qualifier-seqshall be used
only to declare the function type for a nonstatic member function, to declare the function type to which a
pointer to member refers, or to declare the top-level function type of another function typedef declaration.
[Example:

typedef int FIC(int) const;
FIC f; // ill-formed: does not declare a member function
struct S {

FIC f; // OK
};
FIC S::*pm = &S::f; // OK

—end example]

87) This excludes parameters of type“ptr-arr-seq T2” whereT2 is “pointer to array of unknown bound ofT” and whereptr-arr-seq
means any sequence of“pointer to” and“array of” derived declarator types. This exclusion applies to the parameters of the function,
and if a parameter is a pointer to function or pointer to member function then to its parameters also, etc.

136

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.3.5 Functions

8 An identifier can optionally be provided as a parameter name; if present in a function definition (8.4), it
names a parameter (sometimes called“formal argument”). [Note: in particular, parameter names are also
optional in function definitions and names used for a parameter in different declarations and the definition
of a function need not be the same. If a parameter name is present in a function declaration that is not a
definition, it cannot be used outside of theparameter-declaration-clausesince it goes out of scope at the
end of the function declarator (3.3).]

9 [Example:the declaration

int i,
*pi,
f(),
*fpi(int),
(*pif)(const char*, const char*);
(*fpif(int))(int);

declares an integeri , a pointerpi to an integer, a functionf taking no arguments and returning an integer,
a functionfpi taking an integer argument and returning a pointer to an integer, a pointerpif to a function
which takes two pointers to constant characters and returns an integer, a functionfpif taking an integer
argument and returning a pointer to a function that takes an integer argument and returns an integer. It is
especially useful to comparefpi andpif . The binding of*fpi(int) is *(fpi(int)) , so the decla-
ration suggests, and the same construction in an expression requires, the calling of a functionfpi , and then
using indirection through the (pointer) result to yield an integer. In the declarator(*pif)(const
char*, const char*) , the extra parentheses are necessary to indicate that indirection through a pointer
to a function yields a function, which is then called.] [Note: typedefs are sometimes convenient when the
return type of a function is complex. For example, the functionfpif above could have been declared

typedef int IFUNC(int);
IFUNC* fpif(int);

—end note]

[dcl.fct.default] 8.3.6 Default arguments

1 If an expression is specified in a parameter declaration this expression is used as a default argument.
Default arguments will be used in calls where trailing arguments are missing.

2 [Example:the declaration

void point(int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments of typeint . It can be called in any
of these ways:

point(1,2); point(1); point();

The last two calls are equivalent topoint(1,4) andpoint(3,4) , respectively.]

3 A default argument expression shall be specified only in theparameter-declaration-clauseof a function
declaration or in atemplate-parameter(14.1). If it is specified in aparameter-declaration-clause, it shall
not occur within adeclaratoror abstract-declaratorof aparameter-declaration.88)

4 For non-template functions, default arguments can be added in later declarations of a function in the same
scope. Declarations in different scopes have completely distinct sets of default arguments. That is, declara-
tions in inner scopes do not acquire default arguments from declarations in outer scopes, and vice versa. In
a given function declaration, all parameters subsequent to a parameter with a default argument shall have
default arguments supplied in this or previous declarations. A default argument shall not be redefined by a
later declaration (not even to the same value). [Example:

88) This means that default arguments cannot appear, for example, in declarations of pointers to functions, references to functions, or
typedef declarations.

137

ISO/IEC 14882:1998(E) © ISO/IEC

8.3.6 Default arguments 8 Declarators

void f(int, int);
void f(int, int = 7);
void h()
{

f(3); // OK, callsf(3, 7)
void f(int = 1, int); // error: does not use default

// from surrounding scope
}

void m()
{

void f(int, int); // has no defaults
f(4); // error: wrong number of arguments
void f(int, int = 5); // OK
f(4); // OK, callsf(4, 5);
void f(int, int = 5); // error: cannot redefine, even to

// same value
}
void n()
{

f(6); // OK, callsf(6, 7)
}

—end example] For a given inline function defined in different translation units, the accumulated sets of
default arguments at the end of the translation units shall be the same; see 3.2.

5 A default argument expression is implicitly converted (clause 4) to the parameter type. The default argu-
ment expression has the same semantic constraints as the initializer expression in a declaration of a variable
of the parameter type, using the copy-initialization semantics (8.5). The names in the expression are bound,
and the semantic constraints are checked, at the point where the default argument expression appears.
Name lookup and checking of semantic constraints for default arguments in function templates and in
member functions of class templates are performed as described in 14.7.1. [Example:in the following
code,g will be called with the valuef(1) :

int a = 1;
int f(int);
int g(int x = f(a)); // default argument:f(::a)

void h() {
a = 2;
{

int a = 3;
g(); // g(f(::a))

}
}

—end example] [Note: in member function declarations, names in default argument expressions are looked
up as described in 3.4.1. Access checking applies to names in default argument expressions as described in
clause 11.]

6 The default arguments in a member function definition that appears outside of the class definition are added
to the set of default arguments provided by the member function declaration in the class definition. [Exam-
ple:

class C {
void f(int i = 3);
void g(int i, int j = 99);

};

138

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.3.6 Default arguments

void C::f(int i = 3) // error: default argument already
{ } // specified in class scope
void C::g(int i = 88, int j) // in this translation unit,
{ } // C::g can be called with no argument

—end example]

7 Local variables shall not be used in default argument expressions. [Example:

void f()
{

int i;
extern void g(int x = i); // error
// ...

}

—end example]

8 The keywordthis shall not be used in a default argument of a member function. [Example:

class A {
void f(A* p = this) { } // error

};

—end example]

9 Default arguments are evaluated each time the function is called. The order of evaluation of function argu-
ments is unspecified. Consequently, parameters of a function shall not be used in default argument expres-
sions, even if they are not evaluated. Parameters of a function declared before a default argument expres-
sion are in scope and can hide namespace and class member names. [Example:

int a;
int f(int a, int b = a); // error: parametera

// used as default argument
typedef int I;
int g(float I, int b = I(2)); // error: parameterI found
int h(int a, int b = sizeof(a)); // error, parametera used

// in default argument

—end example] Similarly, a nonstatic member shall not be used in a default argument expression, even if it
is not evaluated, unless it appears as the id-expression of a class member access expression (5.2.5) or unless
it is used to form a pointer to member (5.3.1). [Example:the declaration ofX::mem1() in the following
example is ill-formed because no object is supplied for the nonstatic memberX::a used as an initializer.

int b;
class X {

int a;
int mem1(int i = a); // error: nonstatic membera

// used as default argument
int mem2(int i = b); // OK; useX::b
static int b;

};

The declaration ofX::mem2() is meaningful, however, since no object is needed to access the static
memberX::b . Classes, objects, and members are described in clause 9.] A default argument is not part
of the type of a function. [Example:

139

ISO/IEC 14882:1998(E) © ISO/IEC

8.3.6 Default arguments 8 Declarators

int f(int = 0);

void h()
{

int j = f(1);
int k = f(); // OK, meansf(0)

}

int (*p1)(int) = &f;
int (*p2)() = &f; // error: type mismatch

—end example] When a declaration of a function is introduced by way of ausing-declaration(7.3.3), any
default argument information associated with the declaration is made known as well. If the function is
redeclared thereafter in the namespace with additional default arguments, the additional arguments are also
known at any point following the redeclaration where theusing-declarationis in scope.

10 A virtual function call (10.3) uses the default arguments in the declaration of the virtual function deter-
mined by the static type of the pointer or reference denoting the object. An overriding function in a derived
class does not acquire default arguments from the function it overrides. [Example:

struct A {
virtual void f(int a = 7);

};
struct B : public A {

void f(int a);
};
void m()
{

B* pb = new B;
A* pa = pb;
pa->f(); // OK, callspa->B::f(7)
pb->f(); // error: wrong number of arguments forB::f()

}

—end example]

[dcl.fct.def] 8.4 Function definitions

1 Function definitions have the form

function-definition:
decl-specifier-seqopt declarator ctor-initializeropt function-body
decl-specifier-seqopt declarator function-try-block

function-body:
compound-statement

Thedeclaratorin a function-definitionshall have the form

D1 (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

as described in 8.3.5. A function shall be defined only in namespace or class scope.

2 [Example:a simple example of a complete function definition is

int max(int a, int b, int c)
{

int m = (a > b) ? a : b;
return (m > c) ? m : c;

}

Hereint is thedecl-specifier-seq; max(int a, int b, int c) is thedeclarator; { /* ... */ } is
thefunction-body.]

140

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.4 Function definitions

3 A ctor-initializer is used only in a constructor; see 12.1 and 12.6.

4 A cv-qualifier-seqcan be part of a non-static member function declaration, non-static member function def-
inition, or pointer to member function only; see 9.3.2. It is part of the function type.

5 [Note:unused parameters need not be named. For example,

void print(int a, int)
{

printf("a = %d\n",a);
}

—end note]

[dcl.init] 8.5 Initializers

1 A declarator can specify an initial value for the identifier being declared. The identifier designates an
object or reference being initialized. The process of initialization described in the remainder of 8.5 applies
also to initializations specified by other syntactic contexts, such as the initialization of function parameters
with argument expressions (5.2.2) or the initialization of return values (6.6.3).

initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , opt }
{ }

initializer-list:
initializer-clause
initializer-list , initializer-clause

2 Automatic, register, static, and external variables of namespace scope can be initialized by arbitrary expres-
sions involving literals and previously declared variables and functions. [Example:

int f(int);
int a = 2;
int b = f(a);
int c(b);

—end example]

3 [Note:default argument expressions are more restricted; see 8.3.6.

4 The order of initialization of static objects is described in 3.6 and 6.7.]

5 To zero-initializestorage for an object of typeT means:

— if T is a scalar type (3.9), the storage is set to the value of0 (zero) converted toT;

— if T is a non-union class type, the storage for each nonstatic data member and each base-class subobject
is zero-initialized;

— if T is a union type, the storage for its first data member89) is zero-initialized;

— if T is an array type, the storage for each element is zero-initialized;

— if T is a reference type, no initialization is performed.

89)This member must not bestatic , by virtue of the requirements in 9.5.

141

ISO/IEC 14882:1998(E) © ISO/IEC

8.5 Initializers 8 Declarators

To default-initializean object of typeT means:

— if T is a non-POD class type (clause 9), the default constructor forT is called (and the initialization is
ill-formed if T has no accessible default constructor);

— if T is an array type, each element is default-initialized;

— otherwise, the storage for the object is zero-initialized.

A program that calls for default-initialization of an entity of reference type is ill-formed. IfT is a cv-
qualified type, the cv-unqualified version ofT is used for these definitions of zero-initialization and
default-initialization.

6 The memory occupied by any object of static storage duration shall be zero-initialized at program startup
before any other initialization takes place. [Note: in some cases, additional initialization is done later.]

7 An object whose initializer is an empty set of parentheses, i.e.,() , shall be default-initialized.

8 [Note:since() is not permitted by the syntax forinitializer,

X a();

is not the declaration of an object of classX, but the declaration of a function taking no argument and
returning anX. The form() is permitted in certain other initialization contexts (5.3.4, 5.2.3, 12.6.2).]

9 If no initializer is specified for an object, and the object is of (possibly cv-qualified) non-POD class type (or
array thereof), the object shall be default-initialized; if the object is of const-qualified type, the underlying
class type shall have a user-declared default constructor. Otherwise, if no initializer is specified for an
object, the object and its subobjects, if any, have an indeterminate initial value90); if the object or any of its
subobjects are of const-qualified type, the program is ill-formed.

10 An initializer for a static member is in the scope of the member’s class. [Example:

int a;

struct X {
static int a;
static int b;

};

int X::a = 1;
int X::b = a; // X::b = X::a

—end example]

11 The form of initialization (using parentheses or=) is generally insignificant, but does matter when the
entity being initialized has a class type; see below. A parenthesized initializer can be a list of expressions
only when the entity being initialized has a class type.

12 The initialization that occurs in argument passing, function return, throwing an exception (15.1), handling
an exception (15.3), and brace-enclosed initializer lists (8.5.1) is calledcopy-initializationand is equivalent
to the form

T x = a;

The initialization that occurs innew expressions (5.3.4),static_cast expressions (5.2.9), functional
notation type conversions (5.2.3), and base and member initializers (12.6.2) is calleddirect-initialization
and is equivalent to the form

T x(a);

90) This does not apply to aggregate objects with automatic storage duration initialized with an incomplete brace-enclosedinitializer-
list; see 8.5.1.

142

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.5 Initializers

13 If T is a scalar type, then a declaration of the form

T x = { a };

is equivalent to

T x = a;

14 The semantics of initializers are as follows. Thedestination typeis the type of the object or reference being
initialized and thesource typeis the type of the initializer expression. The source type is not defined when
the initializer is brace-enclosed or when it is a parenthesized list of expressions.

— If the destination type is a reference type, see 8.5.3.

— If the destination type is an array of characters or an array ofwchar_t , and the initializer is a string lit-
eral, see 8.5.2.

— Otherwise, if the destination type is an array, see 8.5.1.

— If the destination type is a (possibly cv-qualified) class type:

— If the class is an aggregate (8.5.1), and the initializer is a brace-enclosed list, see 8.5.1.

— If the initialization is direct-initialization, or if it is copy-initialization where the cv-unqualified ver-
sion of the source type is the same class as, or a derived class of, the class of the destination, con-
structors are considered. The applicable constructors are enumerated (13.3.1.3), and the best one is
chosen through overload resolution (13.3). The constructor so selected is called to initialize the
object, with the initializer expression(s) as its argument(s). If no constructor applies, or the overload
resolution is ambiguous, the initialization is ill-formed.

— Otherwise (i.e., for the remaining copy-initialization cases), user-defined conversion sequences that
can convert from the source type to the destination type or (when a conversion function is used) to a
derived class thereof are enumerated as described in 13.3.1.4, and the best one is chosen through
overload resolution (13.3). If the conversion cannot be done or is ambiguous, the initialization is
ill-formed. The function selected is called with the initializer expression as its argument; if the func-
tion is a constructor, the call initializes a temporary of the destination type. The result of the call
(which is the temporary for the constructor case) is then used to direct-initialize, according to the
rules above, the object that is the destination of the copy-initialization. In certain cases, an imple-
mentation is permitted to eliminate the copying inherent in this direct-initialization by constructing
the intermediate result directly into the object being initialized; see 12.2, 12.8.

— Otherwise, if the source type is a (possibly cv-qualified) class type, conversion functions are considered.
The applicable conversion functions are enumerated (13.3.1.5), and the best one is chosen through over-
load resolution (13.3). The user-defined conversion so selected is called to convert the initializer
expression into the object being initialized. If the conversion cannot be done or is ambiguous, the
initialization is ill-formed.

— Otherwise, the initial value of the object being initialized is the (possibly converted) value of the initial-
izer expression. Standard conversions (clause 4) will be used, if necessary, to convert the initializer
expression to the cv-unqualified version of the destination type; no user-defined conversions are consid-
ered. If the conversion cannot be done, the initialization is ill-formed. [Note: an expression of type
“cv1 T” can initialize an object of type“cv2 T” independently of the cv-qualifierscv1andcv2.

int a;
const int b = a;
int c = b;

—end note]

143

ISO/IEC 14882:1998(E) © ISO/IEC

8.5.1 Aggregates 8 Declarators

[dcl.init.aggr] 8.5.1 Aggregates

1 An aggregateis an array or a class (clause 9) with no user-declared constructors (12.1), no private or pro-
tected non-static data members (clause 11), no base classes (clause 10), and no virtual functions (10.3).

2 When an aggregate is initialized theinitializer can be aninitializer-clauseconsisting of a brace-enclosed,
comma-separated list ofinitializers for the members of the aggregate, written in increasing subscript or
member order. If the aggregate contains subaggregates, this rule applies recursively to the members of the
subaggregate. [Example:

struct A {
int x;
struct B {

int i;
int j;

} b;
} a = { 1, { 2, 3 } };

initializesa.x with 1,a.b.i with 2,a.b.j with 3.]

3 An aggregate that is a class can also be initialized with a single expression not enclosed in braces, as
described in 8.5.

4 An array of unknown size initialized with a brace-enclosedinitializer-list containingn initializers, wheren
shall be greater than zero, is defined as havingn elements (8.3.4). [Example:

int x[] = { 1, 3, 5 };

declares and initializesx as a one-dimensional array that has three elements since no size was specified and
there are three initializers.] An empty initializer list{} shall not be used as the initializer for an array of
unknown bound.91)

5 Static data members are not considered members of the class for purposes of aggregate initialization.
[Example:

struct A {
int i;
static int s;
int j;

} a = { 1, 2 };

Here, the second initializer 2 initializesa.j and not the static data memberA::s .]

6 An initializer-list is ill-formed if the number ofinitializers exceeds the number of members or elements to
initialize. [Example:

char cv[4] = { ’a’, ’s’, ’d’, ’f’, 0 }; // error

is ill-formed.]

7 If there are fewerinitializers in the list than there are members in the aggregate, then each member not
explicitly initialized shall be default-initialized (8.5). [Example:

struct S { int a; char* b; int c; };
S ss = { 1, "asdf" };

initializes ss.a with 1, ss.b with "asdf" , and ss.c with the value of an expression of the form
int() , that is,0.]

8 An initializer for an aggregate member that is an empty class shall have the form of an emptyinitializer-list
{}. [Example:

91)The syntax provides for emptyinitializer-lists, but nonetheless C++ does not have zero length arrays.

144

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.5.1 Aggregates

struct S { };
struct A {

S s;
int i;

} a = { { } , 3 };

—end example] An empty initializer-list can be used to initialize any aggregate. If the aggregate is not an
empty class, then each member of the aggregate shall be initialized with a value of the formT() (5.2.3),
whereT represents the type of the uninitialized member.

9 If an incomplete or emptyinitializer-list leaves a member of reference type uninitialized, the program is
ill-formed.

10 When initializing a multi-dimensional array, theinitializers initialize the elements with the last (rightmost)
index of the array varying the fastest (8.3.4). [Example:

int x[2][2] = { 3, 1, 4, 2 };

initializesx[0][0] to 3, x[0][1] to 1, x[1][0] to 4, andx[1][1] to 2. On the other hand,

float y[4][3] = {
{ 1 }, { 2 }, { 3 }, { 4 }

};

initializes the first column ofy (regarded as a two-dimensional array) and leaves the rest zero.]

11 Braces can be elided in aninitializer-list as follows. If theinitializer-list begins with a left brace, then the
succeeding comma-separated list ofinitializers initializes the members of a subaggregate; it is erroneous
for there to be more initializers than members. If, however, theinitializer-list for a subaggregate does not
begin with a left brace, then only enoughinitializers from the list are taken to initialize the members of the
subaggregate; any remaininginitializers are left to initialize the next member of the aggregate of which the
current subaggregate is a member. [Example:

float y[4][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a completely-braced initialization: 1, 3, and 5 initialize the first row of the arrayy[0] , namely
y[0][0] , y[0][1] , andy[0][2] . Likewise the next two lines initializey[1] andy[2] . The initial-
izer ends early and thereforey[3] ’s elements are initialized as if explicitly initialized with an expression
of the formfloat() , that is, are initialized with0.0 . In the following example, braces in theinitializer-
list are elided; however theinitializer-list has the same effect as the completely-bracedinitializer-list of the
above example,

float y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The initializer fory begins with a left brace, but the one fory[0] does not, therefore three elements from
the list are used. Likewise the next three are taken successively fory[1] andy[2] . —end example]

12 All implicit type conversions (clause 4) are considered when initializing the aggregate member with an ini-
tializer from aninitializer-list. If the initializer can initialize a member, the member is initialized. Other-
wise, if the member is itself a non-empty subaggregate, brace elision is assumed and theinitializer is con-
sidered for the initialization of the first member of the subaggregate.

145

ISO/IEC 14882:1998(E) © ISO/IEC

8.5.1 Aggregates 8 Declarators

[Example:

struct A {
int i;
operator int();

};
struct B {

A a1, a2;
int z;

};
A a;
B b = { 4, a, a };

Braces are elided around theinitializer for b.a1.i . b.a1.i is initialized with 4,b.a2 is initialized with
a, b.z is initialized with whatevera.operator int() returns.]

13 [Note:An aggregate array or an aggregate class may contain members of a class type with a user-declared
constructor (12.1). Initialization of these aggregate objects is described in 12.6.1.]

14 When an aggregate with static storage duration is initialized with a brace-enclosedinitializer-list, if all the
member initializer expressions are constant expressions, and the aggregate is a POD type, the initialization
shall be done during the static phase of initialization (3.6.2); otherwise, it is unspecified whether the initial-
ization of members with constant expressions takes place during the static phase or during the dynamic
phase of initialization.

15 When a union is initialized with a brace-enclosed initializer, the braces shall only contain an initializer for
the first member of the union. [Example:

union u { int a; char* b; };

u a = { 1 };
u b = a;
u c = 1; // error
u d = { 0, "asdf" }; // error
u e = { "asdf" }; // error

—end example] [Note: as described above, the braces around the initializer for a union member can be
omitted if the union is a member of another aggregate.]

[dcl.init.string] 8.5.2 Character arrays

1 A char array (whether plainchar , signed char , or unsigned char) can be initialized by astring-
literal (optionally enclosed in braces); awchar_t array can be initialized by a widestring-literal (option-
ally enclosed in braces); successive characters of thestring-literal initialize the members of the array.
[Example:

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with astring-literal. Note that because’\n’ is a
single character and because a trailing’\0’ is appended,sizeof(msg) is 25 .]

2 There shall not be more initializers than there are array elements. [Example:

char cv[4] = "asdf"; // error

is ill-formed since there is no space for the implied trailing’\0’ .]

146

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.5.2 Character arrays

[dcl.init.ref] 8.5.3 References

1 A variable declared to be aT&, that is“reference to typeT” (8.3.2), shall be initialized by an object, or
function, of typeT or by an object that can be converted into aT. [Example:

int g(int);
void f()
{

int i;
int& r = i; // r refers toi
r = 1; // the value ofi becomes 1
int* p = &r; // p points toi
int& rr = r; // rr refers to whatr refers to, that is, toi
int (&rg)(int) = g; // rg refers to the functiong
rg(i); // calls functiong
int a[3];
int (&ra)[3] = a; // ra refers to the arraya
ra[1] = i; // modifiesa[1]

}

—end example]

2 A reference cannot be changed to refer to another object after initialization. Note that initialization of a ref-
erence is treated very differently from assignment to it. Argument passing (5.2.2) and function value return
(6.6.3) are initializations.

3 The initializer can be omitted for a reference only in a parameter declaration (8.3.5), in the declaration of a
function return type, in the declaration of a class member within its class declaration (9.2), and where the
extern specifier is explicitly used. [Example:

int& r1; // error: initializer missing
extern int& r2; // OK

—end example]

4 Given types“cv1T1” and“cv2T2,” “cv1T1” is reference-relatedto “cv2T2” if T1 is the same type as
T2, or T1 is a base class ofT2. “cv1T1” is reference-compatiblewith “cv2T2” if T1 is reference-related
to T2 andcv1 is the same cv-qualification as, or greater cv-qualification than,cv2. For purposes of over-
load resolution, cases for whichcv1 is greater cv-qualification thancv2 are identified asreference-
compatible with added qualification(see 13.3.3.2). In all cases where the reference-related or reference-
compatible relationship of two types is used to establish the validity of a reference binding, andT1 is a base
class ofT2, a program that necessitates such a binding is ill-formed ifT1 is an inaccessible (clause 11) or
ambiguous (10.2) base class ofT2.

5 A reference to type“cv1T1” is initialized by an expression of type“cv2T2” as follows:

— If the initializer expression

— is an lvalue (but is not a bit-field), and“cv1T1” is reference-compatible with“cv2T2,” or

— has a class type (i.e.,T2 is a class type) and can be implicitly converted to an lvalue of type
“cv3T3,” where“cv1T1” is reference-compatible with“cv3T3” 92) (this conversion is selected by
enumerating the applicable conversion functions (13.3.1.6) and choosing the best one through over-
load resolution (13.3)),

then the reference is bound directly to the initializer expression lvalue in the first case, and the reference
is bound to the lvalue result of the conversion in the second case. In these cases the reference is said to
bind directlyto the initializer expression. [Note: the usual lvalue-to-rvalue (4.1), array-to-pointer (4.2),
and function-to-pointer (4.3) standard conversions are not needed, and therefore are suppressed, when
such direct bindings to lvalues are done.]

92)This requires a conversion function (12.3.2) returning a reference type.

147

ISO/IEC 14882:1998(E) © ISO/IEC

8.5.3 References 8 Declarators

[Example:

double d = 2.0;
double& rd = d; // rd refers tod
const double& rcd = d; // rcd refers tod

struct A { };
struct B : public A { } b;
A& ra = b; // ra refers toA sub-object inb
const A& rca = b; // rca refers toA sub-object inb

—end example]

— Otherwise, the reference shall be to a non-volatile const type (i.e.,cv1shall beconst). [Example:

double& rd2 = 2.0; // error: not an lvalue and reference notconst
int i = 2;
double& rd3 = i; // error: type mismatch and reference notconst

—end example]

— If the initializer expression is an rvalue, withT2 a class type, and“cv1T1” is reference-compatible
with “cv2T2,” the reference is bound in one of the following ways (the choice is implementation-
defined):

— The reference is bound to the object represented by the rvalue (see 3.10) or to a sub-object within
that object.

— A temporary of type“cv1T2” [sic] is created, and a constructor is called to copy the entire
rvalue object into the temporary. The reference is bound to the temporary or to a sub-object
within the temporary.93)

The constructor that would be used to make the copy shall be callable whether or not the copy is
actually done. [Example:

struct A { };
struct B : public A { } b;
extern B f();
const A& rca = f(); // Either bound to theA sub-object of theB rvalue,

// or the entireB object is copied and the reference
// is bound to the A sub-object of the copy

—end example]

— Otherwise, a temporary of type“cv1T1” is created and initialized from the initializer expression
using the rules for a non-reference copy initialization (8.5). The reference is then bound to the tem-
porary. If T1 is reference-related toT2, cv1 must be the same cv-qualification as, or greater cv-
qualification than,cv2; otherwise, the program is ill-formed. [Example:

const double& rcd2 = 2; // rcd2 refers to temporary with value2.0
const volatile int cvi = 1;
const int& r = cvi; // error: type qualifiers dropped

—end example]

6 [Note:12.2 describes the lifetime of temporaries bound to references.]

93) Clearly, if the reference initialization being processed is one for the first argument of a copy constructor call, an implementation
must eventually choose the first alternative (binding without copying) to avoid infinite recursion.

148

© ISO/IEC ISO/IEC 14882:1998(E)

9 Classes [class]

1 A class is a type. Its name becomes aclass-name(9.1) within its scope.

class-name:
identifier
template-id

Class-specifiers andelaborated-type-specifiers (7.1.5.3) are used to makeclass-names. An object of a class
consists of a (possibly empty) sequence of members and base class objects.

class-specifier:
class-head{ member-specificationopt }

class-head:
class-key identifieropt base-clauseopt

class-key nested-name-specifier identifier base-clauseopt

class-key nested-name-specifieropt template-id base-clauseopt

class-key:
class
struct
union

2 A class-nameis inserted into the scope in which it is declared immediately after theclass-nameis seen.
The class-nameis also inserted into the scope of the class itself. For purposes of access checking, the
inserted class name is treated as if it were a public member name. Aclass-specifieris commonly referred
to as a class definition. A class is considered defined after the closing brace of itsclass-specifierhas been
seen even though its member functions are in general not yet defined.

3 Complete objects and member subobjects of class type shall have nonzero size.94) [Note:class objects can
be assigned, passed as arguments to functions, and returned by functions (except objects of classes for
which copying has been restricted; see 12.8). Other plausible operators, such as equality comparison, can
be defined by the user; see 13.5.]

4 A structureis a class defined with theclass-keystruct ; its members and base classes (clause 10) are pub-
lic by default (clause 11). Aunion is a class defined with theclass-keyunion ; its members are public by
default and it holds only one data member at a time (9.5). [Note:aggregates of class type are described in
8.5.1.] APOD-structis an aggregate class that has no non-static data members of type pointer to member,
non-POD-struct, non-POD-union (or array of such types) or reference, and has no user-defined copy assign-
ment operator and no user-defined destructor. Similarly, aPOD-unionis an aggregate union that has no
non-static data members of type pointer to member, non-POD-struct, non-POD-union (or array of such
types) or reference, and has no user-defined copy assignment operator and no user-defined destructor. A
POD classis a class that is either a POD-struct or a POD-union.

[class.name] 9.1 Class names

1 A class definition introduces a new type. [Example:

94)Base class subobjects are not so constrained.

149

ISO/IEC 14882:1998(E) © ISO/IEC

9.1 Class names 9 Classes

struct X { int a; };
struct Y { int a; };
X a1;
Y a2;
int a3;

declares three variables of three different types. This implies that

a1 = a2; // error: Y assigned toX
a1 = a3; // error: int assigned toX

are type mismatches, and that

int f(X);
int f(Y);

declare an overloaded (clause 13) functionf() and not simply a single functionf() twice. For the same
reason,

struct S { int a; };
struct S { int a; }; // error, double definition

is ill-formed because it definesS twice.]

2 A class definition introduces the class name into the scope where it is defined and hides any class, object,
function, or other declaration of that name in an enclosing scope (3.3). If a class name is declared in a
scope where an object, function, or enumerator of the same name is also declared, then when both declara-
tions are in scope, the class can be referred to only using anelaborated-type-specifier(3.4.4). [Example:

struct stat {
// ...

};

stat gstat; // use plainstat to
// define variable

int stat(struct stat*); // redeclarestat as function

void f()
{

struct stat* ps; // struct prefix needed
// to namestruct stat
// ...

stat(ps); // call stat()
// ...

}

—end example] A declarationconsisting solely ofclass-key identifier ;is either a redeclaration of the
name in the current scope or a forward declaration of the identifier as a class name. It introduces the class
name into the current scope. [Example:

struct s { int a; };

void g()
{

struct s; // hide globalstruct s
// with a local declaration

s* p; // refer to localstruct s
struct s { char* p; }; // define localstruct s
struct s; // redeclaration, has no effect

}

—end example] [Note:Such declarations allow definition of classes that refer to each other. [Example:

150

© ISO/IEC ISO/IEC 14882:1998(E)

9 Classes 9.1 Class names

class Vector;

class Matrix {
// ...
friend Vector operator*(Matrix&, Vector&);

};

class Vector {
// ...
friend Vector operator*(Matrix&, Vector&);

};

Declaration offriend s is described in 11.4, operator functions in 13.5.]]

3 An elaborated-type-specifier(7.1.5.3) can also be used as atype-specifieras part of a declaration. It differs
from a class declaration in that if a class of the elaborated name is in scope the elaborated name will refer to
it. [Example:

struct s { int a; };

void g(int s)
{

struct s* p = new struct s; // global s
p->a = s; // local s

}

—end example]

4 [Note:The declaration of a class name takes effect immediately after theidentifier is seen in the class defi-
nition orelaborated-type-specifier. For example,

class A * A;

first specifiesA to be the name of a class and then redefines it as the name of a pointer to an object of that
class. This means that the elaborated formclass A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided.]

5 A typedef-name(7.1.3) that names a class is aclass-name, but shall not be used in anelaborated-type-
specifier; see also 7.1.3.

[class.mem] 9.2 Class members

member-specification:
member-declaration member-specificationopt

access-specifier: member-specificationopt

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;
function-definition ; opt

:: opt nested-name-specifiertemplate opt unqualified-id ;
using-declaration
template-declaration

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifieropt

declarator constant-initializeropt

identifieropt : constant-expression

151

ISO/IEC 14882:1998(E) © ISO/IEC

9.2 Class members 9 Classes

pure-specifier:
= 0

constant-initializer:
= constant-expression

1 Themember-specificationin a class definition declares the full set of members of the class; no member can
be added elsewhere. Members of a class are data members, member functions (9.3), nested types, and enu-
merators. Data members and member functions are static or nonstatic; see 9.4. Nested types are classes
(9.1, 9.7) and enumerations (7.2) defined in the class, and arbitrary types declared as members by use of a
typedef declaration (7.1.3). The enumerators of an enumeration (7.2) defined in the class are members of
the class. Except when used to declare friends (11.4) or to introduce the name of a member of a base class
into a derived class (7.3.3,11.3),member-declarations declare members of the class, and each such
member-declarationshall declare at least one member name of the class. A member shall not be declared
twice in themember-specification, except that a nested class or member class template can be declared and
then later defined.

2 A class is considered a completely-defined object type (3.9) (or complete type) at the closing} of the
class-specifier. Within the classmember-specification, the class is regarded as complete within function
bodies, default arguments and constructorctor-initializers (including such things in nested classes). Other-
wise it is regarded as incomplete within its own classmember-specification.

3 [Note: a single name can denote several function members provided their types are sufficiently different
(clause 13).]

4 A member-declaratorcan contain aconstant-initializeronly if it declares astatic member (9.4) of inte-
gral or enumeration type, see 9.4.2.

5 A member can be initialized using a constructor; see 12.1. [Note: see clause 12 for a description of con-
structors and other special member functions.]

6 A member shall not beauto , extern , or register .

7 Thedecl-specifier-seqis omitted in constructor, destructor, and conversion function declarations only. The
member-declarator-listcan be omitted only after aclass-specifier, anenum-specifier, or adecl-specifier-
seqof the formfriend elaborated-type-specifier. A pure-specifiershall be used only in the declaration
of a virtual function (10.3).

8 Non-static (9.4) members that are class objects shall be objects of previously defined classes. In partic-
ular, a classcl shall not contain an object of classcl , but it can contain a pointer or reference to an object
of classcl . When an array is used as the type of a nonstatic member all dimensions shall be specified.

9 Except when used to form a pointer to member (5.3.1), when used in the body of a nonstatic member func-
tion of its class or of a class derived from its class (9.3.1), or when used in amem-initializerfor a construc-
tor for its class or for a class derived from its class (12.6.2), a nonstatic data or function member of a class
shall only be referred to with the class member access syntax (5.2.5).

10 [Note: the type of a nonstatic member function is an ordinary function type, and the type of a nonstatic data
member is an ordinary object type. There are no special member function types or data member types.]

11 [Example:A simple example of a class definition is

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;

};

which contains an array of twenty characters, an integer, and two pointers to similar structures. Once this
definition has been given, the declaration

152

© ISO/IEC ISO/IEC 14882:1998(E)

9 Classes 9.2 Class members

tnode s, *sp;

declaress to be atnode andsp to be a pointer to atnode . With these declarations,sp->count refers
to thecount member of the structure to whichsp points;s.left refers to theleft subtree pointer of
the structures ; ands.right->tword[0] refers to the initial character of thetword member of the
right subtree ofs .]

12 Nonstatic data members of a (non-union) class declared without an interveningaccess-specifierare allo-
cated so that later members have higher addresses within a class object. The order of allocation of nonstatic
data members separated by anaccess-specifieris unspecified (11.1). Implementation alignment require-
ments might cause two adjacent members not to be allocated immediately after each other; so might
requirements for space for managing virtual functions (10.3) and virtual base classes (10.1).

13 If T is the name of a class, then each of the following shall have a name different fromT:

— every data member of classT;

— every member of classT that is itself a type;

— every enumerator of every member of classT that is an enumerated type; and

— every member of every anonymous union that is a member of classT.

14 Two POD-struct (clause 9) types are layout-compatible if they have the same number of members, and cor-
responding members (in order) have layout-compatible types (3.9).

15 Two POD-union (clause 9) types are layout-compatible if they have the same number of members, and cor-
responding members (in any order) have layout-compatible types (3.9).

16 If a POD-union contains two or more POD-structs that share a common initial sequence, and if the POD-
union object currently contains one of these POD-structs, it is permitted to inspect the common initial part
of any of them. Two POD-structs share a common initial sequence if corresponding members have layout-
compatible types (and, for bit-fields, the same widths) for a sequence of one or more initial members.

17 A pointer to a POD-struct object, suitably converted using areinterpret_cast , points to its initial
member (or if that member is a bit-field, then to the unit in which it resides) and vice versa. [Note:There
might therefore be unnamed padding within a POD-struct object, but not at its beginning, as necessary to
achieve appropriate alignment.]

[class.mfct] 9.3 Member functions

1 Functions declared in the definition of a class, excluding those declared with afriend specifier (11.4),
are called member functions of that class. A member function may be declaredstatic in which case it is
a static member function of its class (9.4); otherwise it is anonstaticmember function of its class (9.3.1,
9.3.2).

2 A member function may be defined (8.4) in its class definition, in which case it is aninline member func-
tion (7.1.2), or it may be defined outside of its class definition if it has already been declared but not
defined in its class definition. A member function definition that appears outside of the class definition
shall appear in a namespace scope enclosing the class definition. Except for member function definitions
that appear outside of a class definition, and except for explicit specializations of template member func-
tions (14.7) appearing outside of the class definition, a member function shall not be redeclared.

3 An inline member function (whether static or nonstatic) may also be defined outside of its class defini-
tion provided either its declaration in the class definition or its definition outside of the class definition
declares the function asinline . [Note: member functions of a class in namespace scope have external
linkage. Member functions of a local class (9.8) have no linkage. See 3.5.]

4 There shall be at most one definition of a non-inline member function in a program; no diagnostic is
required. There may be more than oneinline member function definition in a program. See 3.2 and
7.1.2.

153

ISO/IEC 14882:1998(E) © ISO/IEC

9.3 Member functions 9 Classes

5 If the definition of a member function is lexically outside its class definition, the member function name
shall be qualified by its class name using the:: operator. [Note:a name used in a member function defini-
tion (that is, in theparameter-declaration-clauseincluding the default arguments (8.3.6), or in the member
function body, or, for a constructor function (12.1), in amem-initializer expression (12.6.2)) is
looked up as described in 3.4.] [Example:

struct X {
typedef int T;
static T count;
void f(T);

};
void X::f(T t = count) { }

The member functionf of classX is defined in global scope; the notationX::f specifies that the function
f is a member of classX and in the scope of classX. In the function definition, the parameter typeT refers
to the typedef memberT declared in classX and the default argumentcount refers to the static data mem-
bercount declared in classX.]

6 A static local variable in a member function always refers to the same object, whether or not the mem-
ber function isinline .

7 Member functions may be mentioned infriend declarations after their class has been defined.

8 Member functions of a local class shall be defined inline in their class definition, if they are defined at all.

9 [Note:a member function can be declared (but not defined) using a typedef for a function type. The result-
ing member function has exactly the same type as it would have if the function declarator were provided
explicitly, see 8.3.5. For example,

typedef void fv(void);
typedef void fvc(void) const;
struct S {

fv memfunc1; // equivalent to:void memfunc1(void);
void memfunc2();
fvc memfunc3; // equivalent to:void memfunc3(void) const;

};
fv S::* pmfv1 = &S::memfunc1;
fv S::* pmfv2 = &S::memfunc2;
fvc S::* pmfv3 = &S::memfunc3;

Also see 14.3.]

[class.mfct.nonstatic] 9.3.1 Nonstatic member functions

1 A nonstaticmember function may be called for an object of its class type, or for an object of a class derived
(clause 10) from its class type, using the class member access syntax (5.2.5, 13.3.1.1). A nonstatic member
function may also be called directly using the function call syntax (5.2.2, 13.3.1.1)

— from within the body of a member function of its class or of a class derived from its class, or

— from amem-initializer(12.6.2) for a constructor for its class or for a class derived from its class.

If a nonstatic member function of a classX is called for an object that is not of typeX, or of a type derived
from X, the behavior is undefined.

2 When anid-expression(5.1) that is not part of a class member access syntax (5.2.5) and not used to form a
pointer to member (5.3.1) is used in the body of a nonstatic member function of classX or used in the
mem-initializerfor a constructor of classX, if name lookup (3.4.1) resolves the name in theid-expressionto
a nonstatic nontype member of classX or of a base class ofX, theid-expressionis transformed into a class
member access expression (5.2.5) using(*this) (9.3.2) as thepostfix-expressionto the left of the.
operator. The member name then refers to the member of the object for which the function is called. Simi-
larly during name lookup, when anunqualified-id (5.1) used in the definition of a member function for
classX resolves to astatic member, an enumerator or a nested type of classX or of a base class ofX, the

154

© ISO/IEC ISO/IEC 14882:1998(E)

9 Classes 9.3.1 Nonstatic member functions

unqualified-idis transformed into aqualified-id(5.1) in which thenested-name-specifiernames the class of
the member function. [Example:

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;
void set(char*, tnode* l, tnode* r);

};

void tnode::set(char* w, tnode* l, tnode* r)
{

count = strlen(w)+1;
if (sizeof(tword)<=count)

perror("tnode string too long");
strcpy(tword,w);
left = l;
right = r;

}

void f(tnode n1, tnode n2)
{

n1.set("abc",&n2,0);
n2.set("def",0,0);

}

In the body of the member functiontnode::set , the member namestword , count , left , and
right refer to members of the object for which the function is called. Thus, in the call
n1.set("abc",&n2,0) , tword refers ton1.tword , and in the call n2.set("def",0,0) , it
refers ton2.tword . The functionsstrlen , perror , and strcpy are not members of the class
tnode and should be declared elsewhere.95)]

3 A nonstatic member function may be declaredconst , volatile , or const volatile . Thesecv-
qualifiers affect the type of thethis pointer (9.3.2). They also affect the function type (8.3.5) of the
member function; a member function declaredconst is a const member function, a member function
declaredvolatile is avolatile member function and a member function declaredconst volatile is
aconst volatilemember function. [Example:

struct X {
void g() const;
void h() const volatile;

};

X::g is aconst member function andX::h is aconst volatile member function.]

4 A nonstatic member function may be declaredvirtual (10.3) orpure virtual(10.4).

[class.this] 9.3.2 Thethis pointer

1 In the body of a nonstatic (9.3) member function, the keywordthis is a non-lvalue expression whose
value is the address of the object for which the function is called. The type ofthis in a member function
of a classX is X* . If the member function is declaredconst , the type ofthis is const X* , if the mem-
ber function is declaredvolatile , the type ofthis is volatile X* , and if the member function is
declaredconst volatile , the type ofthis is const volatile X* .

2 In a const member function, the object for which the function is called is accessed through aconst
access path; therefore, aconst member function shall not modify the object and its non-static data mem-
bers. [Example:

95)See, for example,<cstring> (21.4).

155

ISO/IEC 14882:1998(E) © ISO/IEC

9.3.2 Thethis pointer 9 Classes

struct s {
int a;
int f() const;
int g() { return a++; }
int h() const { return a++; } // error

};

int s::f() const { return a; }

The a++ in the body ofs::h is ill-formed because it tries to modify (a part of) the object for which
s::h() is called. This is not allowed in aconst member function becausethis is a pointer toconst ;
that is,*this hasconst type.]

3 Similarly, volatile semantics (7.1.5.1) apply involatile member functions when accessing the
object and its non-static data members.

4 A cv-qualifiedmember function can be called on an object-expression (5.2.5) only if the object-expression
is as cv-qualified or less-cv-qualified than the member function. [Example:

void k(s& x, const s& y)
{

x.f();
x.g();
y.f();
y.g(); // error

}

The cally.g() is ill-formed becausey is const ands::g() is a non-const member function, that is,
s::g() is less-qualified than the object-expression y.]

5 Constructors (12.1) and destructors (12.4) shall not be declaredconst , volatile or const
volatile . [Note: However, these functions can be invoked to create and destroy objects with cv-
qualified types, see (12.1) and (12.4).]

[class.static] 9.4 Static members

1 A data or function member of a class may be declaredstatic in a class definition, in which case it is a
static memberof the class.

2 A static members of classX may be referred to using thequalified-idexpressionX::s ; it is not neces-
sary to use the class member access syntax (5.2.5) to refer to astatic member. Astatic member may
be referred to using the class member access syntax, in which case theobject-expressionis always evalu-
ated. [Example:

class process {
public:

static void reschedule();
};
process& g();

void f()
{

process::reschedule(); // OK: no object necessary
g().reschedule(); // g() is called

}

—end example] A static member may be referred to directly in the scope of its class or in the scope of a
class derived (clause 10) from its class; in this case, thestatic member is referred to as if aqualified-id
expression was used, with thenested-name-specifierof thequalified-idnaming the class scope from which
the static member is referenced. [Example:

156

© ISO/IEC ISO/IEC 14882:1998(E)

9 Classes 9.4 Static members

int g();
struct X {

static int g();
};
struct Y : X {

static int i;
};
int Y::i = g(); // equivalent toY::g();

—end example]

3 If an unqualified-id (5.1) is used in the definition of astatic member following the member’s
declarator-id, and name lookup (3.4.1) finds that theunqualified-idrefers to astatic member, enumera-
tor, or nested type of the member’s class (or of a base class of the member’s class), theunqualified-id is
transformed into aqualified-id expression in which thenested-name-specifiernames the class scope from
which the member is referenced. The definition of astatic member shall not use directly the names of
the nonstatic members of its class or of a base class of its class (including as operands of thesizeof oper-
ator). The definition of astatic member may only refer to these members to form pointer to members
(5.3.1) or with the class member access syntax (5.2.5).

4 Static members obey the usual class member access rules (clause 11). When used in the declaration of a
class member, thestatic specifier shall only be used in the member declarations that appear within the
member-specificationof the class declaration. [Note: it cannot be specified in member declarations that
appear in namespace scope.]

[class.static.mfct] 9.4.1 Static member functions

1 [Note:the rules described in 9.3 apply tostatic member functions.]

2 [Note:a static member function does not have athis pointer (9.3.2).] Astatic member function
shall not bevirtual . There shall not be astatic and a nonstatic member function with the same name
and the same parameter types (13.1). Astatic member function shall not be declaredconst ,
volatile , orconst volatile .

[class.static.data] 9.4.2 Static data members

1 A static data member is not part of the subobjects of a class. There is only one copy of astatic data
member shared by all the objects of the class.

2 The declaration of astatic data member in its class definition is not a definition and may be of an
incomplete type other than cv-qualifiedvoid . The definition for astatic data member shall appear in a
namespace scope enclosing the member’s class definition. In the definition at namespace scope, the name
of the static data member shall be qualified by its class name using the:: operator. Theinitializer
expression in the definition of astatic data member is in the scope of its class (3.3.6). [Example:

class process {
static process* run_chain;
static process* running;

};

process* process::running = get_main();
process* process::run_chain = running;

The static data memberrun_chain of classprocess is defined in global scope; the notation
process::run_chain specifies that the memberrun_chain is a member of classprocess and in
the scope of classprocess . In thestatic data member definition, theinitializer expression refers to
thestatic data memberrunning of classprocess .]

3 [Note: once thestatic data member has been defined, it exists even if no objects of its class have been
created. [Example:in the example above,run_chain and running exist even if no objects of class
process are created by the program.]]

157

ISO/IEC 14882:1998(E) © ISO/IEC

9.4.2 Static data members 9 Classes

4 If a static data member is ofconst integral orconst enumeration type, its declaration in the class
definition can specify aconstant-initializerwhich shall be an integral constant expression (5.19). In that
case, the member can appear in integral constant expressions within its scope. The member shall still be
defined in a namespace scope if it is used in the program and the namespace scope definition shall not con-
tain aninitializer.

5 There shall be exactly one definition of astatic data member that is used in a program; no diagnostic is
required; see 3.2. Unnamed classes and classes contained directly or indirectly within unnamed classes
shall not containstatic data members. [Note: this is because there is no mechanism to provide the defi-
nitions for suchstatic data members.]

6 Static data members of a class in namespace scope have external linkage (3.5). A local class shall not
havestatic data members.

7 Static data members are initialized and destroyed exactly like non-local objects (3.6.2, 3.6.3).

8 A static data member shall not bemutable (7.1.1).

[class.union] 9.5 Unions

1 In a union, at most one of the data members can be active at any time, that is, the value of at most one of
the data members can be stored in a union at any time. [Note: one special guarantee is made in order to
simplify the use of unions: If a POD-union contains several POD-structs that share a common initial
sequence (9.2), and if an object of this POD-union type contains one of the POD-structs, it is permitted to
inspect the common initial sequence of any of POD-struct members; see 9.2.] The size of a union is suffi-
cient to contain the largest of its data members. Each data member is allocated as if it were the sole mem-
ber of a struct. A union can have member functions (including constructors and destructors), but not virtual
(10.3) functions. A union shall not have base classes. A union shall not be used as a base class. An object
of a class with a non-trivial constructor (12.1), a non-trivial copy constructor (12.8), a non-trivial destructor
(12.4), or a non-trivial copy assignment operator (13.5.3, 12.8) cannot be a member of a union, nor can an
array of such objects. If a union contains astatic data member, or a member of reference type, the pro-
gram is ill-formed.

2 A union of the form

union { member-specification} ;

is called an anonymous union; it defines an unnamed object of unnamed type. Themember-specificationof
an anonymous union shall only define non-static data members. [Note: nested types and functions cannot
be declared within an anonymous union.] The names of the members of an anonymous union shall be dis-
tinct from the names of any other entity in the scope in which the anonymous union is declared. For the
purpose of name lookup, after the anonymous union definition, the members of the anonymous union are
considered to have been defined in the scope in which the anonymous union is declared. [Example:

void f()
{

union { int a; char* p; };
a = 1;
// ...
p = "Jennifer";
// ...

}

Herea andp are used like ordinary (nonmember) variables, but since they are union members they have
the same address.]

3 Anonymous unions declared in a named namespace or in the global namespace shall be declaredstatic .
Anonymous unions declared at block scope shall be declared with any storage class allowed for a block-
scope variable, or with no storage class. A storage class is not allowed in a declaration of an anonymous
union in a class scope. An anonymous union shall not haveprivate or protected members (clause
11). An anonymous union shall not have function members.

158

© ISO/IEC ISO/IEC 14882:1998(E)

9 Classes 9.5 Unions

4 A union for which objects or pointers are declared is not an anonymous union. [Example:

union { int aa; char* p; } obj, *ptr = &obj;
aa = 1; // error
ptr->aa = 1; // OK

The assignment to plainaa is ill formed since the member name is not visible outside the union, and even
if it were visible, it is not associated with any particular object.] [Note: Initialization of unions with no
user-declared constructors is described in (8.5.1).]

[class.bit] 9.6 Bit-fields

1 A member-declaratorof the form

identifieropt : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. The bit-field attribute is not part
of the type of the class member. Theconstant-expressionshall be an integral constant-expression with a
value greater than or equal to zero. The constant-expression may be larger than the number of bits in the
object representation (3.9) of the bit-field’s type; in such cases the extra bits are used as padding bits and do
not participate in the value representation (3.9) of the bit-field. Allocation of bit-fields within a class object
is implementation-defined. Alignment of bit-fields is implementation-defined. Bit-fields are packed into
some addressable allocation unit. [Note: bit-fields straddle allocation units on some machines and not on
others. Bit-fields are assigned right-to-left on some machines, left-to-right on others.]

2 A declaration for a bit-field that omits theidentifier declares anunnamedbit-field. Unnamed bit-fields are
not members and cannot be initialized. [Note: an unnamed bit-field is useful for padding to conform to
externally-imposed layouts.] As a special case, an unnamed bit-field with a width of zero specifies align-
ment of the next bit-field at an allocation unit boundary. Only when declaring an unnamed bit-field may
theconstant-expressionbe a value equal to zero.

3 A bit-field shall not be a static member. A bit-field shall have integral or enumeration type (3.9.1). It is
implementation-defined whether a plain (neither explicitly signed nor unsigned)char , short , int or
long bit-field is signed or unsigned. Abool value can successfully be stored in a bit-field of any nonzero
size. The address-of operator& shall not be applied to a bit-field, so there are no pointers to bit-fields. A
non-const reference shall not be bound to a bit-field (8.5.3). [Note: if the initializer for a reference of type
const T& is an lvalue that refers to a bit-field, the reference is bound to a temporary initialized to hold the
value of the bit-field; the reference is not bound to the bit-field directly. See 8.5.3.]

4 If the valuetrue or false is stored into a bit-field of typebool of any size (including a one bit bit-
field), the originalbool value and the value of the bit-field shall compare equal. If the value of an enu-
merator is stored into a bit-field of the same enumeration type and the number of bits in the bit-field is large
enough to hold all the values of that enumeration type, the original enumerator value and the value of the
bit-field shall compare equal. [Example:

enum BOOL { f=0, t=1 };
struct A {

BOOL b:1;
};
A a;
void f() {

a.b = t;
if (a.b == t) // shall yieldtrue
{ /* ... */ }

}

—end example]

159

ISO/IEC 14882:1998(E) © ISO/IEC

9.7 Nested class declarations 9 Classes

[class.nest] 9.7 Nested class declarations

1 A class can be defined within another class. A class defined within another is called anestedclass. The
name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class.
Except by using explicit pointers, references, and object names, declarations in a nested class can use only
type names, static members, and enumerators from the enclosing class. [Example:

int x;
int y;

class enclose {
public:

int x;
static int s;

class inner {

void f(int i)
{

int a = sizeof(x); // error: refers toenclose::x
x = i; // error: assign toenclose::x
s = i; // OK: assign toenclose::s
::x = i; // OK: assign to globalx
y = i; // OK: assign to globaly

}

void g(enclose* p, int i)
{

p->x = i; // OK: assign toenclose::x
}

};
};

inner* p = 0; // error: inner not in scope

—end example]

2 Member functions and static data members of a nested class can be defined in a namespace scope enclosing
the definition of their class. [Example:

class enclose {
public:

class inner {
static int x;
void f(int i);

};
};

int enclose::inner::x = 1;

void enclose::inner::f(int i) { /* ... */ }

—end example]

3 If classX is defined in a namespace scope, a nested classY may be declared in classX and later defined in
the definition of classX or be later defined in a namespace scope enclosing the definition of classX.
[Example:

160

© ISO/IEC ISO/IEC 14882:1998(E)

9 Classes 9.7 Nested class declarations

class E {
class I1; // forward declaration of nested class
class I2;
class I1 {}; // definition of nested class

};
class E::I2 {}; // definition of nested class

—end example]

4 Like a member function, a friend function (11.4) defined within a nested class is in the lexical scope of that
class; it obeys the same rules for name binding as a static member function of that class (9.4) and has no
special access rights to members of an enclosing class.

[class.local] 9.8 Local class declarations

1 A class can be defined within a function definition; such a class is called alocal class. The name of a local
class is local to its enclosing scope. The local class is in the scope of the enclosing scope, and has the same
access to names outside the function as does the enclosing function. Declarations in a local class can use
only type names, static variables,extern variables and functions, and enumerators from the enclosing
scope. [Example:

int x;
void f()
{

static int s ;
int x;
extern int g();

struct local {
int g() { return x; } // error: x is auto
int h() { return s; } // OK
int k() { return ::x; } // OK
int l() { return g(); } // OK

};
// ...

}

local* p = 0; // error: local not in scope

—end example]

2 An enclosing function has no special access to members of the local class; it obeys the usual access rules
(clause 11). Member functions of a local class shall be defined within their class definition, if they are
defined at all.

3 If classX is a local class a nested classY may be declared in classX and later defined in the definition of
classX or be later defined in the same scope as the definition of classX. A class nested within a local class
is a local class.

4 A local class shall not have static data members.

[class.nested.type] 9.9 Nested type names

1 Type names obey exactly the same scope rules as other names. In particular, type names defined within a
class definition cannot be used outside their class without qualification. [Example:

161

ISO/IEC 14882:1998(E) © ISO/IEC

9.9 Nested type names 9 Classes

class X {
public:

typedef int I;
class Y { /* ... */ };
I a;

};

I b; // error
Y c; // error
X::Y d; // OK
X::I e; // OK

—end example]

162

© ISO/IEC ISO/IEC 14882:1998(E)

10 Derived classes [class.derived]

1 A list of base classes can be specified in a class definition using the notation:

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
:: opt nested-name-specifieropt class-name
virtual access-specifieropt :: opt nested-name-specifieropt class-name
access-specifier virtualopt :: opt nested-name-specifieropt class-name

access-specifier:
private
protected
public

Theclass-namein a base-specifiershall not be an incompletely defined class (clause 9); this class is called
a direct base classfor the class being declared. During the lookup for a base class name, non-type names
are ignored (3.3.7). If the name found is not aclass-name, the program is ill-formed. A classB is a base
class of a classD if it is a direct base class ofD or a direct base class of one ofD’s base classes. A class is
an indirectbase class of another if it is a base class but not a direct base class. A class is said to be (directly
or indirectly) derived from its (direct or indirect) base classes. [Note: See clause 11 for the meaning of
access-specifier.] Unless redefined in the derived class, members of a base class are also considered to be
members of the derived class. The base class members are said to beinheritedby the derived class. Inher-
ited members can be referred to in expressions in the same manner as other members of the derived class,
unless their names are hidden or ambiguous (10.2). [Note: the scope resolution operator:: (5.1) can be
used to refer to a direct or indirect base member explicitly. This allows access to a name that has been
redefined in the derived class. A derived class can itself serve as a base class subject to access control; see
11.2. A pointer to a derived class can be implicitly converted to a pointer to an accessible unambiguous
base class (4.10). An lvalue of a derived class type can be bound to a reference to an accessible unambigu-
ous base class (8.5.3).]

2 Thebase-specifier-listspecifies the type of thebase class subobjectscontained in an object of the derived
class type. [Example:

class Base {
public:

int a, b, c;
};

class Derived : public Base {
public:

int b;
};

class Derived2 : public Derived {
public:

int c;
};

Here, an object of classDerived2 will have a sub-object of classDerived which in turn will have a
sub-object of classBase .]

163

ISO/IEC 14882:1998(E) © ISO/IEC

10 Derived classes 10 Derived classes

3 The order in which the base class subobjects are allocated in the most derived object (1.8) is unspecified.
[Note: a derived class and its base class sub-objects can be represented by a directed acyclic graph (DAG)
where an arrow means“directly derived from.” A DAG of sub-objects is often referred to as a“sub-object
lattice.”

Base

Derived

Derived2

The arrows need not have a physical representation in memory.]

4 [Note: initialization of objects representing base classes can be specified in constructors; see 12.6.2.]

5 [Note:A base class subobject might have a layout (3.7) different from the layout of a most derived object of
the same type. A base class subobject might have a polymorphic behavior (12.7) different from the poly-
morphic behavior of a most derived object of the same type. A base class subobject may be of zero size
(clause 9); however, two subobjects that have the same class type and that belong to the same most derived
object must not be allocated at the same address (5.10).]

[class.mi] 10.1 Multiple base classes

1 A class can be derived from any number of base classes. [Note: the use of more than one direct base class
is often called multiple inheritance.] [Example:

class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class D : public A, public B, public C { /* ... */ };

—end example]

2 [Note: the order of derivation is not significant except as specified by the semantics of initialization by con-
structor (12.6.2), cleanup (12.4), and storage layout (9.2, 11.1).]

3 A class shall not be specified as a direct base class of a derived class more than once. [Note:a class can be
an indirect base class more than once and can be a direct and an indirect base class. There are limited
things that can be done with such a class. The non-static data members and member functions of the direct
base class cannot be referred to in the scope of the derived class. However, the static members, enumera-
tions and types can be unambiguously referred to.] [Example:

class X { /* ... */ };
class Y : public X, public X { /* ... */ }; // ill-formed

class L { public: int next; /* ... */ };
class A : public L { /* ... */ };
class B : public L { /* ... */ };
class C : public A, public B { void f(); /* ... */ }; // well-formed
class D : public A, public L { void f(); /* ... */ }; // well-formed

—end example]

4 A base class specifier that does not contain the keywordvirtual , specifies anonvirtual base class. A
base class specifier that contains the keywordvirtual , specifies avirtual base class. For each distinct
occurrence of a nonvirtual base class in the class lattice of the most derived class, the most derived object
(1.8) shall contain a corresponding distinct base class subobject of that type. For each distinct base class
that is specified virtual, the most derived object shall contain a single base class subobject of that type.
[Example:for an object of class typeC, each distinct occurrence of a (non-virtual) base classL in the class
lattice ofC corresponds one-to-one with a distinctL subobject within the object of typeC. Given the class
Cdefined above, an object of classCwill have two sub-objects of classL as shown below.

164

© ISO/IEC ISO/IEC 14882:1998(E)

10 Derived classes 10.1 Multiple base classes

L L

A B

C

In such lattices, explicit qualification can be used to specify which subobject is meant. The body of func-
tion C::f could refer to the membernext of eachL subobject:

void C::f() { A::next = B::next; } // well-formed

Without theA:: or B:: qualifiers, the definition ofC::f above would be ill-formed because of ambiguity
(10.2).

5 For another example,

class V { /* ... */ };
class A : virtual public V { /* ... */ };
class B : virtual public V { /* ... */ };
class C : public A, public B { /* ... */ };

for an objectc of class typeC, a single subobject of typeV is shared by every base subobject ofc that is
declared to have avirtual base class of typeV. Given the classC defined above, an object of classC
will have one subobject of classV, as shown below.

V

A B

C

6 A class can have both virtual and nonvirtual base classes of a given type.

class B { /* ... */ };
class X : virtual public B { /* ... */ };
class Y : virtual public B { /* ... */ };
class Z : public B { /* ... */ };
class AA : public X, public Y, public Z { /* ... */ };

For an object of classAA, all virtual occurrences of base classB in the class lattice ofAA correspond to
a singleB subobject within the object of typeAA, and every other occurrence of a (non-virtual) base classB
in the class lattice ofAA corresponds one-to-one with a distinctB subobject within the object of typeAA.
Given the classAA defined above, classAA has two sub-objects of classB: Z’s B and the virtualB shared
by X andY, as shown below.

B B

X Y Z

AA

—end example]

[class.member.lookup] 10.2 Member name lookup

1 Member name lookup determines the meaning of a name (id-expression) in a class scope (3.3.6). Name
lookup can result in anambiguity, in which case the program is ill-formed. For anid-expression, name
lookup begins in the class scope ofthis ; for a qualified-id, name lookup begins in the scope of the
nested-name-specifier. Name lookup takes place before access control (3.4, clause 11).

165

ISO/IEC 14882:1998(E) © ISO/IEC

10.2 Member name lookup 10 Derived classes

2 The following steps define the result of name lookup in a class scope,C. First, every declaration for the
name in the class and in each of its base class sub-objects is considered. A member namef in one sub-
objectB hidesa member namef in a sub-objectA if A is a base class sub-object ofB. Any declarations
that are so hidden are eliminated from consideration. Each of these declarations that was introduced by a
using-declarationis considered to be from each sub-object ofC that is of the type containing the declara-
tion designated by theusing-declaration.96) If the resulting set of declarations are not all from sub-objects
of the same type, or the set has a nonstatic member and includes members from distinct sub-objects, there is
an ambiguity and the program is ill-formed. Otherwise that set is the result of the lookup.

3 [Example:

class A {
public:

int a;
int (*b)();
int f();
int f(int);
int g();

};

class B {
int a;
int b();

public:
int f();
int g;
int h();
int h(int);

};

class C : public A, public B {};

void g(C* pc)
{

pc->a = 1; // error: ambiguous:A::a or B::a
pc->b(); // error: ambiguous:A::b or B::b
pc->f(); // error: ambiguous:A::f or B::f
pc->f(1); // error: ambiguous:A::f or B::f
pc->g(); // error: ambiguous:A::g or B::g
pc->g = 1; // error: ambiguous:A::g or B::g
pc->h(); // OK
pc->h(1); // OK

}

—end example] [Example:

struct U { static int i; };
struct V : U { };
struct W : U { using U::i; };
struct X : V, W { void foo(); };
void X::foo() {

i; // findsU::i in two ways: asW::i andU::i in V
// no ambiguity becauseU::i is static

}

—end example]

96)Note thatusing-declarations cannot be used to resolve inherited member ambiguities; see 7.3.3.

166

© ISO/IEC ISO/IEC 14882:1998(E)

10 Derived classes 10.2 Member name lookup

4 If the name of an overloaded function is unambiguously found, overloading resolution (13.3) also takes
place before access control. Ambiguities can often be resolved by qualifying a name with its class name.
[Example:

class A {
public:

int f();
};

class B {
public:

int f();
};

class C : public A, public B {
int f() { return A::f() + B::f(); }

};

—end example]

5 A static member, a nested type or an enumerator defined in a base classT can unambiguously be found
even if an object has more than one base class subobject of typeT. Two base class subobjects share the
nonstatic member subobjects of their common virtual base classes. [Example:

class V { public: int v; };
class A {
public:

int a;
static int s;
enum { e };

};
class B : public A, public virtual V {};
class C : public A, public virtual V {};

class D : public B, public C { };

void f(D* pd)
{

pd->v++; // OK: only onev (virtual)
pd->s++; // OK: only ones (static)
int i = pd->e; // OK: only onee (enumerator)
pd->a++; // error, ambiguous: twoas inD

}

—end example]

6 When virtual base classes are used, a hidden declaration can be reached along a path through the sub-object
lattice that does not pass through the hiding declaration. This is not an ambiguity. The identical use with
nonvirtual base classes is an ambiguity; in that case there is no unique instance of the name that hides all
the others. [Example:

class V { public: int f(); int x; };
class W { public: int g(); int y; };
class B : public virtual V, public W
{
public:

int f(); int x;
int g(); int y;

};
class C : public virtual V, public W { };

class D : public B, public C { void glorp(); };

167

ISO/IEC 14882:1998(E) © ISO/IEC

10.2 Member name lookup 10 Derived classes

V W W

B C

D

The names defined inV and the left hand instance ofWare hidden by those inB, but the names defined in
the right hand instance ofWare not hidden at all.

void D::glorp()
{

x++; // OK: B::x hidesV::x
f(); // OK: B::f() hidesV::f()
y++; // error: B::y and C’sW::y
g(); // error: B::g() and C’sW::g()

}

—end example]

7 An explicit or implicit conversion from a pointer to or an lvalue of a derived class to a pointer or reference
to one of its base classes shall unambiguously refer to a unique object representing the base class. [Exam-
ple:

class V { };
class A { };
class B : public A, public virtual V { };
class C : public A, public virtual V { };
class D : public B, public C { };

void g()
{

D d;
B* pb = &d;
A* pa = &d; // error, ambiguous:C’s A or B’s A?
V* pv = &d; // OK: only oneV sub-object

}

—end example]

[class.virtual] 10.3 Virtual functions

1 Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits a virtual function is called apolymorphic class.

2 If a virtual member functionvf is declared in a classBase and in a classDerived , derived directly or
indirectly fromBase , a member functionvf with the same name and same parameter list asBase::vf is
declared, thenDerived::vf is also virtual (whether or not it is so declared) and itoverrides97)

Base::vf . For convenience we say that any virtual function overrides itself. Then in any well-formed
class, for each virtual function declared in that class or any of its direct or indirect base classes there is a
uniquefinal overrider that overrides that function and every other overrider of that function. The rules for
member lookup (10.2) are used to determine the final overrider for a virtual function in the scope of a
derived class but ignoring names introduced byusing-declarations. [Example:

97) A function with the same name but a different parameter list (clause 13) as a virtual function is not necessarily virtual and does not
override. The use of thevirtual specifier in the declaration of an overriding function is legal but redundant (has empty semantics).
Access control (clause 11) is not considered in determining overriding.

168

© ISO/IEC ISO/IEC 14882:1998(E)

10 Derived classes 10.3 Virtual functions

struct A {
virtual void f();

};
struct B : virtual A {

virtual void f();
};

struct C : B , virtual A {
using A::f;

};
void foo() {

C c;
c.f(); // calls B::f , the final overrider
c.C::f(); // calls A::f because of the using-declaration

}

—end example]

3 [Note:a virtual member function does not have to be visible to be overridden, for example,

struct B {
virtual void f();

};
struct D : B {

void f(int);
};
struct D2 : D {

void f();
};

the functionf(int) in classDhides the virtual functionf() in its base classB; D::f(int) is not a vir-
tual function. However,f() declared in classD2 has the same name and the same parameter list as
B::f() , and therefore is a virtual function that overrides the functionB::f() even thoughB::f() is
not visible in classD2.]

4 Even though destructors are not inherited, a destructor in a derived class overrides a base class destructor
declared virtual; see 12.4 and 12.5.

5 The return type of an overriding function shall be either identical to the return type of the overridden func-
tion or covariant with the classes of the functions. If a functionD::f overrides a functionB::f , the
return types of the functions are covariant if they satisfy the following criteria:

— both are pointers to classes or references to classes98)

— the class in the return type ofB::f is the same class as the class in the return type ofD::f or, is an
unambiguous direct or indirect base class of the class in the return type ofD::f and is accessible inD

— both pointers or references have the same cv-qualification and the class type in the return type ofD::f
has the same cv-qualification as or less cv-qualification than the class type in the return type ofB::f .

If the return type ofD::f differs from the return type ofB::f , the class type in the return type ofD::f
shall be complete at the point of declaration ofD::f or shall be the class typeD. When the overriding
function is called as the final overrider of the overridden function, its result is converted to the type returned
by the (statically chosen) overridden function (5.2.2). [Example:

98)Multi-level pointers to classes or references to multi-level pointers to classes are not allowed.

169

ISO/IEC 14882:1998(E) © ISO/IEC

10.3 Virtual functions 10 Derived classes

class B {};
class D : private B { friend class Derived; };
struct Base {

virtual void vf1();
virtual void vf2();
virtual void vf3();
virtual B* vf4();
virtual B* vf5();
void f();

};

struct No_good : public Base {
D* vf4(); // error: B (base class ofD) inaccessible

};

class A;
struct Derived : public Base {

void vf1(); // virtual and overridesBase::vf1()
void vf2(int); // not virtual, hidesBase::vf2()
char vf3(); // error: invalid difference in return type only
D* vf4(); // OK: returns pointer to derived class
A* vf5(); // error: returns pointer to incomplete class
void f();

};

void g()
{

Derived d;
Base* bp = &d; // standard conversion:

// Derived* to Base*
bp->vf1(); // calls Derived::vf1()
bp->vf2(); // calls Base::vf2()
bp->f(); // calls Base::f() (not virtual)
B* p = bp->vf4(); // calls Derived::pf() and converts the

// result toB*
Derived* dp = &d;
D* q = dp->vf4(); // calls Derived::pf() and does not

// convert the result toB*
dp->vf2(); // ill-formed: argument mismatch

}

—end example]

6 [Note: the interpretation of the call of a virtual function depends on the type of the object for which it is
called (the dynamic type), whereas the interpretation of a call of a nonvirtual member function depends
only on the type of the pointer or reference denoting that object (the static type) (5.2.2).]

7 [Note: the virtual specifier implies membership, so a virtual function cannot be a nonmember (7.1.2)
function. Nor can a virtual function be a static member, since a virtual function call relies on a specific
object for determining which function to invoke. A virtual function declared in one class can be declared a
friend in another class.]

8 A virtual function declared in a class shall be defined, or declared pure (10.4) in that class, or both; but no
diagnostic is required (3.2).

9 [Example:here are some uses of virtual functions with multiple base classes:

struct A {
virtual void f();

};

170

© ISO/IEC ISO/IEC 14882:1998(E)

10 Derived classes 10.3 Virtual functions

struct B1 : A { // note non-virtual derivation
void f();

};

struct B2 : A {
void f();

};

struct D : B1, B2 { // Dhas two separateA sub-objects
};

void foo()
{

D d;
// A* ap = &d; // would be ill-formed: ambiguous

B1* b1p = &d;
A* ap = b1p;
D* dp = &d;
ap->f(); // calls D::B1::f
dp->f(); // ill-formed: ambiguous

}

In classD above there are two occurrences of classA and hence two occurrences of the virtual member
function A::f . The final overrider ofB1::A::f is B1::f and the final overrider ofB2::A::f is
B2::f .

10 The following example shows a function that does not have a unique final overrider:

struct A {
virtual void f();

};

struct VB1 : virtual A { // note virtual derivation
void f();

};

struct VB2 : virtual A {
void f();

};

struct Error : VB1, VB2 { // ill-formed
};

struct Okay : VB1, VB2 {
void f();

};

Both VB1::f andVB2::f overrideA::f but there is no overrider of both of them in classError . This
example is therefore ill-formed. ClassOkay is well formed, however, becauseOkay::f is a final over-
rider.

11 The following example uses the well-formed classes from above.

struct VB1a : virtual A { // does not declaref
};

struct Da : VB1a, VB2 {
};

171

ISO/IEC 14882:1998(E) © ISO/IEC

10.3 Virtual functions 10 Derived classes

void foe()
{

VB1a* vb1ap = new Da;
vb1ap->f(); // calls VB2::f

}

—end example]

12 Explicit qualification with the scope operator (5.1) suppresses the virtual call mechanism. [Example:

class B { public: virtual void f(); };
class D : public B { public: void f(); };

void D::f() { /* ... */ B::f(); }

Here, the function call inD::f really does callB::f and notD::f .]

[class.abstract] 10.4 Abstract classes

1 The abstract class mechanism supports the notion of a general concept, such as ashape , of which only
more concrete variants, such ascircle andsquare , can actually be used. An abstract class can also be
used to define an interface for which derived classes provide a variety of implementations.

2 An abstract classis a class that can be used only as a base class of some other class; no objects of an
abstract class can be created except as sub-objects of a class derived from it. A class is abstract if it has at
least onepure virtual function. [Note:such a function might be inherited: see below.] A virtual function is
specifiedpure by using apure-specifier(9.2) in the function declaration in the class declaration. A pure
virtual function need be defined only if explicitly called with thequalified-idsyntax (5.1). [Example:

class point { /* ... */ };
class shape { // abstract class

point center;
// ...

public:
point where() { return center; }
void move(point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; // pure virtual
// ...

};

—end example] [Note: a function declaration cannot provide both apure-specifierand a definition
—end note] [Example:

struct C {
virtual void f() { }=0; // ill-formed

};

—end example]

3 An abstract class shall not be used as a parameter type, as a function return type, or as the type of an
explicit conversion. Pointers and references to an abstract class can be declared. [Example:

shape x; // error: object of abstract class
shape* p; // OK
shape f(); // error
void g(shape); // error
shape& h(shape&); // OK

—end example]

4 A class is abstract if it contains or inherits at least one pure virtual function for which the final overrider is
pure virtual. [Example:

172

© ISO/IEC ISO/IEC 14882:1998(E)

10 Derived classes 10.4 Abstract classes

class ab_circle : public shape {
int radius;

public:
void rotate(int) {}
// ab_circle::draw() is a pure virtual

};

Sinceshape::draw() is a pure virtual functionab_circle::draw() is a pure virtual by default.
The alternative declaration,

class circle : public shape {
int radius;

public:
void rotate(int) {}
void draw(); // a definition is required somewhere

};

would make classcircle nonabstract and a definition ofcircle::draw() must be provided.]

5 [Note: an abstract class can be derived from a class that is not abstract, and a pure virtual function may
override a virtual function which is not pure.]

6 Member functions can be called from a constructor (or destructor) of an abstract class; the effect of making
a virtual call (10.3) to a pure virtual function directly or indirectly for the object being created (or
destroyed) from such a constructor (or destructor) is undefined.

173

ISO/IEC 14882:1998(E) © ISO/IEC

174

(Blank page)

© ISO/IEC ISO/IEC 14882:1998(E)

11 Member access control 11 Member access control

11 Member access control [class.access]

1 A member of a class can be

— private ; that is, its name can be used only by members and friends of the class in which it is
declared.

— protected ; that is, its name can be used only by members and friends of the class in which it is
declared, and by members and friends of classes derived from this class (see 11.5).

— public ; that is, its name can be used anywhere without access restriction.

2 Members of a class defined with the keywordclass are private by default. Members of a class
defined with the keywordsstruct or union arepublic by default. [Example:

class X {
int a; // X::a is private by default

};

struct S {
int a; // S::a is public by default

};

—end example]

3 Access control is applied uniformly to all names, whether the names are referred to from declarations or
expressions. [Note: access control applies to names nominated byfriend declarations (11.4) andusing-
declarations (7.3.3).] In the case of overloaded function names, access control is applied to the function
selected by overload resolution. [Note:because access control applies to names, if access control is applied
to a typedef name, only the accessibility of the typedef name itself is considered. The accessibility of the
entity referred to by the typedef is not considered. For example,

class A
{

class B { };
public:

typedef B BB;
};

void f()
{

A::BB x; // OK, typedef nameA::BB is public
A::B y; // access error,A::B is private

}

—end note]

4 It should be noted that it isaccessto members and base classes that is controlled, not theirvisibility.
Names of members are still visible, and implicit conversions to base classes are still considered, when those
members and base classes are inaccessible. The interpretation of a given construct is established without
regard to access control. If the interpretation established makes use of inaccessible member names or base
classes, the construct is ill-formed.

5 All access controls in clause 11 affect the ability to access a class member name from a particular scope.
The access control for names used in the definition of a class member that appears outside of the member’s
class definition is done as if the entire member definition appeared in the scope of the member’s class. In
particular, access controls apply as usual to member names accessed as part of a function return type, even
though it is not possible to determine the access privileges of that use without first parsing the rest of the
function declarator. Similarly, access control for implicit calls to the constructors, the conversion

175

ISO/IEC 14882:1998(E) © ISO/IEC

11 Member access control 11 Member access control

functions, or the destructor called to create and destroy a static data member is performed as if these calls
appeared in the scope of the member’s class. [Example:

class A {
typedef int I; // private member
I f();
friend I g(I);
static I x;

};

A::I A::f() { return 0; }
A::I g(A::I p = A::x);
A::I g(A::I p) { return 0; }
A::I A::x = 0;

Here, all the uses ofA::I are well-formed becauseA::f andA::x are members of classA andg is a
friend of classA. This implies, for example, that access checking on the first use ofA::I must be deferred
until it is determined that this use ofA::I is as the return type of a member of classA.]

6 In the definition of a member of a nested class that appears outside of its class definition, the name of the
member may be qualified by the names of enclosing classes of the member’s class even if these names are
private members of their enclosing classes. [Example:

class D {
class E {

static int m;
};

};
int D::E::m = 1; // OK, no access error on privateE

—end example]

7 The names in a default argument expression (8.3.6) are bound at the point of declaration, and access is
checked at that point rather than at any points of use of the default argument expression. Access checking
for default arguments in function templates and in member functions of class templates are performed as
described in 14.7.1.

[class.access.spec] 11.1 Access specifiers

1 Member declarations can be labeled by anaccess-specifier(clause 10):

access-specifier: member-specificationopt

An access-specifierspecifies the access rules for members following it until the end of the class or until
anotheraccess-specifieris encountered. [Example:

class X {
int a; // X::a is private by default:class used

public:
int b; // X::b is public
int c; // X::c is public

};

—end example] Any number of access specifiers is allowed and no particular order is required. [Example:

struct S {
int a; // S::a is public by default:struct used

protected:
int b; // S::b is protected

private:
int c; // S::c is private

public:
int d; // S::d is public

};

176

© ISO/IEC ISO/IEC 14882:1998(E)

11 Member access control 11.1 Access specifiers

—end example]

2 The order of allocation of data members with separateaccess-specifierlabels is unspecified (9.2).

3 When a member is redeclared within its class definition, the access specified at its redeclaration shall be the
same as at its initial declaration. [Example:

struct S {
class A;

private:
class A { }; // error: cannot change access

};

—end example]

[class.access.base] 11.2 Accessibility of base classes and base class members

1 If a class is declared to be a base class (clause 10) for another class using thepublic access specifier, the
public members of the base class are accessible aspublic members of the derived class and
protected members of the base class are accessible asprotected members of the derived class. If a
class is declared to be a base class for another class using theprotected access specifier, thepublic
andprotected members of the base class are accessible asprotected members of the derived class.
If a class is declared to be a base class for another class using theprivate access specifier, thepublic
andprotected members of the base class are accessible asprivate members of the derived class99).

2 In the absence of anaccess-specifierfor a base class,public is assumed when the derived class is
declaredstruct andprivate is assumed when the class is declaredclass . [Example:

class B { /* ... */ };
class D1 : private B { /* ... */ };
class D2 : public B { /* ... */ };
class D3 : B { /* ... */ }; // B private by default
struct D4 : public B { /* ... */ };
struct D5 : private B { /* ... */ };
struct D6 : B { /* ... */ }; // B public by default
class D7 : protected B { /* ... */ };
struct D8 : protected B { /* ... */ };

HereB is a public base ofD2, D4, andD6, a private base ofD1, D3, andD5, and a protected base ofD7
andD8. —end example]

3 [Note:A member of a private base class might be inaccessible as an inherited member name, but accessible
directly. Because of the rules on pointer conversions (4.10) and explicit casts (5.4), a conversion from a
pointer to a derived class to a pointer to an inaccessible base class might be ill-formed if an implicit conver-
sion is used, but well-formed if an explicit cast is used. For example,

class B {
public:

int mi; // nonstatic member
static int si; // static member

};
class D : private B {
};
class DD : public D {

void f();
};

99) As specified previously in clause 11, private members of a base class remain inaccessible even to derived classes unlessfriend
declarations within the base class declaration are used to grant access explicitly.

177

ISO/IEC 14882:1998(E) © ISO/IEC

11.2 Accessibility of base classes and base class members 11 Member access control

void DD::f() {
mi = 3; // error: mi is private inD
si = 3; // error: si is private inD
B b;
b.mi = 3; // OK (b.mi is different fromthis->mi)
b.si = 3; // OK (b.si is different fromthis->si)
B::si = 3; // OK
B* bp1 = this; // error: B is a private base class
B* bp2 = (B*)this; // OK with cast
bp2->mi = 3; // OK: access through a pointer toB.

}

—end note]

4 A base class is said to be accessible if an invented public member of the base class is accessible. If a base
class is accessible, one can implicitly convert a pointer to a derived class to a pointer to that base class
(4.10, 4.11). [Note: it follows that members and friends of a classX can implicitly convert anX* to a
pointer to a private or protected immediate base class ofX.] The access to a member is affected by the
class in which the member is named. This naming class is the class in which the member name was looked
up and found. [Note: this class can be explicit, e.g., when aqualified-id is used, or implicit, e.g., when a
class member access operator (5.2.5) is used (including cases where an implicit“this-> ” is added. If
both a class member access operator and aqualified-idare used to name the member (as inp->T::m), the
class naming the member is the class named by thenested-name-specifierof thequalified-id (that is,T). If
the membermis accessible when named in the naming class according to the rules below, the access tomis
nonetheless ill-formed if the type ofp cannot be implicitly converted to typeT (for example, ifT is an inac-
cessible base class ofp’s class).] A memberm is accessible when named in classN if

— mas a member ofN is public, or

— mas a member ofN is private, and the reference occurs in a member or friend of classN, or

— m as a member ofN is protected, and the reference occurs in a member or friend of classN, or in a
member or friend of a classP derived fromN, wheremas a member ofP is private or protected, or

— there exists a base classB of N that is accessible at the point of reference, andm is accessible when
named in classB. [Example:

class B;
class A {
private:

int i;
friend void f(B*);

};
class B : public A { };
void f(B* p) {

p->i = 1; // OK: B* can be implicitly cast toA* ,
// and f has access toi in A

}

—end example]

[class.access.dcl] 11.3 Access declarations

1 The access of a member of a base class can be changed in the derived class by mentioning itsqualified-id in
the derived class declaration. Such mention is called anaccess declaration. The effect of an access decla-
rationqualified-id ; is defined to be equivalent to the declarationusing qualified-id ; .100)

100)Access declarations are deprecated; memberusing-declarations (7.3.3) provide a better means of doing the same things. In earlier
versions of the C++ language, access declarations were more limited; they were generalized and made equivalent tousing-declarations
in the interest of simplicity. Programmers are encouraged to useusing-declarations, rather than the new capabilities of access declara-
tions, in new code.

178

© ISO/IEC ISO/IEC 14882:1998(E)

11 Member access control 11.3 Access declarations

2 [Example:

class A {
public:

int z;
int z1;

};

class B : public A {
int a;

public:
int b, c;
int bf();

protected:
int x;
int y;

};

class D : private B {
int d;

public:
B::c; // adjust access toB::c
B::z; // adjust access toA::z
A::z1; // adjust access toA::z1
int e;
int df();

protected:
B::x; // adjust access toB::x
int g;

};

class X : public D {
int xf();

};

int ef(D&);
int ff(X&);

The external functionef can use only the namesc , z , z1 , e, anddf . Being a member ofD, the function
df can use the namesb, c , z , z1 , bf , x , y , d, e, df , andg, but nota. Being a member ofB, the function
bf can use the membersa, b, c , z , z1 , bf , x , andy . The functionxf can use the public and protected
names fromD, that is,c , z , z1 , e, anddf (public), andx , andg (protected). Thus the external function
ff has access only toc , z , z1 , e, anddf . If D were a protected or private base class ofX, xf would have
the same privileges as before, butff would have no access at all.]

[class.friend] 11.4 Friends

1 A friend of a class is a function or class that is not a member of the class but is permitted to use the private
and protected member names from the class. The name of a friend is not in the scope of the class, and the
friend is not called with the member access operators (5.2.5) unless it is a member of another class. [Exam-
ple: the following example illustrates the differences between members and friends:

class X {
int a;
friend void friend_set(X*, int);

public:
void member_set(int);

};

void friend_set(X* p, int i) { p->a = i; }
void X::member_set(int i) { a = i; }

179

ISO/IEC 14882:1998(E) © ISO/IEC

11.4 Friends 11 Member access control

void f()
{

X obj;
friend_set(&obj,10);
obj.member_set(10);

}

—end example]

2 Declaring a class to be a friend implies that the names of private and protected members from the class
granting friendship can be accessed in declarations of members of the befriended class. [Note: this means
that access to private and protected names is also granted to member functions of the friend class (as if the
functions were each friends) and to the static data member definitions of the friend class. This also means
that private and protected type names from the class granting friendship can be used in thebase-clauseof a
nested class of the friend class. However, the declarations of members of classes nested within the friend
class cannot access the names of private and protected members from the class granting friendship. Also,
because thebase-clauseof the friend class is not part of its member declarations, thebase-clauseof the
friend class cannot access the names of the private and protected members from the class granting friend-
ship. For example,

class A {
class B { };
friend class X;

};
class X : A::B { // ill-formed: A::B cannot be accessed

// in the base-clause forX
A::B mx; // OK: A::B used to declare member ofX
class Y : A::B { // OK: A::B used to declare member ofX

A::B my; // ill-formed: A::B cannot be accessed
// to declare members of nested class ofX

};
};

] An elaborated-type-specifiershall be used in a friend declaration for a class.101) A class shall not be
defined in a friend declaration. [Example:

class X {
enum { a=100 };
friend class Y;

};

class Y {
int v[X::a]; // OK, Y is a friend ofX

};

class Z {
int v[X::a]; // error: X::a is private

};

—end example]

3 A function first declared in a friend declaration has external linkage (3.5). Otherwise, the function retains
its previous linkage (7.1.1).

4 When afriend declaration refers to an overloaded name or operator, only the function specified by the
parameter types becomes a friend. A member function of a classX can be a friend of a classY. [Example:

101)Theclass-keyof theelaborated-type-specifieris required.

180

© ISO/IEC ISO/IEC 14882:1998(E)

11 Member access control 11.4 Friends

class Y {
friend char* X::foo(int);
// ...

};

—end example]

5 A function can be defined in a friend declaration of a class if and only if the class is a non-local class (9.8),
the function name is unqualified, and the function has namespace scope. [Example:

class M {
friend void f() { } // definition of globalf , a friend ofM,

// not the definition of a member function
};

—end example] Such a function is implicitlyinline . A friend function defined in a class is in the
(lexical) scope of the class in which it is defined. A friend function defined outside the class is not (3.4.1).

6 No storage-class-specifiershall appear in thedecl-specifier-seqof a friend declaration.

7 A name nominated by a friend declaration shall be accessible in the scope of the class containing the friend
declaration. The meaning of the friend declaration is the same whether the friend declaration appears in the
private , protected or public (9.2) portion of the classmember-specification.

8 Friendship is neither inherited nor transitive. [Example:

class A {
friend class B;
int a;

};

class B {
friend class C;

};

class C {
void f(A* p)
{

p->a++; // error: C is not a friend ofA
// despite being a friend of a friend

}
};

class D : public B {
void f(A* p)
{

p->a++; // error: D is not a friend ofA
// despite being derived from a friend

}
};

—end example]

9 If a friend declaration appears in a local class (9.8) and the name specified is an unqualified name, a prior
declaration is looked up without considering scopes that are outside the innermost enclosing non-class
scope. For a friend function declaration, if there is no prior declaration, the program is ill-formed. For a
friend class declaration, if there is no prior declaration, the class that is specified belongs to the innermost
enclosing non-class scope, but if it is subsequently referenced, its name is not found by name lookup until a
matching declaration is provided in the innermost enclosing nonclass scope. [Example:

181

ISO/IEC 14882:1998(E) © ISO/IEC

11.4 Friends 11 Member access control

class X;
void a();
void f() {

class Y;
extern void b();
class A {

friend class X; // OK, butX is a local class, not::X
friend class Y; // OK
friend class Z; // OK, introduces local classZ
friend void a(); // error, ::a is not considered
friend void b(); // OK
friend void c(); // error

};
X *px; // OK, but::X is found
Z *pz; // error, noZ is found

}

—end example]

[class.protected] 11.5 Protected member access

1 When a friend or a member function of a derived class references a protected nonstatic member of a base
class, an access check applies in addition to those described earlier in clause 11.102) Except when forming a
pointer to member (5.3.1), the access must be through a pointer to, reference to, or object of the derived
class itself (or any class derived from that class) (5.2.5). If the access is to form a pointer to member, the
nested-name-specifiershall name the derived class (or any class derived from that class). [Example:

class B {
protected:

int i;
static int j;

};

class D1 : public B {
};

class D2 : public B {
friend void fr(B*,D1*,D2*);
void mem(B*,D1*);

};

void fr(B* pb, D1* p1, D2* p2)
{

pb->i = 1; // ill-formed
p1->i = 2; // ill-formed
p2->i = 3; // OK (access through aD2)
p2->B::i = 4; // OK (access through aD2, even though

// naming class isB)
int B::* pmi_B = &B::i; // ill-formed
int B::* pmi_B2 = &D2::i; // OK (type of&D2::i is int B::*)
B::j = 5; // OK (because refers to static member)
D2::j =6; // OK (because refers to static member)

}

102)This additional check does not apply to other members,e.g. static data members or enumerator member constants.

182

© ISO/IEC ISO/IEC 14882:1998(E)

11 Member access control 11.5 Protected member access

void D2::mem(B* pb, D1* p1)
{

pb->i = 1; // ill-formed
p1->i = 2; // ill-formed
i = 3; // OK (access throughthis)
B::i = 4; // OK (access throughthis , qualification ignored)
int B::* pmi_B = &B::i; // ill-formed
int B::* pmi_B2 = &D2::i; // OK
j = 5; // OK (becausej refers to static member)
B::j = 6; // OK (becauseB::j refers to static member)

}

void g(B* pb, D1* p1, D2* p2)
{

pb->i = 1; // ill-formed
p1->i = 2; // ill-formed
p2->i = 3; // ill-formed

}

—end example]

[class.access.virt] 11.6 Access to virtual functions

1 The access rules (clause 11) for a virtual function are determined by its declaration and are not affected by
the rules for a function that later overrides it. [Example:

class B {
public:

virtual int f();
};

class D : public B {
private:

int f();
};

void f()
{

D d;
B* pb = &d;
D* pd = &d;

pb->f(); // OK: B::f() is public,
// D::f() is invoked

pd->f(); // error: D::f() is private
}

—end example] Access is checked at the call point using the type of the expression used to denote the
object for which the member function is called (B* in the example above). The access of the member func-
tion in the class in which it was defined (D in the example above) is in general not known.

[class.paths] 11.7 Multiple access

1 If a name can be reached by several paths through a multiple inheritance graph, the access is that of the path
that gives most access. [Example:

183

ISO/IEC 14882:1998(E) © ISO/IEC

11.7 Multiple access 11 Member access control

class W { public: void f(); };
class A : private virtual W { };
class B : public virtual W { };
class C : public A, public B {

void f() { W::f(); } // OK
};

SinceW::f() is available toC::f() along the public path throughB, access is allowed.]

[class.access.nest] 11.8 Nested classes

1 The members of a nested class have no special access to members of an enclosing class, nor to classes or
functions that have granted friendship to an enclosing class; the usual access rules (clause 11) shall be
obeyed. The members of an enclosing class have no special access to members of a nested class; the usual
access rules (clause 11) shall be obeyed. [Example:

class E {
int x;
class B { };

class I {
B b; // error: E::B is private
int y;
void f(E* p, int i)
{

p->x = i; // error: E::x is private
}

};

int g(I* p)
{

return p->y; // error: I::y is private
}

};

—end example]

2 [Note: because abase-clausefor a nested class is part of the declaration of the nested class itself (and not
part of the declarations of the members of the nested class), thebase-clausemay refer to the private mem-
bers of the enclosing class. For example,

class C {
class A { };
A *p; // OK
class B : A // OK
{

A *q; // OK because of injection of nameA in A
C::A *r; // error, C::A is inaccessible
B *s; // OK because of injection of nameB in B
C::B *t; // error, C::B is inaccessible

};
};

—end note]

184

© ISO/IEC ISO/IEC 14882:1998(E)

12 Special member functions [special]

1 The default constructor (12.1), copy constructor and copy assignment operator (12.8), and destructor (12.4)
are special member functions. The implementation will implicitly declare these member functions for a
class type when the program does not explicitly declare them, except as noted in 12.1. The implementation
will implicitly define them if they are used, as specified in 12.1, 12.4 and 12.8. Programs shall not define
implicitly-declared special member functions. Programs may explicitly refer to implicitly declared special
member functions. [Example:a program may explicitly call, take the address of or form a pointer to mem-
ber to an implicitly declared special member function.

struct A { }; // implicitly-declaredA::operator=
struct B : A {

B& operator=(const B &);
};
B& B::operator=(const B& s) {

this->A::operator=(s); // well-formed
return *this;

}

—end example] [Note: the special member functions affect the way objects of class type are created,
copied, and destroyed, and how values can be converted to values of other types. Often such special mem-
ber functions are called implicitly.]

2 Special member functions obey the usual access rules (clause 11). [Example:declaring a constructor
protected ensures that only derived classes and friends can create objects using it.]

[class.ctor] 12.1 Constructors

1 Constructors do not have names. A special declarator syntax using an optionalfunction-specifier(7.1.2)
followed by the constructor’s class name followed by a parameter list is used to declare or define the con-
structor. In such a declaration, optional parentheses around the constructor class name are ignored. [Exam-
ple:

class C {
public:

C(); // declares the constructor
};

C::C() { } // defines the constructor

—end example]

2 A constructor is used to initialize objects of its class type. Because constructors do not have names, they
are never found during name lookup; however an explicit type conversion using the functional notation
(5.2.3) will cause a constructor to be called to initialize an object. [Note: for initialization of objects of
class type see 12.6.]

3 A typedef-namethat names a class is aclass-name(7.1.3); however, atypedef-namethat names a class shall
not be used as theidentifier in the declarator for a constructor declaration.

4 A constructor shall not bevirtual (10.3) orstatic (9.4). A constructor can be invoked for aconst ,
volatile or const volatile object. A constructor shall not be declaredconst , volatile , or
const volatile (9.3.2). const andvolatile semantics (7.1.5.1) are not applied on an object under
construction. Such semantics only come into effect once the constructor for the most derived object (1.8)
ends.

185

ISO/IEC 14882:1998(E) © ISO/IEC

12.1 Constructors 12 Special member functions

5 A defaultconstructor for a classX is a constructor of classX that can be called without an argument. If
there is nouser-declaredconstructor for classX, a default constructor is implicitly declared. Animplicitly-
declareddefault constructor is aninline public member of its class. A constructor istrivial if it is an
implicitly-declared default constructor and if:

— its class has no virtual functions (10.3) and no virtual base classes (10.1), and

— all the direct base classes of its class have trivial constructors, and

— for all the nonstatic data members of its class that are of class type (or array thereof), each such class has
a trivial constructor.

6 Otherwise, the constructor isnon-trivial.

7 An implicitly-declared default constructor for a class isimplicitly definedwhen it is used to create an object
of its class type (1.8). The implicitly-defined default constructor performs the set of initializations of the
class that would be performed by a user-written default constructor for that class with an emptymem-
initializer-list (12.6.2) and an empty function body. If that user-written default constructor would be ill-
formed, the program is ill-formed. Before the implicitly-declared default constructor for a class is implic-
itly defined, all the implicitly-declared default constructors for its base classes and its nonstatic data mem-
bers shall have been implicitly defined. [Note:an implicitly-declared default constructor has an exception-
specification (15.4).]

8 Default constructors are called implicitly to create class objects of static or automatic storage duration
(3.7.1, 3.7.2) defined without an initializer (8.5), are called to create class objects of dynamic storage dura-
tion (3.7.3) created by anew-expressionin which thenew-initializer is omitted (5.3.4), or are called when
the explicit type conversion syntax (5.2.3) is used. A program is ill-formed if the default constructor for an
object is implicitly used and the constructor is not accessible (clause 11).

9 [Note: 12.6.2 describes the order in which constructors for base classes and non-static data members are
called and describes how arguments can be specified for the calls to these constructors.]

10 A copy constructorfor a classX is a constructor with a first parameter of typeX& or of typeconst X&.
[Note:see 12.8 for more information on copy constructors.]

11 A union member shall not be of a class type (or array thereof) that has a non-trivial constructor.

12 No return type (not evenvoid) shall be specified for a constructor. Areturn statement in the body of a
constructor shall not specify a return value. The address of a constructor shall not be taken.

13 A functional notation type conversion (5.2.3) can be used to create new objects of its type. [Note:The syn-
tax looks like an explicit call of the constructor.] [Example:

complex zz = complex(1,2.3);
cprint(complex(7.8,1.2));

—end example] An object created in this way is unnamed. [Note:12.2 describes the lifetime of temporary
objects.] [Note:explicit constructor calls do not yield lvalues, see 3.10.]

14 [Note: some language constructs have special semantics when used during construction; see 12.6.2 and
12.7.]

15 During the construction of aconst object, if the value of the object or any of its subobjects is accessed
through an lvalue that is not obtained, directly or indirectly, from the constructor’sthis pointer, the value
of the object or subobject thus obtained is unspecified. [Example:

struct C;
void no_opt(C*);

struct C {
int c;
C() : c(0) { no_opt(this); }

};

186

© ISO/IEC ISO/IEC 14882:1998(E)

12 Special member functions 12.1 Constructors

const C cobj;

void no_opt(C* cptr) {
int i = cobj.c * 100; // value ofcobj.c is unspecified
cptr->c = 1;
cout << cobj.c * 100 // value ofcobj.c is unspecified

<< ’\n’;
}

—end example]

[class.temporary] 12.2 Temporary objects

1 Temporaries of class type are created in various contexts: binding an rvalue to a reference (8.5.3), returning
an rvalue (6.6.3), a conversion that creates an rvalue (4.1, 5.2.9, 5.2.11, 5.4), throwing an exception (15.1),
entering ahandler (15.3), and in some initializations (8.5). [Note: the lifetime of exception objects is
described in 15.1.] Even when the creation of the temporary object is avoided (12.8), all the semantic
restrictions must be respected as if the temporary object was created. [Example:even if the copy construc-
tor is not called, all the semantic restrictions, such as accessibility (clause 11), shall be satisfied.]

2 [Example:

class X {
// ...

public:
// ...
X(int);
X(const X&);
~X();

};

X f(X);

void g()
{

X a(1);
X b = f(X(2));
a = f(a);

}

Here, an implementation might use a temporary in which to constructX(2) before passing it tof() using
X’s copy-constructor; alternatively,X(2) might be constructed in the space used to hold the argument.
Also, a temporary might be used to hold the result off(X(2)) before copying it tob using X’s copy-
constructor; alternatively,f() ’s result might be constructed inb. On the other hand, the expression
a=f(a) requires a temporary for either the argumenta or the result off(a) to avoid undesired aliasing of
a.]

3 When an implementation introduces a temporary object of a class that has a non-trivial constructor (12.1), it
shall ensure that a constructor is called for the temporary object. Similarly, the destructor shall be called for
a temporary with a non-trivial destructor (12.4). Temporary objects are destroyed as the last step in evalu-
ating the full-expression (1.9) that (lexically) contains the point where they were created. This is true even
if that evaluation ends in throwing an exception.

4 There are two contexts in which temporaries are destroyed at a different point than the end of the full-
expression. The first context is when an expression appears as an initializer for a declarator defining an
object. In that context, the temporary that holds the result of the expression shall persist until the object’s
initialization is complete. The object is initialized from a copy of the temporary; during this copying, an
implementation can call the copy constructor many times; the temporary is destroyed after it has been
copied, before or when the initialization completes. If many temporaries are created by the evaluation of
the initializer, the temporaries are destroyed in reverse order of the completion of their construction.

187

ISO/IEC 14882:1998(E) © ISO/IEC

12.2 Temporary objects 12 Special member functions

5 The second context is when a reference is bound to a temporary. The temporary to which the reference is
bound or the temporary that is the complete object to a subobject of which the temporary is bound persists
for the lifetime of the reference except as specified below. A temporary bound to a reference member in a
constructor’s ctor-initializer (12.6.2) persists until the constructor exits. A temporary bound to a reference
parameter in a function call (5.2.2) persists until the completion of the full expression containing the call.
A temporary bound to the returned value in a function return statement (6.6.3) persists until the function
exits. In all these cases, the temporaries created during the evaluation of the expression initializing the ref-
erence, except the temporary to which the reference is bound, are destroyed at the end of the full-expression
in which they are created and in the reverse order of the completion of their construction. If the lifetime of
two or more temporaries to which references are bound ends at the same point, these temporaries are
destroyed at that point in the reverse order of the completion of their construction. In addition, the
destruction of temporaries bound to references shall take into account the ordering of destruction of objects
with static or automatic storage duration (3.7.1, 3.7.2); that is, ifobj1 is an object with static or automatic
storage duration created before the temporary is created, the temporary shall be destroyed beforeobj1 is
destroyed; ifobj2 is an object with static or automatic storage duration created after the temporary is cre-
ated, the temporary shall be destroyed afterobj2 is destroyed. [Example:

class C {
// ...

public:
C();
C(int);
friend C operator+(const C&, const C&);
~C();

};
C obj1;
const C& cr = C(16)+C(23);
C obj2;

the expressionC(16)+C(23) creates three temporaries. A first temporaryT1 to hold the result of the
expressionC(16) , a second temporaryT2 to hold the result of the expressionC(23) , and a third tempo-
rary T3 to hold the result of the addition of these two expressions. The temporaryT3 is then bound to the
referencecr . It is unspecified whetherT1 or T2 is created first. On an implementation whereT1 is cre-
ated beforeT2, it is guaranteed thatT2 is destroyed beforeT1. The temporariesT1 andT2 are bound to
the reference parameters ofoperator+ ; these temporaries are destroyed at the end of the full expression
containing the call tooperator+ . The temporaryT3 bound to the referencecr is destroyed at the end of
cr ’s lifetime, that is, at the end of the program. In addition, the order in whichT3 is destroyed takes into
account the destruction order of other objects with static storage duration. That is, becauseobj1 is con-
structed beforeT3, andT3 is constructed beforeobj2 , it is guaranteed thatobj2 is destroyed beforeT3,
and thatT3 is destroyed beforeobj1 .]

[class.conv] 12.3 Conversions

1 Type conversions of class objects can be specified by constructors and by conversion functions. These con-
versions are calleduser-defined conversionsand are used for implicit type conversions (clause 4), for
initialization (8.5), and for explicit type conversions (5.4, 5.2.9).

2 User-defined conversions are applied only where they are unambiguous (10.2, 12.3.2). Conversions obey
the access control rules (clause 11). Access control is applied after ambiguity resolution (3.4).

3 [Note:See 13.3 for a discussion of the use of conversions in function calls as well as examples below.]

4 At most one user-defined conversion (constructor or conversion function) is implicitly applied to a single
value. [Example:

188

© ISO/IEC ISO/IEC 14882:1998(E)

12 Special member functions 12.3 Conversions

class X {
// ...

public:
operator int();

};

class Y {
// ...

public:
operator X();

};

Y a;
int b = a; // error:

// a.operator X().operator int() not tried
int c = X(a); // OK: a.operator X().operator int()

—end example]

5 User-defined conversions are used implicitly only if they are unambiguous. A conversion function in a
derived class does not hide a conversion function in a base class unless the two functions convert to the
same type. Function overload resolution (13.3.3) selects the best conversion function to perform the con-
version. [Example:

class X {
public:

// ...
operator int();

};

class Y : public X {
public:

// ...
operator char();

};

void f(Y& a)
{

if (a) { // ill-formed:
// X::operator int() or Y::operator char()
// ...

}
}

—end example]

[class.conv.ctor] 12.3.1 Conversion by constructor

1 A constructor declared without thefunction-specifierexplicit that can be called with a single parameter
specifies a conversion from the type of its first parameter to the type of its class. Such a constructor is
called a converting constructor. [Example:

class X {
// ...

public:
X(int);
X(const char*, int =0);

};

189

ISO/IEC 14882:1998(E) © ISO/IEC

12.3.1 Conversion by constructor 12 Special member functions

void f(X arg)
{

X a = 1; // a = X(1)
X b = "Jessie"; // b = X("Jessie",0)
a = 2; // a = X(2)
f(3); // f(X(3))

}

—end example]

2 An explicit constructor constructs objects just like non-explicit constructors, but does so only where the
direct-initialization syntax (8.5) or where casts (5.2.9, 5.4) are explicitly used. A default constructor may
be an explicit constructor; such a constructor will be used to perform default-initialization (8.5). [Example:

class Z {
public:

explicit Z();
explicit Z(int);
// ...

};

Z a; // OK: default-initialization performed
Z a1 = 1; // error: no implicit conversion
Z a3 = Z(1); // OK: direct initialization syntax used
Z a2(1); // OK: direct initialization syntax used
Z* p = new Z(1); // OK: direct initialization syntax used
Z a4 = (Z)1; // OK: explicit cast used
Z a5 = static_cast<Z>(1); // OK: explicit cast used

—end example]

3 A copy-constructor (12.8) is a converting constructor. An implicitly-declared copy constructor is not an
explicit constructor; it may be called for implicit type conversions.

[class.conv.fct] 12.3.2 Conversion functions

1 A member function of a classX with a name of the form

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declaratoropt

conversion-declarator:
ptr-operator conversion-declaratoropt

specifies a conversion fromX to the type specified by theconversion-type-id. Such member functions are
called conversion functions. Classes, enumerations, andtypedef-names shall not be declared in thetype-
specifier-seq. Neither parameter types nor return type can be specified. The type of a conversion function
(8.3.5) is“function taking no parameter returningconversion-type-id.” A conversion function is never used
to convert a (possibly cv-qualified) object to the (possibly cv-qualified) same object type (or a reference to
it), to a (possibly cv-qualified) base class of that type (or a reference to it), or to (possibly cv-qualified)
void.103)

103) Even though never directly called to perform a conversion, such conversion functions can be declared and can potentially be
reached through a call to a virtual conversion function in a base class

190

© ISO/IEC ISO/IEC 14882:1998(E)

12 Special member functions 12.3.2 Conversion functions

2 [Example:

class X {
// ...

public:
operator int();

};

void f(X a)
{

int i = int(a);
i = (int)a;
i = a;

}

In all three cases the value assigned will be converted byX::operator int() . —end example]

3 User-defined conversions are not restricted to use in assignments and initializations. [Example:

void g(X a, X b)
{

int i = (a) ? 1+a : 0;
int j = (a&&b) ? a+b : i;
if (a) { // ...
}

}

—end example]

4 The conversion-type-idshall not represent a function type nor an array type. Theconversion-type-idin a
conversion-function-idis the longest possible sequence ofconversion-declarators. [Note: this prevents
ambiguities between the declarator operator * and its expression counterparts. [Example:

&ac.operator int*i; // syntax error:
// parsed as:&(ac.operator int *) i
// not as:&(ac.operator int)*i

The * is the pointer declarator and not the multiplication operator.]]

5 Conversion functions are inherited.

6 Conversion functions can be virtual.

[class.dtor] 12.4 Destructors

1 A special declarator syntax using an optionalfunction-specifier(7.1.2) followed by~ followed by the
destructor’s class name followed by an empty parameter list is used to declare the destructor in a class defi-
nition. In such a declaration, the~ followed by the destructor’s class name can be enclosed in optional
parentheses; such parentheses are ignored. Atypedef-namethat names a class is aclass-name(7.1.3); how-
ever, atypedef-namethat names a class shall not be used as theidentifier in the declarator for a destructor
declaration.

2 A destructor is used to destroy objects of its class type. A destructor takes no parameters, and no return
type can be specified for it (not evenvoid). The address of a destructor shall not be taken. A destructor
shall not bestatic . A destructor can be invoked for aconst , volatile or const volatile
object. A destructor shall not be declaredconst , volatile or const volatile (9.3.2). const and
volatile semantics (7.1.5.1) are not applied on an object under destruction. Such semantics stop being
into effect once the destructor for the most derived object (1.8) starts.

3 If a class has nouser-declareddestructor, a destructor is declared implicitly. Animplicitly-declared
destructor is aninline public member of its class. A destructor istrivial if it is an implicitly-declared
destructor and if:

— all of the direct base classes of its class have trivial destructors and

191

ISO/IEC 14882:1998(E) © ISO/IEC

12.4 Destructors 12 Special member functions

— for all of the non-static data members of its class that are of class type (or array thereof), each such class
has a trivial destructor.

4 Otherwise, the destructor isnon-trivial.

5 An implicitly-declared destructor isimplicitly definedwhen it is used to destroy an object of its class type
(3.7). A program is ill-formed if the class for which a destructor is implicitly defined has:

— a non-static data member of class type (or array thereof) with an inaccessible destructor, or

— a base class with an inaccessible destructor.

Before the implicitly-declared destructor for a class is implicitly defined, all the implicitly-declared
destructors for its base classes and its nonstatic data members shall have been implicitly defined. [Note:an
implicitly-declared destructor has an exception-specification (15.4).]

6 A destructor for classX calls the destructors forX’s direct members, the destructors forX’s direct base
classes and, ifX is the type of the most derived class (12.6.2), its destructor calls the destructors forX’s vir-
tual base classes. All destructors are called as if they were referenced with a qualified name, that is, ignor-
ing any possible virtual overriding destructors in more derived classes. Bases and members are destroyed
in the reverse order of the completion of their constructor (see 12.6.2). Areturn statement (6.6.3) in a
destructor might not directly return to the caller; before transferring control to the caller, the destructors for
the members and bases are called. Destructors for elements of an array are called in reverse order of their
construction (see 12.6).

7 A destructor can be declaredvirtual (10.3) or purevirtual (10.4); if any objects of that class or any
derived class are created in the program, the destructor shall be defined. If a class has a base class with a
virtual destructor, its destructor (whether user- or implicitly- declared) is virtual.

8 [Note:some language constructs have special semantics when used during destruction; see 12.7.]

9 A union member shall not be of a class type (or array thereof) that has a non-trivial destructor.

10 Destructors are invoked implicitly (1) for a constructed object with static storage duration (3.7.1) at pro-
gram termination (3.6.3), (2) for a constructed object with automatic storage duration (3.7.2) when the
block in which the object is created exits (6.7), (3) for a constructed temporary object when the lifetime of
the temporary object ends (12.2), (4) for a constructed object allocated by anew-expression(5.3.4), through
use of adelete-expression(5.3.5), (5) in several situations due to the handling of exceptions (15.3). A pro-
gram is ill-formed if an object of class type or array thereof is declared and the destructor for the class is not
accessible at the point of the declaration. Destructors can also be invoked explicitly.

11 At the point of definition of a virtual destructor (including an implicit definition (12.8)), non-placement
operator delete shall be looked up in the scope of the destructor’s class (3.4.1) and if found shall be accessi-
ble and unambiguous. [Note: this assures that an operator delete corresponding to the dynamic type of an
object is available for thedelete-expression(12.5).]

12 In an explicit destructor call, the destructor name appears as a~ followed by atype-namethat names the
destructor’s class type. The invocation of a destructor is subject to the usual rules for member functions
(9.3), that is, if the object is not of the destructor’s class type and not of a class derived from the
destructor’s class type, the program has undefined behavior (except that invokingdelete on a null pointer
has no effect). [Example:

struct B {
virtual ~B() { }

};
struct D : B {

~D() { }
};

192

© ISO/IEC ISO/IEC 14882:1998(E)

12 Special member functions 12.4 Destructors

D D_object;
typedef B B_alias;
B* B_ptr = &D_object;

void f() {
D_object.B::~B(); // calls B’s destructor
B_ptr->~B(); // calls D’s destructor
B_ptr->~B_alias(); // calls D’s destructor
B_ptr->B_alias::~B(); // calls B’s destructor
B_ptr->B_alias::~B_alias(); // error, noB_alias in classB

}

—end example] [Note: an explicit destructor call must always be written using a member access operator
(5.2.5); in particular, theunary-expression~X() in a member function is not an explicit destructor call
(5.3.1).]

13 [Note:explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific
addresses using anew-expressionwith the placement option. Such use of explicit placement and
destruction of objects can be necessary to cope with dedicated hardware resources and for writing memory
management facilities. For example,

void* operator new(size_t, void* p) { return p; }
struct X {

// ...
X(int);
~X();

};
void f(X* p);

void g() // rare, specialized use:
{

char* buf = new char[sizeof(X)];
X* p = new(buf) X(222); // usebuf[] and initialize
f(p);
p->X::~X(); // cleanup

}

—end note]

14 Once a destructor is invoked for an object, the object no longer exists; the behavior is undefined if the
destructor is invoked for an object whose lifetime has ended (3.8). [Example:if the destructor for an auto-
matic object is explicitly invoked, and the block is subsequently left in a manner that would ordinarily
invoke implicit destruction of the object, the behavior is undefined.]

15 [Note: the notation for explicit call of a destructor can be used for any scalar type name (5.2.4). Allowing
this makes it possible to write code without having to know if a destructor exists for a given type. For
example,

typedef int I;
I* p;
// ...
p->I::~I();

—end note]

193

ISO/IEC 14882:1998(E) © ISO/IEC

12.4 Destructors 12 Special member functions

[class.free] 12.5 Free store

1 Any allocation function for a classT is a static member (even if not explicitly declaredstatic).

2 [Example:

class Arena;
struct B {

void* operator new(size_t, Arena*);
};
struct D1 : B {
};

Arena* ap;
void foo(int i)
{

new (ap) D1; // calls B::operator new(size_t, Arena*)
new D1[i]; // calls ::operator new[](size_t)
new D1; // ill-formed: ::operator new(size_t) hidden

}

—end example]

3 When an object is deleted with adelete-expression (5.3.5), a deallocation function
(operator delete() for non-array objects oroperator delete[]() for arrays) is (implicitly)
called to reclaim the storage occupied by the object (3.7.3.2).

4 If a delete-expressionbegins with a unary:: operator, the deallocation function’s name is looked up in
global scope. Otherwise, if thedelete-expressionis used to deallocate a class object whose static type has a
virtual destructor, the deallocation function is the one found by the lookup in the definition of the dynamic
type’s virtual destructor (12.4).104) Otherwise, if thedelete-expressionis used to deallocate an object of
classT or array thereof, the static and dynamic types of the object shall be identical and the deallocation
function’s name is looked up in the scope ofT. If this lookup fails to find the name, the name is looked up
in the global scope. If the result of the lookup is ambiguous or inaccessible, or if the lookup selects a place-
ment deallocation function, the program is ill-formed.

5 When adelete-expressionis executed, the selected deallocation function shall be called with the address of
the block of storage to be reclaimed as its first argument and (if the two-parameter style is used) the size of
the block as its second argument.105)

6 Any deallocation function for a classX is a static member (even if not explicitly declaredstatic).
[Example:

class X {
// ...
void operator delete(void*);
void operator delete[](void*, size_t);

};

class Y {
// ...
void operator delete(void*, size_t);
void operator delete[](void*);

};

—end example]

104)A similar lookup is not needed for the array version ofoperator delete because 5.3.5 requires that in this situation, the static
type of thedelete-expression’s operand be the same as its dynamic type.
105) If the static type in thedelete-expressionis different from the dynamic type and the destructor is not virtual the size might be
incorrect, but that case is already undefined; see 5.3.5.

194

© ISO/IEC ISO/IEC 14882:1998(E)

12 Special member functions 12.5 Free store

7 Since member allocation and deallocation functions arestatic they cannot be virtual. [Note: however,
when thecast-expressionof a delete-expressionrefers to an object of class type, because the deallocation
function actually called is looked up in the scope of the class that is the dynamic type of the object, if the
destructor is virtual, the effect is the same. For example,

struct B {
virtual ~B();
void operator delete(void*, size_t);

};

struct D : B {
void operator delete(void*);

};

void f()
{

B* bp = new D;
delete bp; // 1: usesD::operator delete(void*)

}

Here, storage for the non-array object of classD is deallocated byD::operator delete() , due to the
virtual destructor.] [Note: virtual destructors have no effect on the deallocation function actually called
when thecast-expressionof adelete-expressionrefers to an array of objects of class type. For example,

struct B {
virtual ~B();
void operator delete[](void*, size_t);

};

struct D : B {
void operator delete[](void*, size_t);

};

void f(int i)
{

D* dp = new D[i];
delete [] dp; // usesD::operator delete[](void*, size_t)
B* bp = new D[i];
delete[] bp; // undefined behavior

}

—end note]

8 Access to the deallocation function is checked statically. Hence, even though a different one might actually
be executed, the statically visible deallocation function is required to be accessible. [Example:for the call
on line //1 above, ifB::operator delete() had beenprivate , the delete expression would have
been ill-formed.]

[class.init] 12.6 Initialization

1 When no initializer is specified for an object of (possibly cv-qualified) class type (or array thereof), or the
initializer has the form() , the object is initialized as specified in 8.5. [Note: if the class is a non-POD, it is
default-initialized.]

2 An object of class type (or array thereof) can be explicitly initialized; see 12.6.1 and 12.6.2.

3 When an array of class objects is initialized (either explicitly or implicitly), the constructor shall be called
for each element of the array, following the subscript order; see 8.3.4. [Note:destructors for the array ele-
ments are called in reverse order of their construction.]

195

ISO/IEC 14882:1998(E) © ISO/IEC

12.6.1 Explicit initialization 12 Special member functions

[class.expl.init] 12.6.1 Explicit initialization

1 An object of class type can be initialized with a parenthesizedexpression-list, where theexpression-listis
construed as an argument list for a constructor that is called to initialize the object. Alternatively, a single
assignment-expressioncan be specified as aninitializer using the= form of initialization. Either direct-
initialization semantics or copy-initialization semantics apply; see 8.5. [Example:

class complex {
// ...

public:
complex();
complex(double);
complex(double,double);
// ...

};

complex sqrt(complex,complex);

complex a(1); // initialize by a call of
// complex(double)

complex b = a; // initialize by a copy ofa
complex c = complex(1,2); // constructcomplex(1,2)

// usingcomplex(double,double)
// copy it intoc

complex d = sqrt(b,c); // call sqrt(complex,complex)
// and copy the result intod

complex e; // initialize by a call of
// complex()

complex f = 3; // constructcomplex(3) using
// complex(double)
// copy it intof

complex g = { 1, 2 }; // error; constructor is required

—end example] [Note:overloading of the assignment operator (13.5.3) has no effect on initialization.]

2 When an aggregate (whether class or array) contains members of class type and is initialized by a brace-
enclosedinitializer-list (8.5.1), each such member is copy-initialized (see 8.5) by the corresponding
assignment-expression. If there are fewerinitializers in theinitializer-list than members of the aggregate,
each member not explicitly initialized shall be default-initialized (8.5). [Note: 8.5.1 describes how
assignment-expressions in aninitializer-list are paired with the aggregate members they initialize.] [Exam-
ple:

complex v[6] = { 1,complex(1,2),complex(),2 };

Here, complex::complex(double) is called for the initialization of v[0] and v[3] ,
complex::complex(double,double) is called for the initialization of v[1] ,
complex::complex() is called for the initializationv[2] , v[4] , andv[5] . For another example,

class X {
public:

int i;
float f;
complex c;

} x = { 99, 88.8, 77.7 };

Here,x.i is initialized with 99,x.f is initialized with 88.8, andcomplex::complex(double) is
called for the initialization ofx.c .] [Note: braces can be elided in theinitializer-list for any aggregate,
even if the aggregate has members of a class type with user-defined type conversions; see 8.5.1.]

3 [Note: if T is a class type with no default constructor, any declaration of an object of typeT (or array
thereof) is ill-formed if noinitializer is explicitly specified (see 12.6 and 8.5).]

196

© ISO/IEC ISO/IEC 14882:1998(E)

12 Special member functions 12.6.1 Explicit initialization

4 [Note:the order in which objects with static storage duration are initialized is described in 3.6.2 and 6.7.]

[class.base.init] 12.6.2 Initializing bases and members

1 In the definition of a constructor for a class, initializers for direct and virtual base subobjects and nonstatic
data members can be specified by actor-initializer, which has the form

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
mem-initializer-id (expression-listopt)

mem-initializer-id:
:: opt nested-name-specifieropt class-name
identifier

2 Names in amem-initializer-idare looked up in the scope of the constructor’s class and, if not found in that
scope, are looked up in the scope containing the constructor’s definition. [Note: if the constructor’s class
contains a member with the same name as a direct or virtual base class of the class, amem-initializer-id
naming the member or base class and composed of a single identifier refers to the class member. Amem-
initializer-id for the hidden base class may be specified using a qualified name.] Unless themem-
initializer-id names a nonstatic data member of the constructor’s class or a direct or virtual base of that
class, themem-initializeris ill-formed. Amem-initializer-listcan initialize a base class using any name that
denotes that base class type. [Example:

struct A { A(); };
typedef A global_A;
struct B { };
struct C: public A, public B { C(); };
C::C(): global_A() { } // mem-initializer for baseA

—end example] If a mem-initializer-idis ambiguous because it designates both a direct non-virtual base
class and an inherited virtual base class, themem-initializeris ill-formed. [Example:

struct A { A(); };
struct B: public virtual A { };
struct C: public A, public B { C(); };
C::C(): A() { } // ill-formed: whichA?

—end example] A ctor-initializer may initialize the member of an anonymous union that is a member of
the constructor’s class. If actor-initializer specifies more than onemem-initializerfor the same member,
for the same base class or for multiple members of the same union (including members of anonymous
unions), thector-initializer is ill-formed.

3 Theexpression-listin a mem-initializeris used to initialize the base class or nonstatic data member subob-
ject denoted by themem-initializer-id. The semantics of amem-initializerare as follows:

— if the expression-listof the mem-initializeris omitted, the base class or member subobject is default-
initialized (see 8.5);

— otherwise, the subobject indicated bymem-initializer-idis direct-initialized usingexpression-listas the
initializer (see 8.5).

197

ISO/IEC 14882:1998(E) © ISO/IEC

12.6.2 Initializing bases and members 12 Special member functions

[Example:

struct B1 { B1(int); /* ... */ };
struct B2 { B2(int); /* ... */ };
struct D : B1, B2 {

D(int);
B1 b;
const int c;

};

D::D(int a) : B2(a+1), B1(a+2), c(a+3), b(a+4)
{ /* ... */ }
D d(10);

—end example] There is a sequence point (1.9) after the initialization of each base and member. The
expression-listof a mem-initializeris evaluated as part of the initialization of the corresponding base or
member.

4 If a given nonstatic data member or base class is not named by amem-initializer-id(including the case
where there is nomem-initializer-listbecause the constructor has noctor-initializer), then

— If the entity is a nonstatic data member of (possibly cv-qualified) class type (or array thereof) or a base
class, and the entity class is a non-POD class, the entity is default-initialized (8.5). If the entity is a non-
static data member of a const-qualified type, the entity class shall have a user-declared default construc-
tor.

— Otherwise, the entity is not initialized. If the entity is of const-qualified type or reference type, or of a
(possibly cv-qualified) POD class type (or array thereof) containing (directly or indirectly) a member of
a const-qualified type, the program is ill-formed.

After the call to a constructor for classX has completed, if a member ofX is neither specified in the
constructor’smem-initializers, nor default-initialized, nor initialized during execution of the body of the
constructor, the member has indeterminate value.

5 Initialization shall proceed in the following order:

— First, and only for the constructor of the most derived class as described below, virtual base classes shall
be initialized in the order they appear on a depth-first left-to-right traversal of the directed acyclic graph
of base classes, where“left-to-right” is the order of appearance of the base class names in the derived
classbase-specifier-list.

— Then, direct base classes shall be initialized in declaration order as they appear in thebase-specifier-list
(regardless of the order of themem-initializers).

— Then, nonstatic data members shall be initialized in the order they were declared in the class definition
(again regardless of the order of themem-initializers).

— Finally, the body of the constructor is executed.

[Note: the declaration order is mandated to ensure that base and member subobjects are destroyed in the
reverse order of initialization.]

6 All sub-objects representing virtual base classes are initialized by the constructor of the most derived class
(1.8). If the constructor of the most derived class does not specify amem-initializerfor a virtual base class
V, thenV’s default constructor is called to initialize the virtual base class subobject. IfV does not have an
accessible default constructor, the initialization is ill-formed. Amem-initializernaming a virtual base class
shall be ignored during execution of the constructor of any class that is not the most derived class. [Exam-
ple:

198

© ISO/IEC ISO/IEC 14882:1998(E)

12 Special member functions 12.6.2 Initializing bases and members

class V {
public:

V();
V(int);
// ...

};

class A : public virtual V {
public:

A();
A(int);
// ...

};

class B : public virtual V {
public:

B();
B(int);
// ...

};

class C : public A, public B, private virtual V {
public:

C();
C(int);
// ...

};

A::A(int i) : V(i) { /* ... */ }
B::B(int i) { /* ... */ }
C::C(int i) { /* ... */ }

V v(1); // useV(int)
A a(2); // useV(int)
B b(3); // useV()
C c(4); // useV()

—end example]

7 Names in theexpression-listof amem-initializerare evaluated in the scope of the constructor for which the
mem-initializeris specified. [Example:

class X {
int a;
int b;
int i;
int j;

public:
const int& r;
X(int i): r(a), b(i), i(i), j(this->i) {}

};

initializesX::r to refer toX::a , initializesX::b with the value of the constructor parameteri , initializes
X::i with the value of the constructor parameteri , and initializesX::j with the value ofX::i ; this
takes place each time an object of classX is created.] [Note: because themem-initializerare evaluated in
the scope of the constructor, thethis pointer can be used in theexpression-listof a mem-initializerto
refer to the object being initialized.]

8 Member functions (including virtual member functions, 10.3) can be called for an object under construc-
tion. Similarly, an object under construction can be the operand of thetypeid operator (5.2.8) or of a
dynamic_cast (5.2.7). However, if these operations are performed in actor-initializer (or in a function

199

ISO/IEC 14882:1998(E) © ISO/IEC

12.6.2 Initializing bases and members 12 Special member functions

called directly or indirectly from actor-initializer) before all themem-initializers for base classes have
completed, the result of the operation is undefined. [Example:

class A {
public:

A(int);
};

class B : public A {
int j;

public:
int f();
B() : A(f()), // undefined: calls member function

// but baseA not yet initialized
j(f()) { } // well-defined: bases are all initialized

};

class C {
public:

C(int);
};

class D : public B, C {
int i;

public:
D() : C(f()), // undefined: calls member function

// but baseCnot yet initialized
i(f()) {} // well-defined: bases are all initialized

};

—end example]

9 [Note:12.7 describes the result of virtual function calls,typeid anddynamic_cast s during construc-
tion for the well-defined cases; that is, describes thepolymorphic behaviorof an object under construction.
]

[class.cdtor] 12.7 Construction and destruction

1 For an object of non-POD class type (clause 9), before the constructor begins execution and after the
destructor finishes execution, referring to any nonstatic member or base class of the object results in unde-
fined behavior. [Example:

struct X { int i; };
struct Y : X { };
struct A { int a; };
struct B : public A { int j; Y y; };

extern B bobj;
B* pb = &bobj; // OK
int* p1 = &bobj.a; // undefined, refers to base class member
int* p2 = &bobj.y.i; // undefined, refers to member’s member

A* pa = &bobj; // undefined, upcast to a base class type
B bobj; // definition ofbobj

extern X xobj;
int* p3 = &xobj.i; // OK, X is a POD class
X xobj;

200

© ISO/IEC ISO/IEC 14882:1998(E)

12 Special member functions 12.7 Construction and destruction

For another example,

struct W { int j; };
struct X : public virtual W { };
struct Y {

int *p;
X x;
Y() : p(&x.j) // undefined,x is not yet constructed
{ }

};

—end example]

2 To explicitly or implicitly convert a pointer (an lvalue) referring to an object of classX to a pointer (refer-
ence) to a direct or indirect base classB of X, the construction ofX and the construction of all of its direct or
indirect bases that directly or indirectly derive fromB shall have started and the destruction of these classes
shall not have completed, otherwise the conversion results in undefined behavior. To form a pointer to (or
access the value of) a direct nonstatic member of an objectobj , the construction ofobj shall have started
and its destruction shall not have completed, otherwise the computation of the pointer value (or accessing
the member value) results in undefined behavior. [Example:

struct A { };
struct B : virtual A { };
struct C : B { };
struct D : virtual A { D(A*); };
struct X { X(A*); };

struct E : C, D, X {
E() : D(this), // undefined: upcast fromE* to A*

// might use pathE* → D* → A*
// but D is not constructed
// D((C*)this) , // defined:
// E* → C* defined becauseE() has started
// andC* → A* defined because
// C fully constructed

X(this) // defined: upon construction ofX,
// C/B/D/A sublattice is fully constructed

{ }
};

—end example]

3 Member functions, including virtual functions (10.3), can be called during construction or destruction
(12.6.2). When a virtual function is called directly or indirectly from a constructor (including from the
mem-initializerfor a data member) or from a destructor, and the object to which the call applies is the
object under construction or destruction, the function called is the one defined in the constructor or
destructor’s own class or in one of its bases, but not a function overriding it in a class derived from the con-
structor or destructor’s class, or overriding it in one of the other base classes of the most derived object
(1.8). If the virtual function call uses an explicit class member access (5.2.5) and the object-expression
refers to the object under construction or destruction but its type is neither the constructor or destructor’s
own class or one of its bases, the result of the call is undefined. [Example:

class V {
public:

virtual void f();
virtual void g();

};

201

ISO/IEC 14882:1998(E) © ISO/IEC

12.7 Construction and destruction 12 Special member functions

class A : public virtual V {
public:

virtual void f();
};

class B : public virtual V {
public:

virtual void g();
B(V*, A*);

};

class D : public A, B {
public:

virtual void f();
virtual void g();
D() : B((A*)this, this) { }

};

B::B(V* v, A* a) {
f(); // calls V::f , notA::f
g(); // calls B::g , notD::g
v->g(); // v is base ofB, the call is well-defined, callsB::g
a->f(); // undefined behavior,a’s type not a base ofB

}

—end example]

4 The typeid operator (5.2.8) can be used during construction or destruction (12.6.2). Whentypeid is
used in a constructor (including from themem-initializerfor a data member) or in a destructor, or used in a
function called (directly or indirectly) from a constructor or destructor, if the operand oftypeid refers to
the object under construction or destruction,typeid yields thetype_info representing the constructor
or destructor’s class. If the operand oftypeid refers to the object under construction or destruction and
the static type of the operand is neither the constructor or destructor’s class nor one of its bases, the result of
typeid is undefined.

5 Dynamic_cast s (5.2.7) can be used during construction or destruction (12.6.2). When a
dynamic_cast is used in a constructor (including from themem-initializerfor a data member) or in a
destructor, or used in a function called (directly or indirectly) from a constructor or destructor, if the
operand of thedynamic_cast refers to the object under construction or destruction, this object is consid-
ered to be a most derived object that has the type of the constructor or destructor’s class. If the operand of
the dynamic_cast refers to the object under construction or destruction and the static type of the
operand is not a pointer to or object of the constructor or destructor’s own class or one of its bases, the
dynamic_cast results in undefined behavior.

6 [Example:

class V {
public:

virtual void f();
};

class A : public virtual V { };

class B : public virtual V {
public:

B(V*, A*);
};

202

© ISO/IEC ISO/IEC 14882:1998(E)

12 Special member functions 12.7 Construction and destruction

class D : public A, B {
public:

D() : B((A*)this, this) { }
};

B::B(V* v, A* a) {
typeid(*this); // type_info for B
typeid(*v); // well-defined:*v has typeV, a base ofB

// yieldstype_info for B
typeid(*a); // undefined behavior: typeA not a base ofB
dynamic_cast<B*>(v); // well-defined:v of typeV* , V base ofB

// results inB*
dynamic_cast<B*>(a); // undefined behavior,

// a has typeA* , A not a base ofB
}

—end example]

[class.copy] 12.8 Copying class objects

1 A class object can be copied in two ways, by initialization (12.1, 8.5), including for function argument
passing (5.2.2) and for function value return (6.6.3), and by assignment (5.17). Conceptually, these two
operations are implemented by a copy constructor (12.1) and copy assignment operator (13.5.3).

2 A non-template constructor for classX is acopyconstructor if its first parameter is of typeX&, const X& ,
volatile X& or const volatile X& , and either there are no other parameters or else all other
parameters have default arguments (8.3.6).106) [Example:X::X(const X&) andX::X(X&, int=1)
are copy constructors.

class X {
// ...

public:
X(int);
X(const X&, int = 1);

};
X a(1); // calls X(int) ;
X b(a, 0); // calls X(const X&, int) ;
X c = b; // calls X(const X&, int) ;

—end example] [Note:all forms of copy constructor may be declared for a class. [Example:

class X {
// ...

public:
X(const X&);
X(X&); // OK

};

—end example] —end note] [Note: if a classX only has a copy constructor with a parameter of typeX&,
an initializer of typeconst X or volatile X cannot initialize an object of type (possibily cv-qualified)
X. [Example:

106)Because a template constructor is never a copy constructor, the presence of such a template does not suppress the implicit declara-
tion of a copy constructor. Template constructors participate in overload resolution with other constructors, including copy construc-
tors, and a template constructor may be used to copy an object if it provides a better match than other constructors.

203

ISO/IEC 14882:1998(E) © ISO/IEC

12.8 Copying class objects 12 Special member functions

struct X {
X(); // default constructor
X(X&); // copy constructor with a nonconst parameter

};
const X cx;
X x = cx; // error – X::X(X&) cannot copycx into x

—end example] —end note]

3 A declaration of a constructor for a classX is ill-formed if its first parameter is of type (optionally cv-
qualified)X and either there are no other parameters or else all other parameters have default arguments. A
member function template is never instantiated to perform the copy of a class object to an object of its class
type. [Example:

struct S {
template<typename T> S(T);

};

S f();

void g() {
S a(f()); // does not instantiate member template

}

—end example]

4 If the class definition does not explicitly declare a copy constructor, one is declaredimplicitly. Thus, for
the class definition

struct X {
X(const X&, int);

};

a copy constructor is implicitly-declared. If the user-declared constructor is later defined as

X::X(const X& x, int i =0) { /* ... */ }

then any use ofX’s copy constructor is ill-formed because of the ambiguity; no diagnostic is required.

5 The implicitly-declared copy constructor for a classX will have the form

X::X(const X&)

if

— each direct or virtual base classB of X has a copy constructor whose first parameter is of typeconst
B&or const volatile B&, and

— for all the nonstatic data members ofX that are of a class typeM(or array thereof), each such class type
has a copy constructor whose first parameter is of typeconst M&or const volatile M&.107)

Otherwise, the implicitly declared copy constructor will have the form

X::X(X&)

An implicitly-declared copy constructor is aninline public member of its class.

6 A copy constructor for classX is trivial if it is implicitly declared and if

— classX has no virtual functions (10.3) and no virtual base classes (10.1), and

— each direct base class ofX has a trivial copy constructor, and

— for all the nonstatic data members ofX that are of class type (or array thereof), each such class type has

107) This implies that the reference parameter of the implicitly-declared copy constructor cannot bind to avolatile lvalue; see
C.1.8.

204

© ISO/IEC ISO/IEC 14882:1998(E)

12 Special member functions 12.8 Copying class objects

a trivial copy constructor;

otherwise the copy constructor isnon-trivial.

7 An implicitly-declared copy constructor isimplicitly definedif it is used to initialize an object of its class
type from a copy of an object of its class type or of a class type derived from its class type108). [Note: the
copy constructor is implicitly defined even if the implementation elided its use (12.2).] A program is ill-
formed if the class for which a copy constructor is implicitly defined has:

— a nonstatic data member of class type (or array thereof) with an inaccessible or ambiguous copy con-
structor, or

— a base class with an inaccessible or ambiguous copy constructor.

Before the implicitly-declared copy constructor for a class is implicitly defined, all implicitly-declared copy
constructors for its direct and virtual base classes and its nonstatic data members shall have been implicitly
defined. [Note:an implicitly-declared copy constructor has an exception-specification (15.4).]

8 The implicitly-defined copy constructor for classX performs a memberwise copy of its subobjects. The
order of copying is the same as the order of initialization of bases and members in a user-defined construc-
tor (see 12.6.2). Each subobject is copied in the manner appropriate to its type:

— if the subobject is of class type, the copy constructor for the class is used;

— if the subobject is an array, each element is copied, in the manner appropriate to the element type;

— if the subobject is of scalar type, the built-in assignment operator is used.

Virtual base class subobjects shall be copied only once by the implicitly-defined copy constructor (see
12.6.2).

9 A user-declaredcopyassignment operatorX::operator= is a non-static non-template member function
of classX with exactly one parameter of typeX, X&, const X&, volatile X& or const volatile
X&.109) [Note:an overloaded assignment operator must be declared to have only one parameter; see 13.5.3.
] [Note:more than one form of copy assignment operator may be declared for a class.] [Note: if a classX
only has a copy assignment operator with a parameter of typeX&, an expression of type constX cannot be
assigned to an object of typeX. [Example:

struct X {
X();
X& operator=(X&);

};
const X cx;
X x;
void f() {

x = cx; // error:
// X::operator=(X&) cannot assigncx into x

}

—end example] —end note]

10 If the class definition does not explicitly declare a copy assignment operator, one is declaredimplicitly.
The implicitly-declared copy assignment operator for a classX will have the form

X& X::operator=(const X&)

if

108)See 8.5 for more details on direct and copy initialization.
109)Because a template assignment operator is never a copy assignment operator, the presence of such a template does not suppress
the implicit declaration of a copy assignment operator. Template assignment operators participate in overload resolution with other
assignment operators, including copy assignment operators, and a template assignment operator may be used to assign an object if it
provides a better match than other assignment operators.

205

ISO/IEC 14882:1998(E) © ISO/IEC

12.8 Copying class objects 12 Special member functions

— each direct base classB of X has a copy assignment operator whose parameter is of typeconst B& ,
const volatile B&or B, and

— for all the nonstatic data members ofX that are of a class typeM(or array thereof), each such class type
has a copy assignment operator whose parameter is of typeconst M& , const volatile M& or
M.110)

Otherwise, the implicitly declared copy constructor will have the form

X& X::operator=(X&)

The implicitly-declared copy assignment operator for classX has the return typeX&; it returns the object for
which the assignment operator is invoked, that is, the object assigned to. An implicitly-declared copy
assignment operator is aninline public member of its class. Because a copy assignment operator is
implicitly declared for a class if not declared by the user, a base class copy assignment operator is always
hidden by the copy assignment operator of a derived class (13.5.3). Ausing-declaration(7.3.3) that brings
in from a base class an assignment operator with a parameter type that could be that of a copy-assignment
operator for the derived class is not considered an explicit declaration of a copy-assignment operator and
does not suppress the implicit declaration of the derived class copy-assignment operator; the operator intro-
duced by theusing-declarationis hidden by the implicitly-declared copy-assignment operator in the
derived class.

11 A copy assignment operator for classX is trivial if it is implicitly declared and if

— classX has no virtual functions (10.3) and no virtual base classes (10.1), and

— each direct base class ofX has a trivial copy assignment operator, and

— for all the nonstatic data members ofX that are of class type (or array thereof), each such class type has
a trivial copy assignment operator;

otherwise the copy assignment operator isnon-trivial.

12 An implicitly-declared copy assignment operator isimplicitly definedwhen an object of its class type is
assigned a value of its class type or a value of a class type derived from its class type. A program is ill-
formed if the class for which a copy assignment operator is implicitly defined has:

— a nonstatic data member ofconst type, or

— a nonstatic data member of reference type, or

— a nonstatic data member of class type (or array thereof) with an inaccessible copy assignment operator,
or

— a base class with an inaccessible copy assignment operator.

Before the implicitly-declared copy assignment operator for a class is implicitly defined, all implicitly-
declared copy assignment operators for its direct base classes and its nonstatic data members shall have
been implicitly defined. [Note: an implicitly-declared copy assignment operator has an exception-
specification (15.4).]

13 The implicitly-defined copy assignment operator for classX performs memberwise assignment of its subob-
jects. The direct base classes ofX are assigned first, in the order of their declaration in thebase-specifier-
list, and then the immediate nonstatic data members ofX are assigned, in the order in which they were
declared in the class definition. Each subobject is assigned in the manner appropriate to its type:

— if the subobject is of class type, the copy assignment operator for the class is used (as if by explicit qual-
ification; that is, ignoring any possible virtual overriding functions in more derived classes);

— if the subobject is an array, each element is assigned, in the manner appropriate to the element type;

110)This implies that the reference parameter of the implicitly-declared copy assignment operator cannot bind to avolatile lvalue;
see C.1.8.

206

© ISO/IEC ISO/IEC 14882:1998(E)

12 Special member functions 12.8 Copying class objects

— if the subobject is of scalar type, the built-in assignment operator is used.

It is unspecified whether subobjects representing virtual base classes are assigned more than once by the
implicitly-defined copy assignment operator. [Example:

struct V { };
struct A : virtual V { };
struct B : virtual V { };
struct C : B, A { };

it is unspecified whether the virtual base class subobjectV is assigned twice by the implicitly-defined copy
assignment operator forC. —end example]

14 A program is ill-formed if the copy constructor or the copy assignment operator for an object is implicitly
used and the special member function is not accessible (clause 11). [Note:Copying one object into another
using the copy constructor or the copy assignment operator does not change the layout or size of either
object.]

15 Whenever a temporary class object is copied using a copy constructor, and this object and the copy have the
same cv-unqualified type, an implementation is permitted to treat the original and the copy as two different
ways of referring to the same object and not perform a copy at all, even if the class copy constructor or
destructor have side effects. For a function with a class return type, if the expression in the return statement
is the name of a local object, and the cv-unqualified type of the local object is the same as the function
return type, an implementation is permitted to omit creating the temporary object to hold the function return
value, even if the class copy constructor or destructor has side effects. In these cases, the object is
destroyed at the later of times when the original and the copy would have been destroyed without the opti-
mization.111) [Example:

class Thing {
public:

Thing();
~Thing();
Thing(const Thing&);
Thing operator=(const Thing&);
void fun();

};

Thing f() {
Thing t;
return t;

}

Thing t2 = f();

Here t does not need to be copied when returning fromf . The return value off may be constructed
directly into the objectt2 .]

111)Because only one object is destroyed instead of two, and one copy constructor is not executed, there is still one object destroyed
for each one constructed.

207

ISO/IEC 14882:1998(E) © ISO/IEC

208

(Blank page)

© ISO/IEC ISO/IEC 14882:1998(E)

13 Overloading 13 Overloading

13 Overloading [over]

1 When two or more different declarations are specified for a single name in the same scope, that name is
said to beoverloaded. By extension, two declarations in the same scope that declare the same name but
with different types are calledoverloaded declarations. Only function declarations can be overloaded;
object and type declarations cannot be overloaded.

2 When an overloaded function name is used in a call, which overloaded function declaration is being refer-
enced is determined by comparing the types of the arguments at the point of use with the types of the
parameters in the overloaded declarations that are visible at the point of use. This function selection pro-
cess is calledoverload resolutionand is defined in 13.3. [Example:

double abs(double);
int abs(int);

abs(1); // call abs(int) ;
abs(1.0); // call abs(double) ;

—end example]

[over.load] 13.1 Overloadable declarations

1 Not all function declarations can be overloaded. Those that cannot be overloaded are specified here. A
program is ill-formed if it contains two such non-overloadable declarations in the same scope. [Note: this
restriction applies to explicit declarations in a scope, and between such declarations and declarations made
through ausing-declaration(7.3.3). It does not apply to sets of functions fabricated as a result of name
lookup (e.g., because ofusing-directives) or overload resolution (e.g., for operator functions).]

2 Certain function declarations cannot be overloaded:

— Function declarations that differ only in the return type cannot be overloaded.

— Member function declarations with the same name and the same parameter types cannot be overloaded
if any of them is astatic member function declaration (9.4). Likewise, member function template
declarations with the same name, the same parameter types, and the same template parameter lists can-
not be overloaded if any of them is astatic member function template declaration. The types of the
implicit object parameters constructed for the member functions for the purpose of overload resolution
(13.3.1) are not considered when comparing parameter types for enforcement of this rule. In contrast, if
there is nostatic member function declaration among a set of member function declarations with the
same name and the same parameter types, then these member function declarations can be overloaded if
they differ in the type of their implicit object parameter. [Example:the following illustrates this distinc-
tion:

class X {
static void f();
void f(); // ill-formed
void f() const; // ill-formed
void f() const volatile; // ill-formed
void g();
void g() const; // OK: no staticg
void g() const volatile; // OK: no staticg

};

—end example]

3 [Note: as specified in 8.3.5, function declarations that have equivalent parameter declarations declare the
same function and therefore cannot be overloaded:

209

ISO/IEC 14882:1998(E) © ISO/IEC

13.1 Overloadable declarations 13 Overloading

— Parameter declarations that differ only in the use of equivalent typedef“types” are equivalent. A
typedef is not a separate type, but only a synonym for another type (7.1.3). [Example:

typedef int Int;

void f(int i);
void f(Int i); // OK: redeclaration off(int)
void f(int i) { /* ... */ }
void f(Int i) { /* ... */ } // error: redefinition off(int)

—end example]

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded function
declarations. [Example:

enum E { a };

void f(int i) { /* ... */ }
void f(E i) { /* ... */ }

—end example]

— Parameter declarations that differ only in a pointer* versus an array[] are equivalent. That is, the
array declaration is adjusted to become a pointer declaration (8.3.5). Only the second and subsequent
array dimensions are significant in parameter types (8.3.4). [Example:

int f(char*);
int f(char[]); // same asf(char*) ;
int f(char[7]); // same asf(char*) ;
int f(char[9]); // same asf(char*) ;

int g(char(*)[10]);
int g(char[5][10]); // same asg(char(*)[10]) ;
int g(char[7][10]); // same asg(char(*)[10]) ;
int g(char(*)[20]); // different fromg(char(*)[10]) ;

—end example]

— Parameter declarations that differ only in that one is a function type and the other is a pointer to the
same function type are equivalent. That is, the function type is adjusted to become a pointer to function
type (8.3.5). [Example:

void h(int());
void h(int (*)()); // redeclaration ofh(int())
void h(int x()) { } // definition ofh(int())
void h(int (*x)()) { } // ill-formed: redefinition ofh(int())

]

— Parameter declarations that differ only in the presence or absence ofconst and/orvolatile are
equivalent. That is, theconst and volatile type-specifiers for each parameter type are ignored
when determining which function is being declared, defined, or called. [Example:

typedef const int cInt;

int f (int);
int f (const int); // redeclaration off(int)
int f (int) { ... } // definition off(int)
int f (cInt) { ... } // error: redefinition off(int)

—end example]

Only theconst andvolatile type-specifiers at the outermost level of the parameter type specifica-
tion are ignored in this fashion;const andvolatile type-specifiers buried within a parameter type
specification are significant and can be used to distinguish overloaded function declarations.112) In

112)When a parameter type includes a function type, such as in the case of a parameter type that is a pointer to function, theconst
andvolatile type-specifiers at the outermost level of the parameter type specifications for the inner function type are also ignored.
210

© ISO/IEC ISO/IEC 14882:1998(E)

13 Overloading 13.1 Overloadable declarations

particular, for any typeT, “pointer toT,” “pointer toconst T,” and“pointer tovolatile T” are con-
sidered distinct parameter types, as are“reference toT,” “reference toconst T ,” and “reference to
volatile T.”

— Two parameter declarations that differ only in their default arguments are equivalent. [Example:con-
sider the following:

void f (int i, int j);
void f (int i, int j = 99); // OK: redeclaration off(int, int)
void f (int i = 88, int j); // OK: redeclaration off(int, int)
void f (); // OK: overloaded declaration off

void prog ()
{

f (1, 2); // OK: call f(int, int)
f (1); // OK: call f(int, int)
f (); // Error: f(int, int) or f() ?

}

—end example] —end note]

[over.dcl] 13.2 Declaration matching

1 Two function declarations of the same name refer to the same function if they are in the same scope and
have equivalent parameter declarations (13.1). A function member of a derived class isnot in the same
scope as a function member of the same name in a base class. [Example:

class B {
public:

int f(int);
};

class D : public B {
public:

int f(char*);
};

HereD::f(char*) hidesB::f(int) rather than overloading it.

void h(D* pd)
{

pd->f(1); // error:
// D::f(char*) hidesB::f(int)

pd->B::f(1); // OK
pd->f("Ben"); // OK, callsD::f

}

—end example]

2 A locally declared function is not in the same scope as a function in a containing scope. [Example:

int f(char*);
void g()
{

extern f(int);
f("asdf"); // error: f(int) hidesf(char*)

// so there is nof(char*) in this scope
}

211

ISO/IEC 14882:1998(E) © ISO/IEC

13.2 Declaration matching 13 Overloading

void caller ()
{

extern void callee(int, int);
{

extern void callee(int); // hidescallee(int, int)
callee(88, 99); // error: only callee(int) in scope

}
}

—end example]

3 Different versions of an overloaded member function can be given different access rules. [Example:

class buffer {
private:

char* p;
int size;

protected:
buffer(int s, char* store) { size = s; p = store; }
// ...

public:
buffer(int s) { p = new char[size = s]; }
// ...

};

—end example]

[over.match] 13.3 Overload resolution

1 Overload resolution is a mechanism for selecting the best function to call given a list of expressions that are
to be the arguments of the call and a set ofcandidate functionsthat can be called based on the context of the
call. The selection criteria for the best function are the number of arguments, how well the arguments
match the types of the parameters of the candidate function, how well (for nonstatic member functions) the
object matches the implied object parameter, and certain other properties of the candidate function. [Note:
the function selected by overload resolution is not guaranteed to be appropriate for the context. Other
restrictions, such as the accessibility of the function, can make its use in the calling context ill-formed.]

2 Overload resolution selects the function to call in seven distinct contexts within the language:

— invocation of a function named in the function call syntax (13.3.1.1.1);

— invocation of a function call operator, a pointer-to-function conversion function, a reference-to-pointer-
to-function conversion function, or a reference-to-function conversion function on a class object named
in the function call syntax (13.3.1.1.2);

— invocation of the operator referenced in an expression (13.3.1.2);

— invocation of a constructor for direct-initialization (8.5) of a class object (13.3.1.3);

— invocation of a user-defined conversion for copy-initialization (8.5) of a class object (13.3.1.4);

— invocation of a conversion function for initialization of an object of a nonclass type from an expression
of class type (13.3.1.5); and

— invocation of a conversion function for conversion to an lvalue to which a reference (8.5.3) will be
directly bound (13.3.1.6).

3 Each of these contexts defines the set of candidate functions and the list of arguments in its own unique
way. But, once the candidate functions and argument lists have been identified, the selection of the best
function is the same in all cases:

— First, a subset of the candidate functions—those that have the proper number of arguments and meet

212

© ISO/IEC ISO/IEC 14882:1998(E)

13 Overloading 13.3 Overload resolution

certain other conditions—is selected to form a set of viable functions (13.3.2).

— Then the best viable function is selected based on the implicit conversion sequences (13.3.3.1) needed
to match each argument to the corresponding parameter of each viable function.

4 If a best viable function exists and is unique, overload resolution succeeds and produces it as the result.
Otherwise overload resolution fails and the invocation is ill-formed. When overload resolution succeeds,
and the best viable function is not accessible (clause 11) in the context in which it is used, the program is
ill-formed.

[over.match.funcs] 13.3.1 Candidate functions and argument lists

1 The subclauses of 13.3.1 describe the set of candidate functions and the argument list submitted to overload
resolution in each of the seven contexts in which overload resolution is used. The source transformations
and constructions defined in these subclauses are only for the purpose of describing the overload resolution
process. An implementation is not required to use such transformations and constructions.

2 The set of candidate functions can contain both member and non-member functions to be resolved against
the same argument list. So that argument and parameter lists are comparable within this heterogeneous set,
a member function is considered to have an extra parameter, called theimplicit object parameter, which
represents the object for which the member function has been called. For the purposes of overload resolu-
tion, both static and non-static member functions have an implicit object parameter, but constructors do not.

3 Similarly, when appropriate, the context can construct an argument list that contains animplied object
argumentto denote the object to be operated on. Since arguments and parameters are associated by posi-
tion within their respective lists, the convention is that the implicit object parameter, if present, is always
the first parameter and the implied object argument, if present, is always the first argument.

4 For non-static member functions, the type of the implicit object parameter is“reference tocv X” whereX is
the class of which the function is a member andcv is the cv-qualification on the member function declara-
tion. [Example:for aconst member function of classX, the extra parameter is assumed to have type“ref-
erence toconst X ”.] For conversion functions, the function is considered to be a member of the class of
the implicit object argument for the purpose of defining the type of the implicit object parameter. For non-
conversion functions introduced by ausing-declarationinto a derived class, the function is considered to be
a member of the derived class for the purpose of defining the type of the implicit object parameter. For
static member functions, the implicit object parameter is considered to match any object (since if the func-
tion is selected, the object is discarded). [Note:no actual type is established for the implicit object parame-
ter of a static member function, and no attempt will be made to determine a conversion sequence for that
parameter (13.3.3).]

5 During overload resolution, the implied object argument is indistinguishable from other arguments. The
implicit object parameter, however, retains its identity since conversions on the corresponding argument
shall obey these additional rules:

— no temporary object can be introduced to hold the argument for the implicit object parameter;

— no user-defined conversions can be applied to achieve a type match with it; and

— even if the implicit object parameter is notconst -qualified, an rvalue temporary can be bound to the
parameter as long as in all other respects the temporary can be converted to the type of the implicit
object parameter.

6 Because only one user-defined conversion is allowed in an implicit conversion sequence, special rules
apply when selecting the best user-defined conversion (13.3.3, 13.3.3.1). [Example:

class T {
public:

T();
// ...

};

213

ISO/IEC 14882:1998(E) © ISO/IEC

13.3.1 Candidate functions and argument lists 13 Overloading

class C : T {
public:

C(int);
// ...

};
T a = 1; // ill-formed: T(C(1)) not tried

—end example]

7 In each case where a candidate is a function template, candidate template functions are generated using
template argument deduction (14.8.3, 14.8.2). Those candidates are then handled as candidate functions in
the usual way.113)A given name can refer to one or more function templates and also to a set of overloaded
non-template functions. In such a case, the candidate functions generated from each function template are
combined with the set of non-template candidate functions.

[over.match.call] 13.3.1.1 Function call syntax

1 Recall from 5.2.2, that afunction call is apostfix-expression, possibly nested arbitrarily deep in parenthe-
ses, followed by an optionalexpression-listenclosed in parentheses:

(...(opt postfix-expression) ...) opt (expression-listopt)

Overload resolution is required if thepostfix-expressionis the name of a function, a function template
(14.5.5), an object of class type, or a set of pointers-to-function.

2 13.3.1.1.1 describes how overload resolution is used in the first two of the above cases to determine the
function to call. 13.3.1.1.2 describes how overload resolution is used in the third of the above cases to
determine the function to call.

3 The fourth case arises from apostfix-expressionof the form&F, whereF names a set of overloaded func-
tions. In the context of a function call, the set of functions named byF shall contain only non-member
functions and static member functions114). And in this context using&F behaves the same as using the
nameF by itself. Thus, (&F)(expression-listopt) is simply (F)(expression-listopt) , which is discussed
in 13.3.1.1.1. (The resolution of&F in other contexts is described in 13.4.)

[over.call.func] 13.3.1.1.1 Call to named function

1 Of interest in 13.3.1.1.1 are only those function calls in which thepostfix-expressionultimately contains a
name that denotes one or more functions that might be called. Such apostfix-expression, perhaps nested
arbitrarily deep in parentheses, has one of the following forms:

postfix-expression:
postfix-expression. id-expression
postfix-expression-> id-expression
primary-expression

These represent two syntactic subcategories of function calls: qualified function calls and unqualified func-
tion calls.

2 In qualified function calls, the name to be resolved is anid-expressionand is preceded by an-> or . oper-
ator. Since the constructA->B is generally equivalent to(*A).B , the rest of clause 13 assumes, without
loss of generality, that all member function calls have been normalized to the form that uses an object and
the . operator. Furthermore, clause 13 assumes that thepostfix-expressionthat is the left operand of the.
operator has type“cvT” whereT denotes a class115). Under this assumption, theid-expressionin the call is
looked up as a member function ofT following the rules for looking up names in classes (10.2). If a

113)The process of argument deduction fully determines the parameter types of the template functions, i.e., the parameters of template
functions contain no template parameter types. Therefore the template functions can be treated as normal (non-template) functions for
the remainder of overload resolution.
114)If F names a non-static member function,&F is a pointer-to-member, which cannot be used with the function call syntax.
115)Note that cv-qualifiers on the type of objects are significant in overload resolution for both lvalue and class rvalue objects.

214

© ISO/IEC ISO/IEC 14882:1998(E)

13 Overloading 13.3.1.1.1 Call to named function

member function is found, that function and its overloaded declarations constitute the set of candidate func-
tions. The argument list is theexpression-listin the call augmented by the addition of the left operand of
the. operator in the normalized member function call as the implied object argument (13.3.1).

3 In unqualified function calls, the name is not qualified by an-> or . operator and has the more general
form of aprimary-expression. The name is looked up in the context of the function call following the nor-
mal rules for name lookup in function calls (3.4.2). If the name resolves to a non-member function declara-
tion, that function and its overloaded declarations constitute the set of candidate functions116). The argu-
ment list is the same as theexpression-listin the call. If the name resolves to a nonstatic member function,
then the function call is actually a member function call. If the keywordthis (9.3.2) is in scope and refers
to the class of that member function, or a derived class thereof, then the function call is transformed into a
normalized qualified function call using(*this) as thepostfix-expressionto the left of the. operator.
The candidate functions and argument list are as described for qualified function calls above. If the key-
word this is not in scope or refers to another class, then name resolution found a static member of some
classT. In this case, all overloaded declarations of the function name inT become candidate functions and
a contrived object of typeT becomes the implied object argument117). The call is ill-formed, however, if
overload resolution selects one of the non-static member functions ofT in this case.

[over.call.object] 13.3.1.1.2 Call to object of class type

1 If the primary-expressionE in the function call syntax evaluates to a class object of type“cvT”, then the set
of candidate functions includes at least the function call operators ofT. The function call operators ofT are
obtained by ordinary lookup of the nameoperator() in the context of(E).operator() .

2 In addition, for each conversion function declared inT of the form

operator conversion-type-id() cv-qualifier;

where cv-qualifier is the same cv-qualification as, or a greater cv-qualification than,cv, and where
conversion-type-iddenotes the type“pointer to function of (P1,...,Pn) returningR”, or the type“reference
to pointer to function of (P1,...,Pn) returningR”, or the type“reference to function of (P1,...,Pn) returning
R”, asurrogate call functionwith the unique namecall-functionand having the form

R call-function (conversion-type-idF, P1 a1, ...,Pn an) { return F (a1, ...,an); }

is also considered as a candidate function. Similarly, surrogate call functions are added to the set of candi-
date functions for each conversion function declared in an accessible base class provided the function is not
hidden withinT by another intervening declaration118).

3 If such a surrogate call function is selected by overload resolution, its body, as defined above, will be exe-
cuted to convertE to the appropriate function and then to invoke that function with the arguments of the
call.

4 The argument list submitted to overload resolution consists of the argument expressions present in the func-
tion call syntax preceded by the implied object argument(E) . [Note:when comparing the call against the
function call operators, the implied object argument is compared against the implicit object parameter of
the function call operator. When comparing the call against a surrogate call function, the implied object
argument is compared against the first parameter of the surrogate call function. The conversion function
from which the surrogate call function was derived will be used in the conversion sequence for that parame-
ter since it converts the implied object argument to the appropriate function pointer or reference required by
that first parameter.] [Example:

116)Because of the usual name hiding rules, these will be introduced by declarations or byusing-directives all found in the same block
or all found at namespace scope.
117)An implied object argument must be contrived to correspond to the implicit object parameter attributed to member functions dur-
ing overload resolution. It is not used in the call to the selected function. Since the member functions all have the same implicit object
parameter, the contrived object will not be the cause to select or reject a function.
118)Note that this construction can yield candidate call functions that cannot be differentiated one from the other by overload resolu-
tion because they have identical declarations or differ only in their return type. The call will be ambiguous if overload resolution can-
not select a match to the call that is uniquely better than such undifferentiable functions.

215

ISO/IEC 14882:1998(E) © ISO/IEC

13.3.1.1.2 Call to object of class type 13 Overloading

int f1(int);
int f2(float);
typedef int (*fp1)(int);
typedef int (*fp2)(float);
struct A {

operator fp1() { return f1; }
operator fp2() { return f2; }

} a;
int i = a(1); // Calls f1 via pointer returned from

// conversion function

—end example]

[over.match.oper] 13.3.1.2 Operators in expressions

1 If no operand of an operator in an expression has a type that is a class or an enumeration, the operator is
assumed to be a built-in operator and interpreted according to clause 5. [Note:because. , .* , and:: can-
not be overloaded, these operators are always built-in operators interpreted according to clause 5.?: can-
not be overloaded, but the rules in this subclause are used to determine the conversions to be applied to the
second and third operands when they have class or enumeration type (5.16).] [Example:

class String {
public:

String (const String&);
String (char*);

operator char* ();
};
String operator + (const String&, const String&);

void f(void)
{

char* p= "one" + "two"; // ill-formed because neither
// operand has user defined type

int I = 1 + 1; // Always evaluates to2 even if
// user defined types exist which
// would perform the operation.

}

—end example]

2 If either operand has a type that is a class or an enumeration, a user-defined operator function might be
declared that implements this operator or a user-defined conversion can be necessary to convert the operand
to a type that is appropriate for a built-in operator. In this case, overload resolution is used to determine
which operator function or built-in operator is to be invoked to implement the operator. Therefore, the
operator notation is first transformed to the equivalent function-call notation as summarized in Table 8
(where@denotes one of the operators covered in the specified subclause).

Table 8—relationship between operator and function call notation
_ __
Subclause Expression As member function As non-member function_ ___ __
13.5.1 @a (a).operator@ () operator@ (a)
13.5.2 a@b (a).operator@ (b) operator@ (a, b)
13.5.3 a=b (a).operator= (b)
13.5.5 a[b] (a).operator[](b)
13.5.6 a-> (a).operator-> ()
13.5.7 a@ (a).operator@ (0) operator@ (a, 0)_ __

216

© ISO/IEC ISO/IEC 14882:1998(E)

13 Overloading 13.3.1.2 Operators in expressions

3 For a unary operator@with an operand of a type whose cv-unqualified version isT1, and for a binary oper-
ator@with a left operand of a type whose cv-unqualified version isT1 and a right operand of a type whose
cv-unqualified version isT2, three sets of candidate functions, designatedmember candidates, non-member
candidatesandbuilt-in candidates, are constructed as follows:

— If T1 is a class type, the set of member candidates is the result of the qualified lookup of
T1::operator@ (13.3.1.1.1); otherwise, the set of member candidates is empty.

— The set of non-member candidates is the result of the unqualified lookup ofoperator@ in the context
of the expression according to the usual rules for name lookup in unqualified function calls (3.4.2)
except that all member functions are ignored. However, if no operand has a class type, only those non-
member functions in the lookup set that have a first parameter of typeT1 or “reference to (possibly cv-
qualified)T1”, whenT1 is an enumeration type, or (if there is a right operand) a second parameter of
type T2 or “reference to (possibly cv-qualified)T2”, whenT2 is an enumeration type, are candidate
functions.

— For the operator, , the unary operator&, or the operator-> , the built-in candidates set is empty. For all
other operators, the built-in candidates include all of the candidate operator functions defined in 13.6
that, compared to the given operator,

— have the same operator name, and

— accept the same number of operands, and

— accept operand types to which the given operand or operands can be converted according to
13.3.3.1, and

— do not have the same parameter type list as any non-template non-member candidate.

4 For the built-in assignment operators, conversions of the left operand are restricted as follows:

— no temporaries are introduced to hold the left operand, and

— no user-defined conversions are applied to the left operand to achieve a type match with the left-most
parameter of a built-in candidate.

5 For all other operators, no such restrictions apply.

6 The set of candidate functions for overload resolution is the union of the member candidates, the non-
member candidates, and the built-in candidates. The argument list contains all of the operands of the opera-
tor. The best function from the set of candidate functions is selected according to 13.3.2 and 13.3.3.119)

[Example:

struct A {
operator int();

};
A operator+(const A&, const A&);
void m() {

A a, b;
a + b; // operator+(a,b) chosen overint(a) + int(b)

}

—end example]

7 If a built-in candidate is selected by overload resolution, the operands are converted to the types of the cor-
responding parameters of the selected operation function. Then the operator is treated as the corresponding
built-in operator and interpreted according to clause 5.

8 The second operand of operator-> is ignored in selecting anoperator-> function, and is not an argu-
ment when theoperator-> function is called. Whenoperator-> returns, the operator-> is applied
to the value returned, with the original second operand.120)

119)If the set of candidate functions is empty, overload resolution is unsuccessful.
120)If the value returned by theoperator-> function has class type, this may result in selecting and calling anotheroperator->

217

ISO/IEC 14882:1998(E) © ISO/IEC

13.3.1.2 Operators in expressions 13 Overloading

9 If the operator is the operator, , the unary operator&, or the operator-> , and there are no viable functions,
then the operator is assumed to be the built-in operator and interpreted according to clause 5.

10 [Note: the lookup rules for operators in expressions are different than the lookup rules for operator function
names in a function call, as shown in the following example:

struct A { };
void operator + (A, A);

struct B {
void operator + (B);
void f ();

};

A a;

void B::f() {
operator+ (a,a); // ERROR– global operator hidden by member
a + a; // OK – calls globaloperator+

}

—end note]

[over.match.ctor] 13.3.1.3 Initialization by constructor

1 When objects of class type are direct-initialized (8.5), overload resolution selects the constructor. The can-
didate functions are all the constructors of the class of the object being initialized. The argument list is the
expression-listwithin the parentheses of the initializer.

[over.match.copy] 13.3.1.4 Copy-initialization of class by user-defined conversion

1 Under the conditions specified in 8.5, as part of a copy-initialization of an object of class type, a user-
defined conversion can be invoked to convert an initializer expression to the type of the object being initial-
ized. Overload resolution is used to select the user-defined conversion to be invoked. Assuming that“cv1
T” is the type of the object being initialized, withT a class type, the candidate functions are selected as fol-
lows:

— The converting constructors (12.3.1) ofT are candidate functions.

— When the type of the initializer expression is a class type“cv S”, the conversion functions ofS and its
base classes are considered. Those that are not hidden withinS and yield a type whose cv-unqualified
version is the same type asT or is a derived class thereof are candidate functions. Conversion functions
that return“reference toT” return lvalues of typeT and are therefore considered to yieldT for this pro-
cess of selecting candidate functions.

2 In both cases, the argument list has one argument, which is the initializer expression. [Note: this argument
will be compared against the first parameter of the constructors and against the implicit object parameter of
the conversion functions.]

[over.match.conv] 13.3.1.5 Initialization by conversion function

1 Under the conditions specified in 8.5, as part of an initialization of an object of nonclass type, a conversion
function can be invoked to convert an initializer expression of class type to the type of the object being ini-
tialized. Overload resolution is used to select the conversion function to be invoked. Assuming that“cv1
T” is the type of the object being initialized, and“cv S” is the type of the initializer expression, withS a
class type, the candidate functions are selected as follows:

— The conversion functions ofS and its base classes are considered. Those that are not hidden withinS
and yield typeT or a type that can be converted to typeT via a standard conversion sequence

function. The process repeats until anoperator-> function returns a value of non-class type.

218

© ISO/IEC ISO/IEC 14882:1998(E)

13 Overloading 13.3.1.5 Initialization by conversion function

(13.3.3.1.1) are candidate functions. Conversion functions that return a cv-qualified type are considered
to yield the cv-unqualified version of that type for this process of selecting candidate functions. Con-
version functions that return“reference toT” return lvalues of typeT and are therefore considered to
yield T for this process of selecting candidate functions.

2 The argument list has one argument, which is the initializer expression. [Note: this argument will be com-
pared against the implicit object parameter of the conversion functions.]

[over.match.ref] 13.3.1.6 Initialization by conversion function for direct reference binding

1 Under the conditions specified in 8.5.3, a reference can be bound directly to an lvalue that is the result of
applying a conversion function to an initializer expression. Overload resolution is used to select the con-
version function to be invoked. Assuming that“cv1T” is the underlying type of the reference being initial-
ized, and“cv S” is the type of the initializer expression, withS a class type, the candidate functions are
selected as follows:

— The conversion functions ofS and its base classes are considered. Those that are not hidden withinS
and yield type“reference tocv2T2”, where“cv1T” is reference-compatible (8.5.3) with“cv2T2”, are
candidate functions.

2 The argument list has one argument, which is the initializer expression. [Note: this argument will be com-
pared against the implicit object parameter of the conversion functions.]

[over.match.viable] 13.3.2 Viable functions

1 From the set of candidate functions constructed for a given context (13.3.1), a set of viable functions is cho-
sen, from which the best function will be selected by comparing argument conversion sequences for the
best fit (13.3.3). The selection of viable functions considers relationships between arguments and function
parameters other than the ranking of conversion sequences.

2 First, to be a viable function, a candidate function shall have enough parameters to agree in number with the
arguments in the list.

— If there aremarguments in the list, all candidate functions having exactlymparameters are viable.

— A candidate function having fewer thanm parameters is viable only if it has an ellipsis in its parameter
list (8.3.5). For the purposes of overload resolution, any argument for which there is no corresponding
parameter is considered to ‘‘match the ellipsis’’ (13.3.3.1.3) .

— A candidate function having more thanm parameters is viable only if the(m+1)– st parameter has a
default argument (8.3.6).121) For the purposes of overload resolution, the parameter list is truncated on
the right, so that there are exactlymparameters.

3 Second, forF to be a viable function, there shall exist for each argument animplicit conversion sequence
(13.3.3.1) that converts that argument to the corresponding parameter ofF. If the parameter has reference
type, the implicit conversion sequence includes the operation of binding the reference, and the fact that a
reference to non-const cannot be bound to an rvalue can affect the viability of the function (see
13.3.3.1.4).

[over.match.best] 13.3.3 Best Viable Function

1 Define ICSi(F) as follows:

— if F is a static member function, ICS1(F) is defined such that ICS1(F) is neither better nor worse than
ICS1(G) for any functionG, and, symmetrically, ICS1(G) is neither better nor worse than ICS1(F)122);
otherwise,

121)According to 8.3.6, parameters following the(m+1)– st parameter must also have default arguments.
122) If a function is a static member function, this definition means that the first argument, the implied object parameter, has no effect
in the determination of whether the function is better or worse than any other function.

219

ISO/IEC 14882:1998(E) © ISO/IEC

13.3.3 Best Viable Function 13 Overloading

— let ICSi(F) denote the implicit conversion sequence that converts thei-th argument in the list to the type
of the i-th parameter of viable functionF. 13.3.3.1 defines the implicit conversion sequences and
13.3.3.2 defines what it means for one implicit conversion sequence to be a better conversion sequence
or worse conversion sequence than another.

Given these definitions, a viable functionF1 is defined to be abetterfunction than another viable function
F2 if for all argumentsi, ICSi(F1) is not a worse conversion sequence than ICSi(F2), and then

— for some argumentj, ICSj(F1) is a better conversion sequence than ICSj(F2), or, if not that,

— F1 is a non-template function andF2 is a template function specialization, or, if not that,

— F1 andF2 are template functions, and the function template forF1 is more specialized than the tem-
plate forF2 according to the partial ordering rules described in 14.5.5.2, or, if not that,

— the context is an initialization by user-defined conversion (see 8.5, 13.3.1.5) and the standard conver-
sion sequence from the return type ofF1 to the destination type (i.e., the type of the entity being initial-
ized) is a better conversion sequence than the standard conversion sequence from the return type ofF2
to the destination type. [Example:

struct A {
A();
operator int();
operator double();

} a;
int i = a; // a.operator int() followed by no conversion

// is better thana.operator double() followed by
// a conversion toint

float x = a; // ambiguous: both possibilities require conversions,
// and neither is better than the other

—end example]

2 If there is exactly one viable function that is a better function than all other viable functions, then it is the
one selected by overload resolution; otherwise the call is ill-formed123).

123)The algorithm for selecting the best viable function is linear in the number of viable functions. Run a simple tournament to find a
functionWthat is not worse than any opponent it faced. Although another functionF thatWdid not face might be at least as good asW,
F cannot be the best function because at some point in the tournamentF encountered another functionGsuch thatF was not better than
G. Hence,Wis either the best function or there is no best function. So, make a second pass over the viable functions to verify thatWis
better than all other functions.

220

© ISO/IEC ISO/IEC 14882:1998(E)

13 Overloading 13.3.3 Best Viable Function

3 [Example:

void Fcn(const int*, short);
void Fcn(int*, int);

int i;
short s = 0;

void f() {
Fcn(&i, s); // is ambiguous because

// &i → int* is better than&i → const int*
// but s → short is also better thans → int

Fcn(&i, 1L); // calls Fcn(int*, int) , because
// &i → int* is better than&i → const int*
// and1L → short and1L → int are indistinguishable

Fcn(&i,’c’); // calls Fcn(int*, int) , because
// &i → int* is better than&i → const int*
// andc → int is better thanc → short

}

—end example]

[over.best.ics] 13.3.3.1 Implicit conversion sequences

1 An implicit conversion sequenceis a sequence of conversions used to convert an argument in a function
call to the type of the corresponding parameter of the function being called. The sequence of conversions is
an implicit conversion as defined in clause 4, which means it is governed by the rules for initialization of an
object or reference by a single expression (8.5, 8.5.3).

2 Implicit conversion sequences are concerned only with the type, cv-qualification, and lvalue-ness of the
argument and how these are converted to match the corresponding properties of the parameter. Other prop-
erties, such as the lifetime, storage class, alignment, or accessibility of the argument and whether or not the
argument is a bit-field are ignored. So, although an implicit conversion sequence can be defined for a given
argument-parameter pair, the conversion from the argument to the parameter might still be ill-formed in the
final analysis.

3 Except in the context of an initialization by user-defined conversion (13.3.1.4, 13.3.1.5), a well-formed
implicit conversion sequence is one of the following forms:

— astandard conversion sequence(13.3.3.1.1),

— auser-defined conversion sequence(13.3.3.1.2), or

— anellipsis conversion sequence(13.3.3.1.3).

4 In the context of an initialization by user-defined conversion (i.e., when considering the argument of a
user-defined conversion function; see 13.3.1.4, 13.3.1.5), only standard conversion sequences and ellipsis
conversion sequences are allowed.

5 For the case where the parameter type is a reference, see 13.3.3.1.4.

6 When the parameter type is not a reference, the implicit conversion sequence models a copy-initialization
of the parameter from the argument expression. The implicit conversion sequence is the one required to
convert the argument expression to an rvalue of the type of the parameter. [Note:when the parameter has a
class type, this is a conceptual conversion defined for the purposes of clause 13; the actual initialization is
defined in terms of constructors and is not a conversion.] Any difference in top-level cv-qualification is
subsumed by the initialization itself and does not constitute a conversion. [Example:a parameter of typeA
can be initialized from an argument of typeconst A . The implicit conversion sequence for that case is
the identity sequence; it contains no“conversion” from const A to A.] When the parameter has a class
type and the argument expression has the same type, the implicit conversion sequence is an identity

221

ISO/IEC 14882:1998(E) © ISO/IEC

13.3.3.1 Implicit conversion sequences 13 Overloading

conversion. When the parameter has a class type and the argument expression has a derived class type, the
implicit conversion sequence is a derived-to-base Conversion from the derived class to the base class.
[Note: there is no such standard conversion; this derived-to-base Conversion exists only in the description
of implicit conversion sequences.] A derived-to-base Conversion has Conversion rank (13.3.3.1.1).

7 In all contexts, when converting to the implicit object parameter or when converting to the left operand of
an assignment operation only standard conversion sequences that create no temporary object for the result
are allowed.

8 If no conversions are required to match an argument to a parameter type, the implicit conversion sequence
is the standard conversion sequence consisting of the identity conversion (13.3.3.1.1).

9 If no sequence of conversions can be found to convert an argument to a parameter type or the conversion is
otherwise ill-formed, an implicit conversion sequence cannot be formed.

10 If several different sequences of conversions exist that each convert the argument to the parameter type, the
implicit conversion sequence associated with the parameter is defined to be the unique conversion sequence
designated theambiguous conversion sequence. For the purpose of ranking implicit conversion sequences
as described in 13.3.3.2, the ambiguous conversion sequence is treated as a user-defined sequence that is
indistinguishable from any other user-defined conversion sequence124). If a function that uses the ambigu-
ous conversion sequence is selected as the best viable function, the call will be ill-formed because the con-
version of one of the arguments in the call is ambiguous.

11 The three forms of implicit conversion sequences mentioned above are defined in the following subclauses.

[over.ics.scs] 13.3.3.1.1 Standard conversion sequences

1 Table 9 summarizes the conversions defined in clause 4 and partitions them into four disjoint categories:
Lvalue Transformation, Qualification Adjustment, Promotion, and Conversion. [Note: these categories are
orthogonal with respect to lvalue-ness, cv-qualification, and data representation: the Lvalue Transforma-
tions do not change the cv-qualification or data representation of the type; the Qualification Adjustments do
not change the lvalue-ness or data representation of the type; and the Promotions and Conversions do not
change the lvalue-ness or cv-qualification of the type.]

2 [Note: As described in clause 4, a standard conversion sequence is either the Identity conversion by itself
(that is, no conversion) or consists of one to three conversions from the other four categories. At most one
conversion from each category is allowed in a single standard conversion sequence. If there are two or
more conversions in the sequence, the conversions are applied in the canonical order:Lvalue
Transformation , Promotion or Conversion, Qualification Adjustment . —end note]

124)The ambiguous conversion sequence is ranked with user-defined conversion sequences because multiple conversion sequences for
an argument can exist only if they involve different user-defined conversions. The ambiguous conversion sequence is indistinguishable
from any other user-defined conversion sequence because it represents at least two user-defined conversion sequences, each with a dif-
ferent user-defined conversion, and any other user-defined conversion sequence must be indistinguishable from at least one of them.

This rule prevents a function from becoming non-viable because of an ambiguous conversion sequence for one of its parameters. Con-
sider this example,

class B;
class A { A (B&); };
class B { operator A (); };
class C { C (B&); };
void f(A) { }
void f(C) { }
B b;
f(b); // ambiguous becauseb -> Cvia constructor and

// b → A via constructor or conversion function.

If it were not for this rule,f(A) would be eliminated as a viable function for the callf(b) causing overload resolution to selectf(C)
as the function to call even though it is not clearly the best choice. On the other hand, if anf(B) were to be declared thenf(b)
would resolve to thatf(B) because the exact match withf(B) is better than any of the sequences required to matchf(A) .

222

© ISO/IEC ISO/IEC 14882:1998(E)

13 Overloading 13.3.3.1.1 Standard conversion sequences

3 Each conversion in Table 9 also has an associated rank (Exact Match, Promotion, or Conversion). These
are used to rank standard conversion sequences (13.3.3.2). The rank of a conversion sequence is deter-
mined by considering the rank of each conversion in the sequence and the rank of any reference binding
(13.3.3.1.4). If any of those has Conversion rank, the sequence has Conversion rank; otherwise, if any of
those has Promotion rank, the sequence has Promotion rank; otherwise, the sequence has Exact Match rank.

Table 9—conversions
_ ___
Conversion Category Rank Subclause_ __ __ ___
No conversions required Identity_ __ _ ___________
Lvalue-to-rvalue conversion 4.1_ ___________________________ _ ___________
Array-to-pointer conversion 4.2_ ___________________________ _ ___________
Function-to-pointer conversion

Lvalue Transformation

4.3_ __ _ ___________
Qualification conversions Qualification Adjustment

Exact Match

4.4_ ___
Integral promotions 4.5_ ___________________________ _ ___________
Floating point promotion

Promotion Promotion
4.6_ ___

Integral conversions 4.7_ ___________________________ _ ___________
Floating point conversions 4.8_ ___________________________ _ ___________
Floating-integral conversions 4.9_ ___________________________ _ ___________
Pointer conversions 4.10_ ___________________________ _ ___________
Pointer to member conversions 4.11_ ___________________________ _ ___________
Boolean conversions

Conversion Conversion

4.12_ ___

[over.ics.user] 13.3.3.1.2 User-defined conversion sequences

1 A user-defined conversion sequence consists of an initial standard conversion sequence followed by a
user-defined conversion (12.3) followed by a second standard conversion sequence. If the user-defined
conversion is specified by a constructor (12.3.1), the initial standard conversion sequence converts the
source type to the type required by the argument of the constructor. If the user-defined conversion is speci-
fied by a conversion function (12.3.2), the initial standard conversion sequence converts the source type to
the implicit object parameter of the conversion function.

2 The second standard conversion sequence converts the result of the user-defined conversion to the target
type for the sequence. Since an implicit conversion sequence is an initialization, the special rules for
initialization by user-defined conversion apply when selecting the best user-defined conversion for a user-
defined conversion sequence (see 13.3.3 and 13.3.3.1).

3 If the user-defined conversion is specified by a template conversion function, the second standard conver-
sion sequence must have exact match rank.

4 A conversion of an expression of class type to the same class type is given Exact Match rank, and a conver-
sion of an expression of class type to a base class of that type is given Conversion rank, in spite of the fact
that a copy constructor (i.e., a user-defined conversion function) is called for those cases.

[over.ics.ellipsis] 13.3.3.1.3 Ellipsis conversion sequences

1 An ellipsis conversion sequence occurs when an argument in a function call is matched with the ellipsis
parameter specification of the function called.

223

ISO/IEC 14882:1998(E) © ISO/IEC

13.3.3.1.4 Reference binding 13 Overloading

[over.ics.ref] 13.3.3.1.4 Reference binding

1 When a parameter of reference type binds directly (8.5.3) to an argument expression, the implicit conver-
sion sequence is the identity conversion, unless the argument expression has a type that is a derived class of
the parameter type, in which case the implicit conversion sequence is a derived-to-base Conversion
(13.3.3.1). [Example:

struct A {};
struct B : public A {} b;
int f(A&);
int f(B&);
int i = f(b); // Calls f(B&) , an exact match, rather than

// f(A&) , a conversion

—end example] If the parameter binds directly to the result of applying a conversion function to the argu-
ment expression, the implicit conversion sequence is a user-defined conversion sequence (13.3.3.1.2), with
the second standard conversion sequence either an identity conversion or, if the conversion function returns
an entity of a type that is a derived class of the parameter type, a derived-to-base Conversion.

2 When a parameter of reference type is not bound directly to an argument expression, the conversion
sequence is the one required to convert the argument expression to the underlying type of the reference
according to 13.3.3.1. Conceptually, this conversion sequence corresponds to copy-initializing a temporary
of the underlying type with the argument expression. Any difference in top-level cv-qualification is sub-
sumed by the initialization itself and does not constitute a conversion.

3 A standard conversion sequence cannot be formed if it requires binding a reference to non-const to an
rvalue (except when binding an implicit object parameter; see the special rules for that case in 13.3.1).
[Note: this means, for example, that a candidate function cannot be a viable function if it has a non-const
reference parameter (other than the implicit object parameter) and the corresponding argument is a tempo-
rary or would require one to be created to initialize the reference (see 8.5.3).]

4 Other restrictions on binding a reference to a particular argument do not affect the formation of a standard
conversion sequence, however. [Example:a function with a“reference toint ” parameter can be a viable
candidate even if the corresponding argument is anint bit-field. The formation of implicit conversion
sequences treats theint bit-field as anint lvalue and finds an exact match with the parameter. If the
function is selected by overload resolution, the call will nonetheless be ill-formed because of the prohibi-
tion on binding a non-const reference to a bit-field (8.5.3).]

5 The binding of a reference to an expression that isreference-compatible with added qualificationinfluences
the rank of a standard conversion; see 13.3.3.2 and 8.5.3.

[over.ics.rank] 13.3.3.2 Ranking implicit conversion sequences

1 13.3.3.2 defines a partial ordering of implicit conversion sequences based on the relationshipsbetter
conversion sequenceandbetter conversion. If an implicit conversion sequence S1 is defined by these rules
to be a better conversion sequence than S2, then it is also the case that S2 is aworse conversion sequence
than S1. If conversion sequence S1 is neither better than nor worse than conversion sequence S2, S1 and
S2 are said to beindistinguishable conversion sequences.

2 When comparing the basic forms of implicit conversion sequences (as defined in 13.3.3.1)

— a standard conversion sequence (13.3.3.1.1) is a better conversion sequence than a user-defined conver-
sion sequence or an ellipsis conversion sequence, and

— a user-defined conversion sequence (13.3.3.1.2) is a better conversion sequence than an ellipsis conver-
sion sequence (13.3.3.1.3).

3 Two implicit conversion sequences of the same form are indistinguishable conversion sequences unless one
of the following rules apply:

— Standard conversion sequenceS1 is a better conversion sequence than standard conversion sequence
S2 if

224

© ISO/IEC ISO/IEC 14882:1998(E)

13 Overloading 13.3.3.2 Ranking implicit conversion sequences

— S1 is a proper subsequence ofS2 (comparing the conversion sequences in the canonical form
defined by 13.3.3.1.1, excluding any Lvalue Transformation; the identity conversion sequence is
considered to be a subsequence of any non-identity conversion sequence) or, if not that,

— the rank ofS1 is better than the rank ofS2 (by the rules defined below), or, if not that,

— S1 and S2 differ only in their qualification conversion and yield similar typesT1 and T2 (4.4),
respectively, and the cv-qualification signature of typeT1 is a proper subset of the cv-qualification
signature of typeT2, [Example:

int f(const int *);
int f(int *);
int i;
int j = f(&i); // Calls f(int *)

—end example] or, if not that,

— S1 andS2 are reference bindings (8.5.3), and the types to which the references refer are the same
type except for top-level cv-qualifiers, and the type to which the reference initialized byS2 refers is
more cv-qualified than the type to which the reference initialized byS1 refers. [Example:

int f(const int &);
int f(int &);
int g(const int &);
int g(int);

int i;
int j = f(i); // Calls f(int &)
int k = g(i); // ambiguous

class X {
public:

void f() const;
void f();

};
void g(const X& a, X b)
{

a.f(); // Calls X::f() const
b.f(); // Calls X::f()

}

—end example]

— User-defined conversion sequenceU1 is a better conversion sequence than another user-defined conver-
sion sequenceU2 if they contain the same user-defined conversion function or constructor and if the
second standard conversion sequence ofU1 is better than the second standard conversion sequence of
U2. [Example:

struct A {
operator short();

} a;
int f(int);
int f(float);
int i = f(a); // Calls f(int) , becauseshort → int is

// better thanshort → float .

—end example]

4 Standard conversion sequences are ordered by their ranks: an Exact Match is a better conversion than a Pro-
motion, which is a better conversion than a Conversion. Two conversion sequences with the same rank are
indistinguishable unless one of the following rules applies:

— A conversion that is not a conversion of a pointer, or pointer to member, tobool is better than another
conversion that is such a conversion.

225

ISO/IEC 14882:1998(E) © ISO/IEC

13.3.3.2 Ranking implicit conversion sequences 13 Overloading

— If classB is derived directly or indirectly from classA, conversion ofB* to A* is better than conversion
of B* to void* , and conversion ofA* to void* is better than conversion ofB* to void* .

— If classB is derived directly or indirectly from classA and classC is derived directly or indirectly from
B,

— conversion ofC* to B* is better than conversion ofC* to A* , [Example:

struct A {};
struct B : public A {};
struct C : public B {};
C *pc;
int f(A *);
int f(B *);
int i = f(pc); // Calls f(B *)

—end example]

— binding of an expression of typeC to a reference of typeB& is better than binding an expression of
typeC to a reference of typeA&,

— conversion ofA::* to B::* is better than conversion ofA::* to C::* ,

— conversion ofC to B is better than conversion ofC to A,

— conversion ofB* to A* is better than conversion ofC* to A* ,

— binding of an expression of typeB to a reference of typeA& is better than binding an expression of
typeC to a reference of typeA&,

— conversion ofB::* to C::* is better than conversion ofA::* to C::* , and

— conversion ofB to A is better than conversion ofC to A.
[Note: compared conversion sequences will have different source types only in the context of comparing
the second standard conversion sequence of an initialization by user-defined conversion (see 13.3.3); in all
other contexts, the source types will be the same and the target types will be different.]

[over.over] 13.4 Address of overloaded function

1 A use of an overloaded function name without arguments is resolved in certain contexts to a function, a
pointer to function or a pointer to member function for a specific function from the overload set. A func-
tion template name is considered to name a set of overloaded functions in such contexts. The function
selected is the one whose type matches the target type required in the context. The target can be

— an object or reference being initialized (8.5, 8.5.3),

— the left side of an assignment (5.17),

— a parameter of a function (5.2.2),

— a parameter of a user-defined operator (13.5),

— the return value of a function, operator function, or conversion (6.6.3), or

— an explicit type conversion (5.2.3, 5.2.9, 5.4).

The overloaded function name can be preceded by the& operator. An overloaded function name shall not
be used without arguments in contexts other than those listed. [Note:any redundant set of parentheses sur-
rounding the overloaded function name is ignored (5.1).]

2 If the name is a function template, template argument deduction is done (14.8.2.2), and if the argument
deduction succeeds, the deduced template arguments are used to generate a single template function, which
is added to the set of overloaded functions considered.

226

© ISO/IEC ISO/IEC 14882:1998(E)

13 Overloading 13.4 Address of overloaded function

3 Non-member functions and static member functions match targets of type“pointer-to-function” or
“reference-to-function.” Nonstatic member functions match targets of type“pointer-to-member-function;”
the function type of the pointer to member is used to select the member function from the set of overloaded
member functions. If a nonstatic member function is selected, the reference to the overloaded function
name is required to have the form of a pointer to member as described in 5.3.1.

4 If more than one function is selected, any template functions in the set are eliminated if the set also contains
a non-template function, and any given template function is eliminated if the set contains a second template
function that is more specialized than the first according to the partial ordering rules of 14.5.5.2. After such
eliminations, if any, there shall remain exactly one selected function.

5 [Example:

int f(double);
int f(int);
int (*pfd)(double) = &f; // selectsf(double)
int (*pfi)(int) = &f; // selectsf(int)
int (*pfe)(...) = &f; // error: type mismatch
int (&rfi)(int) = f; // selectsf(int)
int (&rfd)(double) = f; // selectsf(double)
void g() {

(int (*)(int))&f; // cast expression as selector
}

The initialization ofpfe is ill-formed because nof() with type int(...) has been defined, and not
because of any ambiguity. For another example,

struct X {
int f(int);
static int f(long);

};

int (X::*p1)(int) = &X::f; // OK
int (*p2)(int) = &X::f; // error: mismatch
int (*p3)(long) = &X::f; // OK
int (X::*p4)(long) = &X::f; // error: mismatch
int (X::*p5)(int) = &(X::f); // error: wrong syntax for

// pointer to member
int (*p6)(long) = &(X::f); // OK

—end example]

6 [Note: if f() andg() are both overloaded functions, the cross product of possibilities must be considered
to resolvef(&g) , or the equivalent expressionf(g) .]

7 [Note: there are no standard conversions (clause 4) of one pointer-to-function type into another. In particu-
lar, even ifB is a public base ofD, we have

D* f();
B* (*p1)() = &f; // error

void g(D*);
void (*p2)(B*) = &g; // error

—end note]

[over.oper] 13.5 Overloaded operators

1 A function declaration having one of the followingoperator-function-ids as its name declares anoperator
function. An operator function is said toimplementthe operator named in itsoperator-function-id.

operator-function-id:
operator operator

227

ISO/IEC 14882:1998(E) © ISO/IEC

13.5 Overloaded operators 13 Overloading

operator: one of
new delete new[] delete[]
+ - * / % ^ & | ~
! = < > += -= *= /= %=
^= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
() []

[Note: the last two operators are function call (5.2.2) and subscripting (5.2.1). The operatorsnew[] ,
delete[] , () , and[] are formed from more than one token.]

2 Both the unary and binary forms of

+ - * &

can be overloaded.

3 The following operators cannot be overloaded:

. .* :: ?:

nor can the preprocessing symbols# and## (clause 16).

4 Operator functions are usually not called directly; instead they are invoked to evaluate the operators they
implement (13.5.1 - 13.5.7). They can be explicitly called, however, using theoperator-function-idas the
name of the function in the function call syntax (5.2.2). [Example:

complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof(int)*n);

—end example]

5 The allocation and deallocation functions,operator new , operator new[] , operator delete
andoperator delete[] , are described completely in 3.7.3. The attributes and restrictions found in the
rest of this subclause do not apply to them unless explicitly stated in 3.7.3.

6 An operator function shall either be a non-static member function or be a non-member function and have at
least one parameter whose type is a class, a reference to a class, an enumeration, or a reference to an enu-
meration. It is not possible to change the precedence, grouping, or number of operands of operators. The
meaning of the operators=, (unary)&, and, (comma), predefined for each type, can be changed for spe-
cific class and enumeration types by defining operator functions that implement these operators. Operator
functions are inherited in the same manner as other base class functions.

7 The identities among certain predefined operators applied to basic types (for example,++a ≡ a+=1) need
not hold for operator functions. Some predefined operators, such as+=, require an operand to be an lvalue
when applied to basic types; this is not required by operator functions.

8 An operator function cannot have default arguments (8.3.6), except where explicitly stated below. Operator
functions cannot have more or fewer parameters than the number required for the corresponding operator,
as described in the rest of this subclause.

9 Operators not mentioned explicitly in subclauses 13.5.3 through 13.5.7 act as ordinary unary and binary
operators obeying the rules of 13.5.1 or 13.5.2.

[over.unary] 13.5.1 Unary operators

1 A prefix unary operator shall be implemented by a non-static member function (9.3) with no parameters or
a non-member function with one parameter. Thus, for any prefix unary operator@, @xcan be interpreted as
eitherx.operator@() or operator@(x) . If both forms of the operator function have been declared,
the rules in 13.3.1.2 determine which, if any, interpretation is used. See 13.5.7 for an explanation of the
postfix unary operators++ and-- .

228

© ISO/IEC ISO/IEC 14882:1998(E)

13 Overloading 13.5.1 Unary operators

2 The unary and binary forms of the same operator are considered to have the same name. [Note: conse-
quently, a unary operator can hide a binary operator from an enclosing scope, and vice versa.]

[over.binary] 13.5.2 Binary operators

1 A binary operator shall be implemented either by a non-static member function (9.3) with one parameter or
by a non-member function with two parameters. Thus, for any binary operator@, x@ycan be interpreted as
either x.operator@(y) or operator@(x,y) . If both forms of the operator function have been
declared, the rules in 13.3.1.2 determines which, if any, interpretation is used.

[over.ass] 13.5.3 Assignment

1 An assignment operator shall be implemented by a non-static member function with exactly one parameter.
Because a copy assignment operatoroperator= is implicitly declared for a class if not declared by the
user (12.8), a base class assignment operator is always hidden by the copy assignment operator of the
derived class.

2 Any assignment operator, even the copy assignment operator, can be virtual. [Note: for a derived classD
with a base classB for which a virtual copy assignment has been declared, the copy assignment operator in
Ddoes not overrideB’s virtual copy assignment operator. [Example:

struct B {
virtual int operator= (int);
virtual B& operator= (const B&);

};
struct D : B {

virtual int operator= (int);
virtual D& operator= (const B&);

};

D dobj1;
D dobj2;
B* bptr = &dobj1;
void f() {

bptr->operator=(99); // calls D::operator=(int)
*bptr = 99; // ditto
bptr->operator=(dobj2); // calls D::operator=(const B&)
*bptr = dobj2; // ditto
dobj1 = dobj2; // calls implicitly-declared

// D::operator=(const D&)
}

—end example] —end note]

[over.call] 13.5.4 Function call

1 operator() shall be a non-static member function with an arbitrary number of parameters. It can have
default arguments. It implements the function call syntax

postfix-expression(expression-listopt)

where thepostfix-expressionevaluates to a class object and the possibly emptyexpression-listmatches the
parameter list of anoperator() member function of the class. Thus, a callx(arg1,...) is inter-
preted asx.operator()(arg1,...) for a class objectx of typeT if T::operator()(T1, T2,
T3) exists and if the operator is selected as the best match function by the overload resolution mechanism
(13.3.3).

229

ISO/IEC 14882:1998(E) © ISO/IEC

13.5.5 Subscripting 13 Overloading

[over.sub] 13.5.5 Subscripting

1 operator[] shall be a non-static member function with exactly one parameter. It implements the sub-
scripting syntax

postfix-expression[expression]

Thus, a subscripting expressionx[y] is interpreted asx.operator[](y) for a class objectx of typeT
if T::operator[](T1) exists and if the operator is selected as the best match function by the overload
resolution mechanism (13.3.3).

[over.ref] 13.5.6 Class member access

1 operator-> shall be a non-static member function taking no parameters. It implements class member
access using->

postfix-expression-> id-expression

An expressionx->m is interpreted as(x.operator->())->m for a class objectx of type T if
T::operator->() exists and if the operator is selected as the best match function by the overload reso-
lution mechanism (13.3).

[over.inc] 13.5.7 Increment and decrement

1 The user-defined function calledoperator++ implements the prefix and postfix++ operator. If this
function is a member function with no parameters, or a non-member function with one parameter of class or
enumeration type, it defines the prefix increment operator++ for objects of that type. If the function is a
member function with one parameter (which shall be of typeint) or a non-member function with two
parameters (the second of which shall be of typeint), it defines the postfix increment operator++ for
objects of that type. When the postfix increment is called as a result of using the++ operator, theint
argument will have value zero.125) [Example:

class X {
public:

X& operator++(); // prefix ++a
X operator++(int); // postfixa++

};

class Y { };
Y& operator++(Y&); // prefix ++b
Y operator++(Y&, int); // postfixb++

void f(X a, Y b) {
++a; // a.operator++();
a++; // a.operator++(0);
++b; // operator++(b);
b++; // operator++(b, 0);

a.operator++(); // explicit call: like++a;
a.operator++(0); // explicit call: likea++;
operator++(b); // explicit call: like++b;
operator++(b, 0); // explicit call: likeb++;

}

—end example]

2 The prefix and postfix decrement operators-- are handled analogously.

125) Calling operator++ explicitly, as in expressions likea.operator++(2) , has no special properties: The argument to
operator++ is 2.

230

© ISO/IEC ISO/IEC 14882:1998(E)

13 Overloading 13.6 Built-in operators

[over.built] 13.6 Built-in operators

1 The candidate operator functions that represent the built-in operators defined in clause 5 are specified in
this subclause. These candidate functions participate in the operator overload resolution process as
described in 13.3.1.2 and are used for no other purpose. [Note: because built-in operators take only
operands with non-class type, and operator overload resolution occurs only when an operand expression
originally has class or enumeration type, operator overload resolution can resolve to a built-in operator only
when an operand has a class type that has a user-defined conversion to a non-class type appropriate for the
operator, or when an operand has an enumeration type that can be converted to a type appropriate for the
operator. Also note that some of the candidate operator functions given in this subclause are more permis-
sive than the built-in operators themselves. As described in 13.3.1.2, after a built-in operator is selected by
overload resolution the expression is subject to the requirements for the built-in operator given in clause 5,
and therefore to any additional semantic constraints given there. If there is a user-written candidate with
the same name and parameter types as a built-in candidate operator function, the built-in operator function
is hidden and is not included in the set of candidate functions.]

2 In this subclause, the termpromoted integral typeis used to refer to those integral types which are pre-
served by integral promotion (including e.g.int andlong but excluding e.g.char). Similarly, the term
promoted arithmetic typerefers to promoted integral types plus floating types. [Note: in all cases where a
promoted integral type or promoted arithmetic type is required, an operand of enumeration type will be
acceptable by way of the integral promotions.]

3 For every pair (T, VQ), whereT is an arithmetic type, andVQ is eithervolatile or empty, there exist
candidate operator functions of the form

VQ T& operator++(VQ T&);
T operator++(VQ T&, int);

4 For every pair (T, VQ), whereT is an arithmetic type other thanbool, andVQ is eithervolatile or
empty, there exist candidate operator functions of the form

VQ T& operator--(VQ T&);
T operator--(VQ T&, int);

5 For every pair (T, VQ), whereT is a cv-qualified or cv-unqualified object type, andVQ is eithervolatile
or empty, there exist candidate operator functions of the form

T* VQ& operator++(T* VQ&);
T* VQ& operator--(T* VQ&);
T* operator++(T* VQ&, int);
T* operator--(T* VQ&, int);

6 For every cv-qualified or cv-unqualified object typeT, there exist candidate operator functions of the form

T& operator*(T*);

7 For every function typeT, there exist candidate operator functions of the form

T& operator*(T*);

8 For every typeT, there exist candidate operator functions of the form

T* operator+(T*);

9 For every promoted arithmetic typeT, there exist candidate operator functions of the form

T operator+(T);
T operator-(T);

231

ISO/IEC 14882:1998(E) © ISO/IEC

13.6 Built-in operators 13 Overloading

10 For every promoted integral typeT, there exist candidate operator functions of the form

T operator~(T);

11 For every quintuple (C1, C2, T, CV1, CV2), whereC2 is a class type,C1 is the same type as C2 or is a
derived class of C2,T is an object type or a function type, andCV1 andCV2 arecv-qualifier-seqs, there
exist candidate operator functions of the form

CV12 T& operator->*(CV1 C1*, CV2 T C2::*);

whereCV12is the union ofCV1andCV2.

12 For every pair of promoted arithmetic typesL andR, there exist candidate operator functions of the form

LR operator*(L, R);
LR operator/(L, R);
LR operator+(L, R);
LR operator-(L, R);
bool operator<(L, R);
bool operator>(L, R);
bool operator<=(L, R);
bool operator>=(L, R);
bool operator==(L, R);
bool operator!=(L, R);

whereLR is the result of the usual arithmetic conversions between typesL andR.

13 For every cv-qualified or cv-unqualified object typeT there exist candidate operator functions of the form

T* operator+(T*, ptrdiff_t);
T& operator[](T*, ptrdiff_t);
T* operator-(T*, ptrdiff_t);
T* operator+(ptrdiff_t, T*);
T& operator[](ptrdiff_t, T*);

14 For everyT, whereT is a pointer to object type, there exist candidate operator functions of the form

ptrdiff_t operator-(T, T);

15 For every pointer or enumeration typeT, there exist candidate operator functions of the form

bool operator<(T, T);
bool operator>(T, T);
bool operator<=(T, T);
bool operator>=(T, T);
bool operator==(T, T);
bool operator!=(T, T);

16 For every pointer to member typeT, there exist candidate operator functions of the form

bool operator==(T, T);
bool operator!=(T, T);

17 For every pair of promoted integral typesL andR, there exist candidate operator functions of the form

LR operator%(L, R);
LR operator&(L, R);
LR operator^(L, R);
LR operator|(L, R);
L operator<<(L, R);
L operator>>(L, R);

whereLR is the result of the usual arithmetic conversions between typesL andR.

232

© ISO/IEC ISO/IEC 14882:1998(E)

13 Overloading 13.6 Built-in operators

18 For every triple (L, VQ, R), whereL is an arithmetic type,VQ is eithervolatile or empty, andR is a
promoted arithmetic type, there exist candidate operator functions of the form

VQ L& operator=(VQ L&, R);
VQ L& operator*=(VQ L&, R);
VQ L& operator/=(VQ L&, R);
VQ L& operator+=(VQ L&, R);
VQ L& operator-=(VQ L&, R);

19 For every pair (T, VQ), whereT is any type andVQ is eithervolatile or empty, there exist candidate
operator functions of the form

T* VQ& operator=(T* VQ&, T*);

20 For every pair (T, VQ), whereT is an enumeration or pointer to member type andVQ is eithervolatile
or empty, there exist candidate operator functions of the form

VQ T& operator=(VQ T&, T);

21 For every pair (T, VQ), whereT is a cv-qualified or cv-unqualified object type andVQ is eithervolatile
or empty, there exist candidate operator functions of the form

T* VQ& operator+=(T* VQ&, ptrdiff_t);
T* VQ& operator-=(T* VQ&, ptrdiff_t);

22 For every triple (L, VQ, R), whereL is an integral type,VQ is eithervolatile or empty, andR is a pro-
moted integral type, there exist candidate operator functions of the form

VQ L& operator%=(VQ L&, R);
VQ L& operator<<=(VQ L&, R);
VQ L& operator>>=(VQ L&, R);
VQ L& operator&=(VQ L&, R);
VQ L& operator^=(VQ L&, R);
VQ L& operator|=(VQ L&, R);

23 There also exist candidate operator functions of the form

bool operator!(bool);
bool operator&&(bool, bool);
bool operator||(bool, bool);

24 For every pair of promoted arithmetic typesL andR, there exist candidate operator functions of the form

LR operator?(bool, L, R);

whereLR is the result of the usual arithmetic conversions between typesL andR. [Note: as with all these
descriptions of candidate functions, this declaration serves only to describe the built-in operator for pur-
poses of overload resolution. The operator“?” cannot be overloaded.]

25 For every typeT, whereT is a pointer or pointer-to-member type, there exist candidate operator functions
of the form

T operator?(bool, T, T);

233

ISO/IEC 14882:1998(E) © ISO/IEC

234

(Blank page)

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14 Templates

14 Templates [temp]

1 A templatedefines a family of classes or functions.

template-declaration:
export opt template < template-parameter-list> declaration

template-parameter-list:
template-parameter
template-parameter-list, template-parameter

Thedeclarationin a template-declarationshall

— declare or define a function or a class, or

— define a member function, a member class or a static data member of a class template or of a class
nested within a class template, or

— define a member template of a class or class template.

A template-declarationis a declaration. A template-declarationis also a definition if itsdeclaration
defines a function, a class, or a static data member.

2 A template-declarationcan appear only as a namespace scope or class scope declaration. In a function
template declaration, thedeclarator-idshall be atemplate-name(i.e., not atemplate-id). [Note: in a class
template declaration, if thedeclarator-id is a template-id, the declaration declares a class template partial
specialization (14.5.4).]

3 In a template-declaration, explicit specialization, or explicit instantiation theinit-declarator-list in the dec-
laration shall contain at most one declarator. When such a declaration is used to declare a class template,
no declarator is permitted.

4 A template name may have linkage (3.5). A template, a template explicit specialization (14.7.3), or a class
template partial specialization shall not have C linkage. If the linkage of one of these is something other
than C or C++, the behavior is implementation-defined. Template definitions shall obey the one definition
rule (3.2). [Note:default arguments for function templates and for member functions of class templates are
considered definitions for the purpose of template instantiation (14.5) and must also obey the one definition
rule.]

5 A class template shall not have the same name as any other template, class, function, object, enumeration,
enumerator, namespace, or type in the same scope (3.3), except as specified in (14.5.4). Except that a func-
tion template can be overloaded either by (non-template) functions with the same name or by other function
templates with the same name (14.8.3), a template name declared in namespace scope or in class scope
shall be unique in that scope.

6 A namespace-scope declaration or definition of a non-inline function template, a non-inline member func-
tion template, a non-inline member function of a class template or a static data member of a class template
may be preceded by theexport keyword. If such a template is defined in the same translation unit in
which it is declared as exported, the definition is considered to beexported. The first declaration of the
template containing theexport keyword must not follow the definition.

7 Declaring a class template exported is equivalent to declaring all of its non-inline function members, static
data members, member classes, member class templates and non-inline function member templates which
are defined in that translation unit exported.

8 Templates defined in an unnamed namespace shall not be exported. A template shall be exported only once
in a program. An implementation is not required to diagnose a violation of this rule. A non-exported tem-
plate that is neither explicitly specialized nor explicitly instantiated must be defined in every translation

235

ISO/IEC 14882:1998(E) © ISO/IEC

14 Templates 14 Templates

unit in which it is implicitly instantiated (14.7.1) or explicitly instantiated (14.7.2); no diagnostic is
required. An exported template need only be declared (and not necessarily defined) in a translation unit in
which it is instantiated. A template function declared both exported and inline is just inline and not
exported.

9 [Note: an implementation may require that a translation unit containing the definition of an exported tem-
plate be compiled before any translation unit containing an instantiation of that template.]

[temp.param] 14.1 Template parameters

1 The syntax fortemplate-parameters is:

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifieropt

class identifieropt = type-id
typename identifieropt

typename identifieropt = type-id
template < template-parameter-list> class identifieropt

template < template-parameter-list> class identifieropt = id-expression

2 There is no semantic difference betweenclass and typename in a template-parameter. typename
followed by anunqualified-idnames a template type parameter.typename followed by aqualified-name
denotes the type in a non-type126) parameter-declaration. A storage class shall not be specified in a
template-parameterdeclaration. [Note:a template parameter may be a class template. For example,

template<class T> class myarray { /* ... */ };

template<class K, class V, template<class T> class C = myarray>
class Map {

C<K> key;
C<V> value;
// ...

};

—end note]

3 A type-parameterdefines itsidentifier to be atype-name(if declared withclass or typename) or
template-name(if declared withtemplate) in the scope of the template declaration. [Note: because of
the name lookup rules, atemplate-parameterthat could be interpreted as either a non-typetemplate-
parameteror a type-parameter(because itsidentifier is the name of an already existing class) is taken as a
type-parameter. For example,

class T { /* ... */ };
int i;

template<class T, T i> void f(T t)
{

T t1 = i; // template-parametersT and i
::T t2 = ::i; // global namespace membersT and i

}

Here, the templatef has atype-parametercalledT, rather than an unnamed non-typetemplate-parameter
of classT.]

126) Since templatetemplate-parameters and templatetemplate-arguments are treated as types for descriptive purposes, the terms
non-type parameterandnon-type argumentare used to refer to non-type, non-template parameters and arguments.

236

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.1 Template parameters

4 A non-typetemplate-parametershall have one of the following (optionallycv-qualified) types:

— integral or enumeration type,

— pointer to object or pointer to function,

— reference to object or reference to function,

— pointer to member.

5 [Note: other types are disallowed either explicitly below or implicitly by the rules governing the form of
template-arguments (14.3).] The top-levelcv-qualifiers on the template-parameterare ignored when
determining its type.

6 A non-type non-referencetemplate-parameteris not an lvalue. It shall not be assigned to or in any other
way have its value changed. A non-type non-referencetemplate-parametercannot have its address taken.
When a non-type non-referencetemplate-parameteris used as an initializer for a reference, a temporary is
always used. [Example:

template<const X& x, int i> void f()
{

i++; // error: change of template-parameter value

&x; // OK
&i; // error: address of non-reference template-parameter

int& ri = i; // error: non-const reference bound to temporary
const int& cri = i; // OK: const reference bound to temporary

}

—end example]

7 A non-typetemplate-parametershall not be declared to have floating point, class, or void type. [Example:

template<double d> class X; // error
template<double* pd> class Y; // OK
template<double& rd> class Z; // OK

—end example]

8 A non-typetemplate-parameterof type “array ofT” or “function returningT” is adjusted to be of type
“pointer toT” or “pointer to function returningT”, respectively. [Example:

template<int *a> struct R { /* ... */ };
template<int b[5]> struct S { /* ... */ };
int *p;
R<p> w; // OK
S<p> x; // OK due to parameter adjustment
int v[5];
R<v> y; // OK due to implicit argument conversion
S<v> z; // OK due to both adjustment and conversion

—end example]

9 A default template-argumentis a template-argument(14.3) specified after= in a template-parameter. A
defaulttemplate-argumentmay be specified for any kind oftemplate-parameter(type, non-type, template).
A defaulttemplate-argumentmay be specified in a class template declaration or a class template definition.
A defaulttemplate-argumentshall not be specified in a function template declaration or a function template
definition, nor in thetemplate-parameter-listof the definition of a member of a class template.

10 The set of defaulttemplate-arguments available for use with a template declaration or definition is obtained
by merging the default arguments from the definition (if in scope) and all declarations in scope in the same
way default function arguments are (8.3.6). [Example:

237

ISO/IEC 14882:1998(E) © ISO/IEC

14.1 Template parameters 14 Templates

template<class T1, class T2 = int> class A;
template<class T1 = int, class T2> class A;

is equivalent to

template<class T1 = int, class T2 = int> class A;

—end example]

11 If a template-parameterhas a defaulttemplate-argument,all subsequenttemplate-parameters shall have a
defaulttemplate-argumentsupplied. [Example:

template<class T1 = int, class T2> class B; // error

—end example]

12 A template-parametermay not be given default arguments by two different declarations in the same scope.
[Example:

template<class T = int> class X;
template<class T = int> class X { /*... */ }; // error

—end example]

13 The scope of atemplate-parameterextends from its point of declaration until the end of its template. In par-
ticular, atemplate-parametercan be used in the declaration of subsequenttemplate-parameters and their
default arguments. [Example:

template<class T, T* p, class U = T> class X { /* ... */ };
template<class T> void f(T* p = new T);

—end example]

14 A template-parametercannot be used in precedingtemplate-parameters or their default arguments.

15 When parsing adefault template-argumentfor a non-typetemplate-parameter, the first non-nested> is
taken as the end of thetemplate-parameter-listrather than a greater-than operator. [Example:

template<int i = 3 > 4 > // syntax error
class X { /* ... */ };

template<int i = (3 > 4) > // OK
class Y { /* ... */ };

—end example]

[temp.names] 14.2 Names of template specializations

1 A template specialization (14.7) can be referred to by atemplate-id:

template-id:
template-name< template-argument-listopt >

template-name:
identifier

template-argument-list:
template-argument
template-argument-list, template-argument

template-argument:
assignment-expression
type-id
id-expression

[Note: the name lookup rules (3.4) are used to associate the use of a name with a template declaration; that

238

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.2 Names of template specializations

is, to identify a name as atemplate-name.]

2 For atemplate-nameto be explicitly qualified by the template arguments, the name must be known to refer
to a template.

3 After name lookup (3.4) finds that a name is atemplate-name, if this name is followed by a<, the < is
always taken as the beginning of atemplate-argument-listand never as a name followed by the less-than
operator. When parsing atemplate-id, the first non-nested>127) is taken as the end of thetemplate-
argument-listrather than a greater-than operator. [Example:

template<int i> class X { /* ... */ };

X< 1>2 > x1; // syntax error
X<(1>2)> x2; // OK

template<class T> class Y { /* ... */ };
Y< X<1> > x3; // OK
Y<X<6>> 1> > x4; // OK: Y< X< (6>>1) > >

—end example]

4 When the name of a member template specialization appears after. or -> in a postfix-expression, or after
nested-name-specifierin a qualified-id, and the postfix-expression or qualified-id explicitly depends on a
template-parameter (14.6.2), the member template name must be prefixed by the keywordtemplate .
Otherwise the name is assumed to name a non-template. [Example:

class X {
public:

template<size_t> X* alloc();
template<size_t> static X* adjust();

};
template<class T> void f(T* p)
{

T* p1 = p->alloc<200>();
// ill-formed: < means less than

T* p2 = p->template alloc<200>();
// OK: < starts template argument list

T::adjust<100>();
// ill-formed: < means less than

T::template adjust<100>();
// OK: < starts explicit qualification

}

—end example]

5 If a name prefixed by the keywordtemplate is not the name of a member template, the program is ill-
formed. [Note: the keywordtemplate may not be applied to non-template members of class templates.
]

6 A template-idthat names a class template specialization is aclass-name(clause 9).

[temp.arg] 14.3 Template arguments

1 There are three forms oftemplate-argument, corresponding to the three forms oftemplate-parameter: type,
non-type and template. The type and form of eachtemplate-argumentspecified in atemplate-idshall
match the type and form specified for the corresponding parameter declared by the template in its

127) A > that encloses thetype-id of a dynamic_cast , static_cast , reinterpret_cast or const_cast , or which
encloses thetemplate-arguments of a subsequenttemplate-id, is considered nested for the purpose of this description.

239

ISO/IEC 14882:1998(E) © ISO/IEC

14.3 Template arguments 14 Templates

template-parameter-list. [Example:

template<class T> class Array {
T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

Array<int> v1(20);
typedef complex<double> dcomplex; // complex is a standard

// library template
Array<dcomplex> v2(30);
Array<dcomplex> v3(40);

void bar() {
v1[3] = 7;
v2[3] = v3.elem(4) = dcomplex(7,8);

}

—end example]

2 In a template-argument, an ambiguity between atype-idand an expression is resolved to atype-id, regard-
less of the form of the correspondingtemplate-parameter.128) [Example:

template<class T> void f();
template<int I> void f();

void g()
{

f<int()>(); // int() is a type-id: call the firstf()
}

—end example]

3 The name of atemplate-argumentshall be accessible at the point where it is used as atemplate-argument.
[Note: if the name of thetemplate-argumentis accessible at the point where it is used as atemplate-
argument, there is no further access restriction in the resulting instantiation where the corresponding
template-parametername is used.] [Example:

template<class T> class X {
static T t;

};

class Y {
private:

struct S { /* ... */ };
X<S> x; // OK: S is accessible

// X<Y::S> has a static member of typeY::S
// OK: even thoughY::S is private

};

X<Y::S> y; // error: S not accessible

—end example] For atemplate-argumentof class type, the template definition has no special access rights
to the inaccessible members of the template argument type.

128)There is no such ambiguity in a defaulttemplate-argumentbecause the form of thetemplate-parameterdetermines the allowable
forms of thetemplate-argument.

240

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.3 Template arguments

4 When defaulttemplate-arguments are used, atemplate-argumentlist can be empty. In that case the empty
<> brackets shall still be used as thetemplate-argument-list.[Example:

template<class T = char> class String;
String<>* p; // OK: String<char>
String* q; // syntax error

—end example]

5 An explicit destructor call (12.4) for an object that has a type that is a class template specialization may
explicitly specify thetemplate-arguments. [Example:

template<class T> struct A {
~A();

};
void f(A<int>* p, A<int>* q) {

p->A<int>::~A(); // OK: destructor call
q->A<int>::~A<int>(); // OK: destructor call

}

—end example]

6 If the use of atemplate-argumentgives rise to an ill-formed construct in the instantiation of a template spe-
cialization, the program is ill-formed.

7 When the template in atemplate-idis an overloaded function template, both non-template functions in the
overload set and function templates in the overload set for which thetemplate-arguments do not match the
template-parameters are ignored. If none of the function templates have matchingtemplate-parameters,
the program is ill-formed.

[temp.arg.type] 14.3.1 Template type arguments

1 A template-argumentfor a template-parameterwhich is a type shall be atype-id.

2 A local type, a type with no linkage, an unnamed type or a type compounded from any of these types shall
not be used as atemplate-argumentfor a templatetype-parameter. [Example:

template <class T> class X { /* ... */ };
void f()
{

struct S { /* ... */ };

X<S> x3; // error: local type used as template-argument
X<S*> x4; // error: pointer to local type used as template-argument

}

—end example] [Note:a template type argument may be an incomplete type (3.9).]

3 If a declaration acquires a function type through a type dependent on atemplate-parameterand this causes
a declaration that does not use the syntactic form of a function declarator to have function type, the program
is ill-formed. [Example:

template<class T> struct A {
static T t;

};
typedef int function();
A<function> a; // ill-formed: would declareA<function>::t

// as a static member function

—end example]

241

ISO/IEC 14882:1998(E) © ISO/IEC

14.3.2 Template non-type arguments 14 Templates

[temp.arg.nontype] 14.3.2 Template non-type arguments

1 A template-argumentfor a non-type, non-templatetemplate-parametershall be one of:

— an integralconstant-expressionof integral or enumeration type; or

— the name of a non-typetemplate-parameter; or

— the name of an object or function with external linkage, including function templates and function
template-ids but excluding non-static class members, expressed asid-expression; or

— the address of an object or function with external linkage, including function templates and function
template-ids but excluding non-static class members, expressed as& id-expressionwhere the& is
optional if the name refers to a function or array; or

— a pointer to member expressed as described in 5.3.1 .

2 [Note: A string literal (2.13.4) is not an acceptabletemplate-argumentbecause a string literal is an object
with internal linkage. [Example:

template<class T, char* p> class X {
// ...
X();
X(const char* q) { /* ... */ }

};

X<int,"Studebaker"> x1; // error: string literal as template-argument

char p[] = "Vivisectionist";
X<int,p> x2; // OK

—end example] —end note]

3 [Note:Addresses of array elements and names or addresses of non-static class members are not acceptable
template-arguments. [Example:

template<int* p> class X { };

int a[10];
struct S { int m; static int s; } s;

X<&a[2]> x3; // error: address of array element
X<&s.m> x4; // error: address of non-static member
X<&s.s> x5; // error: &S::s must be used
X<&S::s> x6; // OK: address of static member

—end example] —end note]

4 [Note:Temporaries, unnamed lvalues, and named lvalues that do not have external linkage are not accept-
abletemplate-arguments when the correspondingtemplate-parameterhas reference type. [Example:

template<const int& CRI> struct B { /* ... */ };

B<1> b2; // error: temporary would be required for template argument

int c = 1;
B<c> b1; // OK

—end example] —end note]

5 The following conversions are performed on each expression used as a non-typetemplate-argument. If a
non-typetemplate-argumentcannot be converted to the type of the correspondingtemplate-parameterthen
the program is ill-formed.

— for a non-typetemplate-parameterof integral or enumeration type, integral promotions (4.5) and inte-
gral conversions (4.7) are applied.

242

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.3.2 Template non-type arguments

— for a non-typetemplate-parameterof type pointer to object, qualification conversions (4.4) and the
array-to-pointer conversion (4.2) are applied. [Note: In particular, neither the null pointer conversion
(4.10) nor the derived-to-base conversion (4.10) are applied. Although0 is a validtemplate-argument
for a non-typetemplate-parameterof integral type, it is not a validtemplate-argumentfor a non-type
template-parameterof pointer type.]

— For a non-typetemplate-parameterof type reference to object, no conversions apply. The type referred
to by the reference may be more cv-qualified than the (otherwise identical) type of thetemplate-
argument. The template-parameteris bound directly to thetemplate-argument, which must be an
lvalue.

— For a non-typetemplate-parameterof type pointer to function, only the function-to-pointer conversion
(4.3) is applied. If thetemplate-argumentrepresents a set of overloaded functions (or a pointer to such),
the matching function is selected from the set (13.4).

— For a non-typetemplate-parameterof type reference to function, no conversions apply. If the
template-argumentrepresents a set of overloaded functions, the matching function is selected from the
set (13.4).

— For a non-typetemplate-parameterof type pointer to member function, no conversions apply. If the
template-argumentrepresents a set of overloaded member functions, the matching member function is
selected from the set (13.4).

— For a non-typetemplate-parameterof type pointer to data member, qualification conversions (4.4) are
applied.

[Example:

template<const int* pci> struct X { /* ... */ };
int ai[10];
X<ai> xi; // array to pointer and qualification conversions

struct Y { /* ... */ };
template<const Y& b> struct Z { /* ... */ };
Y y;
Z<y> z; // no conversion, but note extra cv-qualification

template<int (&pa)[5]> struct W { /* ... */ };
int b[5];
W w; // no conversion

void f(char);
void f(int);

template<void (*pf)(int)> struct A { /* ... */ };

A<&f> a; // selectsf(int)

—end example]

[temp.arg.template] 14.3.3 Template template arguments

1 A template-argumentfor a templatetemplate-parametershall be the name of a class template, expressed as
id-expression. Only primary class templates are considered when matching the template template argument
with the corresponding parameter; partial specializations are not considered even if their parameter lists
match that of the template template parameter.

2 Any partial specializations (14.5.4) associated with the primary class template are considered when a spe-
cialization based on the templatetemplate-parameteris instantiated. If a specialization is not visible at the
point of instantiation, and it would have been selected had it been visible, the program is ill-formed; no
diagnostic is required. [Example:

243

ISO/IEC 14882:1998(E) © ISO/IEC

14.3.3 Template template arguments 14 Templates

template<class T> class A { // primary template
int x;

};
template<class T> class A<T*> { // partial specialization

long x;
};
template<template<class U> class V> class C {

V<int> y;
V<int*> z;

};
C<A> c; // V<int> within C<A>uses the primary template,

// soc.y.x has typeint
// V<int*> within C<A>uses the partial specialization,
// soc.z.x has typelong

—end example]

[temp.type] 14.4 Type equivalence

1 Two template-ids refer to the same class or function if their template names are identical, they refer to the
same template, their typetemplate-arguments are the same type, their non-typetemplate-arguments of inte-
gral or enumeration type have identical values, their non-typetemplate-arguments of pointer or reference
type refer to the same external object or function, and their templatetemplate-arguments refer to the same
template. [Example:

template<class E, int size> class buffer { /* ... */ };
buffer<char,2*512> x;
buffer<char,1024> y;

declaresx andy to be of the same type, and

template<class T, void(*err_fct)()> class list { /* ... */ };
list<int,&error_handler1> x1;
list<int,&error_handler2> x2;
list<int,&error_handler2> x3;
list<char,&error_handler2> x4;

declaresx2 andx3 to be of the same type. Their type differs from the types ofx1 andx4 .]

[temp.decls] 14.5 Template declarations

1 A template-id, that is, thetemplate-namefollowed by atemplate-argument-listshall not be specified in the
declaration of a primary template declaration. [Example:

template<class T1, class T2, int I> class A<T1, T2, I> { }; // error
template<class T1, int I> void sort<T1, I>(T1 data[I]); // error

—end example] [Note:however, this syntax is allowed in class template partial specializations (14.5.4).]

2 For purposes of name lookup and instantiation, default arguments of function templates and default argu-
ments of member functions of class templates are considered definitions; each default argument is a sepa-
rate definition which is unrelated to the function template definition or to any other default arguments.

[temp.class] 14.5.1 Class templates

1 A classtemplatedefines the layout and operations for an unbounded set of related types. [Example:a sin-
gle class templateList might provide a common definition for list ofint , list of float , and list of
pointers toShapes.]

244

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.5.1 Class templates

2 [Example:An array class template might be declared like this:

template<class T> class Array {
T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

The prefixtemplate <class T> specifies that a template is being declared and that atype-nameT will
be used in the declaration. In other words,Array is a parameterized type withT as its parameter.]

3 When a member function, a member class, a static data member or a member template of a class template is
defined outside of the class template definition, the member definition is defined as a template definition in
which thetemplate-parameters are those of the class template. The names of the template parameters used
in the definition of the member may be different from the template parameter names used in the class tem-
plate definition. The template argument list following the class template name in the member definition
shall name the parameters in the same order as the one used in the template parameter list of the member.
[Example:

template<class T1, class T2> struct A {
void f1();
void f2();

};

template<class T2, class T1> void A<T2,T1>::f1() { } // OK
template<class T2, class T1> void A<T1,T2>::f2() { } // error

—end example]

4 In a redeclaration, partial specialiation, explicit specialization or explicit instantiation of a class template,
theclass-keyshall agree in kind with the original class template declaration (7.1.5.3).

[temp.mem.func] 14.5.1.1 Member functions of class templates

1 A member function template may be defined outside of the class template definition in which it is declared.
[Example:

template<class T> class Array {
T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

declares three function templates. The subscript function might be defined like this:

template<class T> T& Array<T>::operator[](int i)
{

if (i<0 || sz<=i) error("Array: range error");
return v[i];

}

—end example]

2 The template-arguments for a member function of a class template are determined by thetemplate-
arguments of the type of the object for which the member function is called. [Example:the template-
argumentfor Array<T>::operator[]() will be determined by theArray to which the subscripting

245

ISO/IEC 14882:1998(E) © ISO/IEC

14.5.1.1 Member functions of class templates 14 Templates

operation is applied.

Array<int> v1(20);
Array<dcomplex> v2(30);

v1[3] = 7; // Array<int>::operator[]()
v2[3] = dcomplex(7,8); // Array<dcomplex>::operator[]()

—end example]

[temp.mem.class] 14.5.1.2 Member classes of class templates

1 A class member of a class template may be defined outside the class template definition in which it is
declared. [Note: the class member must be defined before its first use that requires an instantiation (14.7.1).
For example,

template<class T> struct A {
class B;

};
A<int>::B* b1; // OK: requiresA to be defined but notA::B
template<class T> class A<T>::B { };
A<int>::B b2; // OK: requiresA::B to be defined

—end note]

[temp.static] 14.5.1.3 Static data members of class templates

1 A definition for a static data member may be provided in a namespace scope enclosing the definition of the
static member’s class template. [Example:

template<class T> class X {
static T s;

};
template<class T> T X<T>::s = 0;

—end example]

[temp.mem] 14.5.2 Member templates

1 A template can be declared within a class or class template; such a template is called a member template. A
member template can be defined within or outside its class definition or class template definition. A mem-
ber template of a class template that is defined outside of its class template definition shall be specified with
the template-parameters of the class template followed by thetemplate-parameters of the member tem-
plate. [Example:

template<class T> class string {
public:

template<class T2> int compare(const T2&);
template<class T2> string(const string<T2>& s) { /* ... */ }
// ...

};

template<class T> template<class T2> int string<T>::compare(const T2& s)
{

// ...
}

—end example]

2 A local class shall not have member templates. Access control rules (clause 11) apply to member template
names. A destructor shall not be a member template. A normal (non-template) member function with a
given name and type and a member function template of the same name, which could be used to generate a
specialization of the same type, can both be declared in a class. When both exist, a use of that name and
type refers to the non-template member unless an explicit template argument list is supplied. [Example:

246

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.5.2 Member templates

template <class T> struct A {
void f(int);
template <class T2> void f(T2);

};

template <> void A<int>::f(int) { } // non-template member
template <> template <> void A<int>::f<>(int) { } // template member

int main()
{

A<char> ac;
ac.f(1); // non-template
ac.f(’c’); // template
ac.f<>(1); // template

}

—end example]

3 A member function template shall not be virtual. [Example:

template <class T> struct AA {
template <class C> virtual void g(C); // error
virtual void f(); // OK

};

—end example]

4 A specialization of a member function template does not override a virtual function from a base class.
[Example:

class B {
virtual void f(int);

};

class D : public B {
template <class T> void f(T); // does not overrideB::f(int)
void f(int i) { f<>(i); } // overriding function that calls

// the template instantiation
};

—end example]

5 A specialization of a template conversion function is referenced in the same way as a non-template conver-
sion function that converts to the same type. [Example:

struct A {
template <class T> operator T*();

};
template <class T> A::operator T*(){ return 0; }
template <> A::operator char*(){ return 0; } // specialization
template A::operator void*(); // explicit instantiation

int main()
{

A a;
int* ip;

ip = a.operator int*(); // explicit call to template operator
// A::operator int*()

}

—end example] [Note:because the explicit template argument list follows the function template name, and
because conversion member function templates and constructor member function templates are called with-
out using a function name, there is no way to provide an explicit template argument list for these function

247

ISO/IEC 14882:1998(E) © ISO/IEC

14.5.2 Member templates 14 Templates

templates.]

6 A specialization of a template conversion function is not found by name lookup. Instead, any template con-
version functions visible in the context of the use are considered. For each such operator, if argument
deduction succeeds (14.8.2.3), the resulting specialization is used as if found by name lookup.

7 A using-declaration in a derived class cannot refer to a specialization of a template conversion function in a
base class.

8 Overload resolution (13.3.3.2) and partial ordering (14.5.5.2) are used to select the best conversion function
among multiple template conversion functions and/or non-template conversion functions.

[temp.friend] 14.5.3 Friends

1 A friend of a class or class template can be a function template or class template, a specialization of a func-
tion template or class template, or an ordinary (nontemplate) function or class. For a friend function decla-
ration that is not a template declaration:

— if the name of the friend is a qualified or unqualifiedtemplate-id, the friend declaration refers to a spe-
cialization of a function template, otherwise

— if the name of the friend is aqualified-idand a matching nontemplate function is found in the specified
class or namespace, the friend declaration refers to that function, otherwise,

— if the name of the friend is aqualified-idand a matching specialization of a template function is found
in the specified class or namespace, the friend declaration refers to that function specialization, other-
wise,

— the name shall be anunqualified-idthat declares (or redeclares) an ordinary (nontemplate) function.

[Example:

template<class T> class task;
template<class T> task<T>* preempt(task<T>*);

template<class T> class task {
// ...
friend void next_time();
friend void process(task<T>*);
friend task<T>* preempt<T>(task<T>*);
template<class C> friend int func(C);

friend class task<int>;
template<class P> friend class frd;
// ...

};

Here, each specialization of thetask class template has the functionnext_time as a friend; because
process does not have explicittemplate-arguments, each specialization of thetask class template has
an appropriately typed functionprocess as a friend, and this friend is not a function template specializa-
tion; because the friendpreempt has an explicittemplate-argument<T>, each specialization of thetask
class template has the appropriate specialization of the function templatepreempt as a friend; and each
specialization of thetask class template has all specializations of the function templatefunc as friends.
Similarly, each specialization of thetask class template has the class template specializationtask<int>
as a friend, and has all specializations of the class templatefrd as friends. —end example]

2 A friend function declaration that is not a template declaration and in which the name of the friend is an
unqualifiedtemplate-idshall refer to a specialization of a function template declared in the nearest enclos-
ing namespace scope. [Example:

248

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.5.3 Friends

namespace N {
template <class T> void f(T);
void g(int);
namespace M {

template <class T> void h(T);
template <class T> void i(T);
struct A {

friend void f<>(int); // ill-formed – N::f
friend void h<>(int); // OK – M::h
friend void g(int); // OK – new decl ofM::g
template <class T> void i(T);
friend void i<>(int); // ill-formed – A::i

};
}

}

—end example]

3 A friend template may be declared within a class or class template. A friend function template may be
defined within a class or class template, but a friend class template may not be defined in a class or class
template. In these cases, all specializations of the friend class or friend function template are friends of the
class or class template granting friendship. [Example:

class A {
template<class T> friend class B; // OK
template<class T> friend void f(T){ /* ... */ } // OK

};

—end example]

4 A template friend declaration specifies that all specializations of that template, whether they are implicitly
instantiated (14.7.1), partially specialized (14.5.4) or explicitly specialized (14.7.3), are friends of the class
containing the template friend declaration. [Example:

class X {
template<class T> friend struct A;
class Y { };

};

template<class T> struct A { X::Y ab; }; // OK
template<class T> struct A<T*> { X::Y ab; }; // OK

—end example]

5 When a function is defined in a friend function declaration in a class template, the function is defined at
each instantiation of the class template. The function is defined even if it is never used. The same restric-
tions on multiple declarations and definitions which apply to non-template function declarations and defini-
tions also apply to these implicit definitions. [Note: if the function definition is ill-formed for a given spe-
cialization of the enclosing class template, the program is ill-formed even if the function is never used.]

6 A member of a class template may be declared to be a friend of a non-template class. In this case, the cor-
responding member of every specialization of the class template is a friend of the class granting friendship.
[Example:

249

ISO/IEC 14882:1998(E) © ISO/IEC

14.5.3 Friends 14 Templates

template<class T> struct A {
struct B { };
void f();

};

class C {
template<class T> friend struct A<T>::B;
template<class T> friend void A<T>::f();

};

—end example]

7 [Note:a friend declaration may first declare a member of an enclosing namespace scope (14.6.5).]

8 A friend template shall not be declared in a local class.

9 Friend declarations shall not declare partial specializations. [Example:

template<class T> class A { };
class X {

template<class T> friend class A<T*>; // error
};

—end example]

10 When a friend declaration refers to a specialization of a function template, the function parameter declara-
tions shall not include default arguments, nor shall the inline specifier be used in such a declaration.

[temp.class.spec] 14.5.4 Class template partial specializations

1 A primary class template declaration is one in which the class template name is an identifier. A template
declaration in which the class template name is atemplate-id, is apartial specializationof the class tem-
plate named in thetemplate-id. A partial specialization of a class template provides an alternative defini-
tion of the template that is used instead of the primary definition when the arguments in a specialization
match those given in the partial specialization (14.5.4.1). The primary template shall be declared before
any specializations of that template. If a template is partially specialized then that partial specialization
shall be declared before the first use of that partial specialization that would cause an implicit instantiation
to take place, in every translation unit in which such a use occurs; no diagnostic is required.

2 When a partial specialization is used within the instantiation of an exported template, and the unspecialized
template name is non-dependent in the exported template, a declaration of the partial specialization must be
declared before the definition of the exported template, in the translation unit containing that definition. A
similar restriction applies to explicit specialization; see 14.7.

3 Each class template partial specialization is a distinct template and definitions shall be provided for the
members of a template partial specialization (14.5.4.3).

4 [Example:

template<class T1, class T2, int I> class A { }; // #1
template<class T, int I> class A<T, T*, I> { }; // #2
template<class T1, class T2, int I> class A<T1*, T2, I> { }; // #3
template<class T> class A<int, T*, 5> { }; // #4
template<class T1, class T2, int I> class A<T1, T2*, I> { }; // #5

The first declaration declares the primary (unspecialized) class template. The second and subsequent decla-
rations declare partial specializations of the primary template.]

5 The template parameters are specified in the angle bracket enclosed list that immediately follows the key-
word template . For partial specializations, the template argument list is explicitly written immediately
following the class template name. For primary templates, this list is implicitly described by the template
parameter list. Specifically, the order of the template arguments is the sequence in which they appear in the
template parameter list. [Example:the template argument list for the primary template in the example

250

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.5.4 Class template partial specializations

above is<T1, T2, I> .] [Note: the template argument list shall not be specified in the primary template
declaration. For example,

template<class T1, class T2, int I> class A<T1, T2, I> { }; // error

—end note]

6 A class template partial specialization may be declared or redeclared in any namespace scope in which its
definition may be defined (14.5.1 and 14.5.2). [Example:

template<class T> struct A {
class C {

template<class T2> struct B { };
};

};

// partial specialization ofA<T>::C::B<T2>
template<class T> template<class T2>

struct A<T>::C::B<T2*> { };

A<short>::C::B<int*> absip; // uses partial specialization

—end example]

7 Partial specialization declarations themselves are not found by name lookup. Rather, when the primary
template name is used, any previously declared partial specializations of the primary template are also con-
sidered. One consequence is that ausing-declarationwhich refers to a class template does not restrict the
set of partial specializations which may be found through theusing-declaration. [Example:

namespace N {
template<class T1, class T2> class A { }; // primary template

}

using N::A; // refers to the primary template

namespace N {
template<class T> class A<T, T*> { }; // partial specialization

}

A<int,int*> a; // uses the partial specialization, which is found through
// the using declaration which refers to the primary template

—end example]

8 A non-type argument is non-specialized if it is the name of a non-type parameter. All other non-type argu-
ments are specialized.

9 Within the argument list of a class template partial specialization, the following restrictions apply:

— A partially specialized non-type argument expression shall not involve a template parameter of the par-
tial specialization except when the argument expression is a simpleidentifier. [Example:

template <int I, int J> struct A {};
template <int I> struct A<I+5, I*2> {}; // error

template <int I, int J> struct B {};
template <int I> struct B<I, I> {}; // OK

—end example]

— The type of a template parameter corresponding to a specialized non-type argument shall not be depen-
dent on a parameter of the specialization. [Example:

251

ISO/IEC 14882:1998(E) © ISO/IEC

14.5.4 Class template partial specializations 14 Templates

template <class T, T t> struct C {};
template <class T> struct C<T, 1>; // error

template< int X, int (*array_ptr)[X] > class A {};
int array[5];
template< int X > class A<X,&array> { }; // error

—end example]

— The argument list of the specialization shall not be identical to the implicit argument list of the primary
template.

10 The template parameter list of a specialization shall not contain default template argument values.129)

[temp.class.spec.match] 14.5.4.1 Matching of class template partial specializations

1 When a class template is used in a context that requires an instantiation of the class, it is necessary to deter-
mine whether the instantiation is to be generated using the primary template or one of the partial specializa-
tions. This is done by matching the template arguments of the class template specialization with the tem-
plate argument lists of the partial specializations.

— If exactly one matching specialization is found, the instantiation is generated from that specialization.

— If more than one matching specialization is found, the partial order rules (14.5.4.2) are used to deter-
mine whether one of the specializations is more specialized than the others. If none of the specializa-
tions is more specialized than all of the other matching specializations, then the use of the class template
is ambiguous and the program is ill-formed.

— If no matches are found, the instantiation is generated from the primary template.

2 A partial specialization matches a given actual template argument list if the template arguments of the par-
tial specialization can be deduced from the actual template argument list (14.8.2). [Example:

A<int, int, 1> a1; // uses #1
A<int, int*, 1> a2; // uses #2,T is int , I is 1
A<int, char*, 5> a3; // uses #4,T is char
A<int, char*, 1> a4; // uses #5,T1 is int , T2 is char , I is 1
A<int*, int*, 2> a5; // ambiguous: matches #3 and #5

—end example]

3 A non-type template argument can also be deduced from the value of an actual template argument of a
non-type parameter of the primary template. [Example:the declaration ofa2 above.]

4 In a type name that refers to a class template specialization, (e.g.,A<int, int, 1>) the argument list
must match the template parameter list of the primary template. The template arguments of a specialization
are deduced from the arguments of the primary template.

[temp.class.order] 14.5.4.2 Partial ordering of class template specializations

1 For two class template partial specializations, the first is at least as specialized as the second if, given the
following rewrite to two function templates, the first function template is at least as specialized as the sec-
ond according to the ordering rules for function templates (14.5.5.2):

— the first function template has the same template parameters as the first partial specialization and has a
single function parameter whose type is a class template specialization with the template arguments of
the first partial specialization, and

— the second function template has the same template parameters as the second partial specialization and
has a single function parameter whose type is a class template specialization with the template

129)There is no way in which they could be used.

252

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.5.4.2 Partial ordering of class template specializations

arguments of the second partial specialization.

2 [Example:

template<int I, int J, class T> class X { };
template<int I, int J> class X<I, J, int> { }; // #1
template<int I> class X<I, I, int> { }; // #2

template<int I, int J> void f(X<I, J, int>); // #A
template<int I> void f(X<I, I, int>); // #B

The partial specialization#2 is more specialized than the partial specialization#1 because the function
template#B is more specialized than the function template#A according to the ordering rules for function
templates.]

[temp.class.spec.mfunc] 14.5.4.3 Members of class template specializations

1 The template parameter list of a member of a class template partial specialization shall match the template
parameter list of the class template partial specialization. The template argument list of a member of a class
template partial specialization shall match the template argument list of the class template partial special-
ization. A class template specialization is a distinct template. The members of the class template partial
specialization are unrelated to the members of the primary template. Class template partial specialization
members that are used in a way that requires a definition shall be defined; the definitions of members of the
primary template are never used as definitions for members of a class template partial specialization. An
explicit specialization of a member of a class template partial specialization is declared in the same way as
an explicit specialization of the primary template. [Example:

// primary template
template<class T, int I> struct A {

void f();
};

template<class T, int I> void A<T,I>::f() { }

// class template partial specialization
template<class T> struct A<T,2> {

void f();
void g();
void h();

};

// member of class template partial specialization
template<class T> void A<T,2>::g() { }

// explicit specialization
template<> void A<char,2>::h() { }

int main()
{

A<char,0> a0;
A<char,2> a2;
a0.f(); // OK, uses definition of primary template’s member
a2.g(); // OK, uses definition of

// partial specialization’s member
a2.h(); // OK, uses definition of

// explicit specialization’s member
a2.f(); // ill-formed, no definition off for A<T,2>

// the primary template is not used here
}

—end example]

253

ISO/IEC 14882:1998(E) © ISO/IEC

14.5.4.3 Members of class template specializations 14 Templates

2 If a member template of a class template is partially specialized, the member template partial specializa-
tions are member templates of the enclosing class template; if the enclosing class template is instantiated
(14.7.1, 14.7.2), a declaration for every member template partial specialization is also instantiated as part of
creating the members of the class template specialization. If the primary member template is explicitly spe-
cialized for a given (implicit) specialization of the enclosing class template, the partial specializations of the
member template are ignored for this specialization of the enclosing class template. If a partial specializa-
tion of the member template is explicitly specialized for a given (implicit) specialization of the enclosing
class template, the primary member template and its other partial specializations are still considered for this
specialization of the enclosing class template. [Example:

template<class T> struct A {
template<class T2> struct B {}; // #1
template<class T2> struct B<T2*> {}; // #2

};

template<> template<class T2> struct A<short>::B {}; // #3

A<char>::B<int*> abcip; // uses #2
A<short>::B<int*> absip; // uses #3
A<char>::B<int> abci; // uses #1

—end example]

[temp.fct] 14.5.5 Function templates

1 A function template defines an unbounded set of related functions. [Example:a family of sort functions
might be declared like this:

template<class T> class Array { };
template<class T> void sort(Array<T>&);

—end example]

2 A function template can be overloaded with other function templates and with normal (non-template) func-
tions. A normal function is not related to a function template (i.e., it is never considered to be a specializa-
tion), even if it has the same name and type as a potentially generated function template specialization.130)

[temp.over.link] 14.5.5.1 Function template overloading

1 It is possible to overload function templates so that two different function template specializations have the
same type. [Example:

// file1.c // file2.c
template<class T> template<class T>

void f(T*); void f(T);
void g(int* p) { void h(int* p) {

f(p); // call f(p); // call
// f<int>(int*) // f<int*>(int*)

} }

—end example]

2 Such specializations are distinct functions and do not violate the one definition rule (3.2).

3 The signature of a function template specialization consists of the signature of the function template and of
the actual template arguments (whether explicitly specified or deduced).

130)That is, declarations of non-template functions do not merely guide overload resolution of template functions with the same name.
If such a non-template function is used in a program, it must be defined; it will not be implicitly instantiated using the function tem-
plate definition.

254

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.5.5.1 Function template overloading

4 The signature of a function template consists of its function signature, its return type and its template
parameter list. The names of the template parameters are significant only for establishing the relationship
between the template parameters and the rest of the signature. [Note: two distinct function templates may
have identical function return types and function parameter lists, even if overload resolution alone cannot
distinguish them.

template<class T> void f();
template<int I> void f(); // OK: overloads the first template

// distinguishable with an explicit template argument list

—end note]

5 When an expression that references a template parameter is used in the function parameter list or the return
type in the declaration of a function template, the expression that references the template parameter is part
of the signature of the function template. This is necessary to permit a declaration of a function template in
one translation unit to be linked with another declaration of the function template in another translation unit
and, conversely, to ensure that function templates that are intended to be distinct are not linked with one
another. [Example:

template <int I, int J> A<I+J> f(A<I>, A<J>); // #1
template <int K, int L> A<K+L> f(A<K>, A<L>); // same as #1
template <int I, int J> A<I-J> f(A<I>, A<J>); // different from #1

—end example] [Note: Most expressions that use template parameters use non-type template parameters,
but it is possible for an expression to reference a type parameter. For example, a template type parameter
can be used in thesizeof operator.]

6 Two expressions involving template parameters are consideredequivalentif two function definitions con-
taining the expressions would satisfy the one definition rule (3.2), except that the tokens used to name the
template parameters may differ as long as a token used to name a template parameter in one expression is
replaced by another token that names the same template parameter in the other expression. [Example:

template <int I, int J> void f(A<I+J>); // #1
template <int K, int L> void f(A<K+L>); // same as #1

—end example] Two expressions involving template parameters that are not equivalent arefunctionally
equivalentif, for any given set of template arguments, the evaluation of the expression results in the same
value.

7 Two function templates areequivalentif they are declared in the same scope, have the same name, have
identical template parameter lists, and have return types and parameter lists that are equivalent using the
rules described above to compare expressions involving non-type template parameters. Two function tem-
plates arefunctionally equivalentif they are equivalent except that one or more non-type expressions that
involve template parameters in the return types and parameter lists are functionally equivalent using the
rules described above to compare expressions involving non-type template parameters. If a program con-
tains declarations of function templates that are functionally equivalent but not equivalent, the program is
ill-formed; no diagnostic is required.

8 [Note:This rule guarantees that equivalent declarations will be linked with one another, while not requiring
implementations to use heroic efforts to guarantee that functionally equivalent declarations will be treated
as distinct. For example, the last two declarations are functionally equivalent and would cause a program to
be ill-formed:

255

ISO/IEC 14882:1998(E) © ISO/IEC

14.5.5.1 Function template overloading 14 Templates

// Guaranteed to be the same
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+10>);

// Guaranteed to be different
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+11>);

// Ill-formed, no diagnostic required
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+1+2+3+4>);

—end note]

[temp.func.order] 14.5.5.2 Partial ordering of function templates

1 If a function template is overloaded, the use of a function template specialization might be ambiguous
because template argument deduction (14.8.2) may associate the function template specialization with more
than one function template declaration.Partial ordering of overloaded function template declarations is
used in the following contexts to select the function template to which a function template specialization
refers:

— during overload resolution for a call to a function template specialization (13.3.3);

— when the address of a function template specialization is taken;

— when a placement operator delete that is a template function specialization is selected to match a place-
ment operator new (3.7.3.2, 5.3.4);

— when a friend function declaration (14.5.3), an explicit instantiation (14.7.2) or an explicit specialization
(14.7.3) refers to a function template specialization.

2 Given two overloaded function templates, whether one is more specialized than another can be determined
by transforming each template in turn and using argument deduction (14.8.2) to compare it to the other.

3 The transformation used is:

— For each type template parameter, synthesize a unique type and substitute that for each occurrence of
that parameter in the function parameter list, or for a template conversion function, in the return type.

— For each non-type template parameter, synthesize a unique value of the appropriate type and substitute
that for each occurrence of that parameter in the function parameter list, or for a template conversion
function, in the return type.

— For each template template parameter, synthesize a unique class template and substitute that for each
occurrence of that parameter in the function parameter list, or for a template conversion function, in the
return type.

4 Using the transformed function parameter list, perform argument deduction against the other function tem-
plate. The transformed template is at least as specialized as the other if, and only if, the deduction succeeds
and the deduced parameter types are an exact match (so the deduction does not rely on implicit conver-
sions).

5 A template is more specialized than another if, and only if, it is at least as specialized as the other template
and that template is not at least as specialized as the first. [Example:

256

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.5.5.2 Partial ordering of function templates

template<class T> struct A { A(); };

template<class T> void f(T);
template<class T> void f(T*);
template<class T> void f(const T*);

template<class T> void g(T);
template<class T> void g(T&);

template<class T> void h(const T&);
template<class T> void h(A<T>&);

void m() {
const int *p;
f(p); // f(const T*) is more specialized thanf(T) or f(T*)
float x;
g(x); // Ambiguous:g(T) or g(T&)
A<int> z;
h(z); // overload resolution selectsh(A<T>&)
const A<int> z2;
h(z2); // h(const T&) is called becauseh(A<T>&) is not callable

}

—end example]

6 The presence of unused ellipsis and default arguments has no effect on the partial ordering of function tem-
plates. [Example:

template<class T> void f(T); // #1
template<class T> void f(T*, int=1); // #2
template<class T> void g(T); // #3
template<class T> void g(T*, ...); // #4

int main() {
int* ip;
f(ip); // calls #2
g(ip); // calls #4

}

—end example]

[temp.res] 14.6 Name resolution

1 Three kinds of names can be used within a template definition:

— The name of the template itself, and names declared within the template itself.

— Names dependent on atemplate-parameter(14.6.2).

— Names from scopes which are visible within the template definition.

2 A name used in a template declaration or definition and that is dependent on atemplate-parameteris
assumed not to name a type unless the applicable name lookup finds a type name or the name is qualified
by the keywordtypename . [Example:

257

ISO/IEC 14882:1998(E) © ISO/IEC

14.6 Name resolution 14 Templates

// no B declared here

class X;

template<class T> class Y {
class Z; // forward declaration of member class

void f() {
X* a1; // declare pointer toX
T* a2; // declare pointer toT
Y* a3; // declare pointer toY<T>
Z* a4; // declare pointer toZ
typedef typename T::A TA;
TA* a5; // declare pointer toT’s A
typename T::A* a6; // declare pointer toT’s A
T::A* a7; // T::A is not a type name:

// multiply T::A by a7 ; ill-formed,
// no visible declaration ofa7

B* a8; // B is not a type name:
// multiply B by a8 ; ill-formed,
// no visible declarations ofB anda8

}
};

—end example]

3 A qualified-namethat refers to a type and that depends on atemplate-parameter(14.6.2) shall be prefixed
by the keywordtypename to indicate that thequalified-namedenotes a type, forming an elaborated-type-
specifier (7.1.5.3).

elaborated-type-specifier:
. . .
typename :: opt nested-name-specifier identifier
typename :: opt nested-name-specifier identifier< template-argument-list>
. . .

4 If a specialization of a template is instantiated for a set oftemplate-arguments such that thequalified-name
prefixed bytypename does not denote a type, the specialization is ill-formed. The usual qualified name
lookup (3.4.3) is used to find thequalified-nameeven in the presence oftypename . [Example:

struct A {
struct X { };
int X;

};
template<class T> void f(T t) {

typename T::X x; // ill-formed: finds the data memberX
// not the member typeX

}

—end example]

5 The keywordtypename shall only be used in template declarations and definitions, including in the return
type of a function template or member function template, in the return type for the definition of a member
function of a class template or of a class nested within a class template, and in thetype-specifierfor the def-
inition of a static member of a class template or of a class nested within a class template. The keyword
typename shall only be applied to qualified names, but those names need not be dependent. The keyword
typename is not permitted in abase-specifieror in amem-initializer; in these contexts aqualified-name
that depends on atemplate-parameter(14.6.2) is implicitly assumed to be a type name.

6 Within the definition of a class template or within the definition of a member of a class template, the key-
word typename is not required when referring to the unqualified name of a previously declared member
of the class template that declares a type. The keywordtypename shall always be specified when the

258

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.6 Name resolution

member is referred to using a qualified name, even if the qualifier is simply the class template name.
[Example:

template<class T> struct A {
typedef int B;
A::B b; // ill-formed: typename required beforeA::B
void f(A<T>::B); // ill-formed: typename required beforeA<T>::B
typename A::B g(); // OK

};

The keywordtypename is required whether the qualified name isA or A<T> becauseA or A<T> are syn-
onyms within a class template with the parameter list<T>.]

7 Knowing which names are type names allows the syntax of every template definition to be checked. No
diagnostic shall be issued for a template definition for which a valid specialization can be generated. If no
valid specialization can be generated for a template definition, and that template is not instantiated, the tem-
plate definition is ill-formed, no diagnostic required. [Note: if a template is instantiated, errors will be diag-
nosed according to the other rules in this Standard. Exactly when these errors are diagnosed is a quality of
implementation issue.] [Example:

int j;
template<class T> class X {

// ...
void f(T t, int i, char* p)
{

t = i; // diagnosed ifX::f is instantiated
// and the assignment tot is an error

p = i; // may be diagnosed even ifX::f is
// not instantiated

p = j; // may be diagnosed even ifX::f is
// not instantiated

}
void g(T t) {

+; // may be diagnosed even ifX::g is
// not instantiated

}
};

—end example]

8 When looking for the declaration of a name used in a template definition, the usual lookup rules (3.4.1,
3.4.2) are used for nondependent names. The lookup of names dependent on the template parameters is
postponed until the actual template argument is known (14.6.2). [Example:

#include <iostream>
using namespace std;

template<class T> class Set {
T* p;
int cnt;

public:
Set();
Set<T>(const Set<T>&);
void printall()
{

for (int i = 0; i<cnt; i++)
cout << p[i] << ’\n’;

}
// ...

};

in the example,i is the local variablei declared inprintall , cnt is the membercnt declared inSet ,
andcout is the standard output stream declared iniostream . However, not every declaration can be

259

ISO/IEC 14882:1998(E) © ISO/IEC

14.6 Name resolution 14 Templates

found this way; the resolution of some names must be postponed until the actualtemplate-arguments are
known. For example, even though the nameoperator<< is known within the definition of
printall() and a declaration of it can be found in<iostream> , the actual declaration of
operator<< needed to printp[i] cannot be known until it is known what typeT is (14.6.2).]

9 If a name does not depend on atemplate-parameter(as defined in 14.6.2), a declaration (or set of declara-
tions) for that name shall be in scope at the point where the name appears in the template definition; the
name is bound to the declaration (or declarations) found at that point and this binding is not affected by
declarations that are visible at the point of instantiation. [Example:

void f(char);

template<class T> void g(T t)
{

f(1); // f(char)
f(T(1)); // dependent
f(t); // dependent
dd++; // not dependent

// error: declaration for dd not found
}

void f(int);

double dd;
void h()
{

g(2); // will cause one call off(char) followed
// by two calls off(int)

g(’a’); // will cause three calls off(char)
}

—end example]

10 [Note: for purposes of name lookup, default arguments of function templates and default arguments of
member functions of class templates are considered definitions (14.5).—end note]

[temp.local] 14.6.1 Locally declared names

1 Within the scope of a class template, when the name of the template is neither qualified nor followed by<,
it is equivalent to the name of the template followed by thetemplate-parameters enclosed in<>. [Exam-
ple: the constructor forSet can be referred to asSet() or Set<T>() .] Other specializations (14.7.3) of
the class can be referred to by explicitly qualifying the template name with the appropriatetemplate-
arguments. [Example:

template<class T> class X {
X* p; // meaningX<T>
X<T>* p2;
X<int>* p3;

};

—end example]

2 Within the scope of a class template specialization or partial specialization, when the name of the template
is neither qualified nor followed by<, it is equivalent to the name of the template followed by the
template-arguments enclosed in<>. [Example:

template<class T> class Y;

template<> class Y<int> {
Y* p; // meaningY<int>
Y<char>* q; // meaningY<char>

};

260

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.6.1 Locally declared names

—end example]

3 The scope of atemplate-parameterextends from its point of declaration until the end of its template. A
template-parameterhides any entity with the same name in the enclosing scope. [Note: this implies that a
template-parametercan be used in the declaration of subsequenttemplate-parameters and their default
arguments but cannot be used in precedingtemplate-parameters or their default arguments. For example,

template<class T, T* p, class U = T> class X { /* ... */ };
template<class T> void f(T* p = new T);

This also implies that atemplate-parametercan be used in the specification of base classes. For example,

template<class T> class X : public Array<T> { /* ... */ };
template<class T> class Y : public T { /* ... */ };

The use of atemplate-parameteras a base class implies that a class used as atemplate-argumentmust be
defined and not just declared when the class template is instantiated.]

4 A template-parametershall not be redeclared within its scope (including nested scopes). Atemplate-
parametershall not have the same name as the template name. [Example:

template<class T, int i> class Y {
int T; // error: template-parameter redeclared
void f() {

char T; // error: template-parameter redeclared
}

};

template<class X> class X; // error: template-parameter redeclared

—end example]

5 In the definition of a member of a class template that appears outside of the class template definition, the
name of a member of this template hides the name of atemplate-parameter. [Example:

template<class T> struct A {
struct B { /* ... */ };
void f();

};

template<class B> void A::f() {
B b; // A’s B, not the template parameter

}

—end example]

6 In the definition of a member of a class template that appears outside of the namespace containing the class
template definition, the name of atemplate-parameterhides the name of a member of this namespace.
[Example:

namespace N {
class C { };
template<class T> class B {

void f(T);
};

}
template<class C> void N::B<C>::f(C) {

C b; // C is the template parameter, notN::C
}

—end example]

7 In the definition of a class template or in the definition of a member of such a template that appears outside
of the template definition, for each base class which does not depend on atemplate-parameter(14.6.2), if
the name of the base class or the name of a member of the base class is the same as the name of atemplate-
parameter, the base class name or member name hides thetemplate-parametername (3.3.7). [Example:

261

ISO/IEC 14882:1998(E) © ISO/IEC

14.6.1 Locally declared names 14 Templates

struct A {
struct B { /* ... */ };
int a;
int Y;

};

template<class B, class a> struct X : A {
B b; // A’s B
a b; // error: A’s a isn’t a type name

};

—end example]

[temp.dep] 14.6.2 Dependent names

1 Inside a template, some constructs have semantics which may differ from one instantiation to another.
Such a constructdependson the template parameters. In particular, types and expressions may depend on
the type and or value of template parameters (as determined by the template arguments) and this determines
the context for name lookup for certain names. Expressions may betype-dependent(on the type of a tem-
plate parameter) orvalue-dependent(on the value of a non-type template parameter). In an expression of
the form:

postfix-expression(expression-listopt)

where thepostfix-expressionis an identifier, the identifier denotes adependent nameif and only if any of
the expressions in theexpression-listis a type-dependent expression (14.6.2.2). If an operand of an opera-
tor is a type-dependent expression, the operator also denotes a dependent name. Such names are unbound
and are looked up at the point of the template instantiation (14.6.4.1) in both the context of the template
definition and the context of the point of instantiation.

2 [Example:

template<class T> struct X : B<T> {
typename T::A* pa;
void f(B<T>* pb) {

static int i = B<T>::i;
pb->j++;

}
};

the base class nameB<T>, the type nameT::A , the namesB<T>::i andpb->j explicitly depend on the
template-parameter. —end example]

3 In the definition of a class template or in the definition of a member of such a template that appears outside
of the template definition, if a base class of this template depends on atemplate-parameter, the base class
scope is not examined during name lookup until the class template is instantiated. [Example:

typedef double A;
template<class T> B {

typedef int A;
};
template<class T> struct X : B<T> {

A a; // a has typedouble
};

The type nameA in the definition ofX<T> binds to the typedef name defined in the global namespace
scope, not to the typedef name defined in the base classB<T>.]

4 If a base class is a dependent type, a member of that class cannot hide a name declared within a template, or
a name from the template’s enclosing scopes. [Example:

262

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.6.2 Dependent names

struct A {
struct B { /* ... */ };
int a;
int Y;

};

int a;

template<class T> struct Y : T {
struct B { /* ... */ };
B b; // TheB defined inY
void f(int i) { a = i; } // ::a
Y* p; // Y<T>

};

Y<A> ya;

The membersA::B , A::a , andA::Y of the template argumentA do not affect the binding of names in
Y<A>.]

[temp.dep.type] 14.6.2.1 Dependent types

1 A type is dependent if it is

— a template parameter,

— a qualified-idwith anested-name-specifierwhich contains aclass-namethat names a dependent type or
whoseunqualified-idnames a dependent type,

— a cv-qualified type where the cv-unqualified type is dependent,

— a compound type constructed from any dependent type,

— an array type constructed from any dependent type or whose size is specified by a constant expression
that is value-dependent,

— a template-idin which either the template name is a template parameter or any of the template argu-
ments is a dependent type or an expression that is type-dependent or value-dependent.

[temp.dep.expr] 14.6.2.2 Type-dependent expressions

1 Except as described below, an expression is type-dependent if any subexpression is type-dependent.

2 this is type-dependent if the class type of the enclosing member function is dependent (14.6.2.1).

3 An id-expressionis type-dependent if it contains:

— an identifier that was declared with a dependent type,

— a template-idthat is dependent,

— aconversion-function-idthat specifies a dependent type,

— anested-name-specifierthat contains aclass-namethat names a dependent type.

Expressions of the following forms are type-dependent only if the type specified by thetype-id, simple-
type-specifieror new-type-idis dependent, even if any subexpression is type-dependent:

263

ISO/IEC 14882:1998(E) © ISO/IEC

14.6.2.2 Type-dependent expressions 14 Templates

simple-type-specifier(expression-listopt)
:: opt new new-placementopt new-type-id new-initializeropt

:: opt new new-placementopt (type-id) new-initializeropt

dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
const_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
(type-id) cast-expression

4 Expressions of the following forms are never type-dependent (because the type of the expression cannot be
dependent):

literal
postfix-expression. pseudo-destructor-name
postfix-expression-> pseudo-destructor-name
sizeof unary-expression
sizeof (type-id)
typeid (expression)
typeid (type-id)
:: opt delete cast-expression
:: opt delete [] cast-expression
throw assignment-expressionopt

[temp.dep.constexpr] 14.6.2.3 Value-dependent expressions

1 Except as described below, a constant expression is value-dependent if any subexpression is value-
dependent.

2 An identifier is value-dependent if it is:

— a name declared with a dependent type,

— the name of a non-type template parameter,

— a constant with integral or enumeration type and is initialized with an expression that is value-
dependent.

Expressions of the following form are value-dependent if theunary-expressionis type-dependent or the
type-idis dependent (even ifsizeof unary-expressionandsizeof (type-id) are not type-dependent):

sizeof unary-expression
sizeof (type-id)

3 Expressions of the following form are value-dependent if either thetype-id or simple-type-specifieris
dependent or theexpressionor cast-expressionis value-dependent:

simple-type-specifier(expression-listopt)
static_cast < type-id > (expression)
const_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
(type-id) cast-expression

[temp.dep.temp] 14.6.2.4 Dependent template arguments

1 A type template-argumentis dependent if the type it specifies is dependent.

2 An integral non-typetemplate-argumentis dependent if the constant expression it specifies is value-
dependent.

3 A non-integral non-typetemplate-argumentis dependent if its type is dependent or it has either of the fol-
lowing forms

264

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.6.2.4 Dependent template arguments

qualified-id
& qualified-id

and contains anested-name-specifierwhich specifies aclass-namethat names a dependent type.

4 A templatetemplate-argumentis dependent if it names atemplate-parameteror is aqualified-id with a
nested-name-specifierwhich contains aclass-namethat names a dependent type.

[temp.nondep] 14.6.3 Non-dependent names

1 Non-dependent names used in a template definition are found using the usual name lookup and bound at the
point they are used. [Example:

void g(double);
void h();

template<class T> class Z {
public:

void f() {
g(1); // calls g(double)
h++; // ill-formed: cannot increment function;

// this could be diagnosed either here or
// at the point of instantiation

}
};

void g(int); // not in scope at the point of the template
// definition, not considered for the callg(1)

—end example]

[temp.dep.res] 14.6.4 Dependent name resolution

1 In resolving dependent names, names from the following sources are considered:

— Declarations that are visible at the point of definition of the template.

— Declarations from namespaces associated with the types of the function arguments both from the instan-
tiation context (14.6.4.1) and from the definition context.

[temp.point] 14.6.4.1 Point of instantiation

1 For a function template specialization, a member function template specialization, or a specialization for a
member function or static data member of a class template, if the specialization is implicitly instantiated
because it is referenced from within another template specialization and the context from which it is refer-
enced depends on a template parameter, the point of instantiation of the specialization is the point of instan-
tiation of the enclosing specialization. Otherwise, the point of instantiation for such a specialization imme-
diately follows the namespace scope declaration or definition that refers to the specialization.

2 If a function template or member function of a class template is called in a way which uses the definition of
a default argument of that function template or member function, the point of instantiation of the default
argument is the point of instantiation of the function template or member function specialization.

3 For a class template specialization, a class member template specialization, or a specialization for a class
member of a class template, if the specialization is implicitly instantiated because it is referenced from
within another template specialization, if the context from which the specialization is referenced depends
on a template parameter, and if the specialization is not instantiated previous to the instantiation of the
enclosing template, the point of instantiation is immediately before the point of instantiation of the enclos-
ing template. Otherwise, the point of instantiation for such a specialization immediately precedes the
namespace scope declaration or definition that refers to the specialization.

265

ISO/IEC 14882:1998(E) © ISO/IEC

14.6.4.1 Point of instantiation 14 Templates

4 If a virtual function is implicitly instantiated, its point of instantiation is immediately following the point of
instantiation of its enclosing class template specialization.

5 An explicit instantiation directive is an instantiation point for the specialization or specializations specified
by the explicit instantiation directive.

6 The instantiation context of an expression that depends on the template arguments is the set of declarations
with external linkage declared prior to the point of instantiation of the template specialization in the same
translation unit.

7 A specialization for a function template, a member function template, or of a member function or static data
member of a class template may have multiple points of instantiations within a translation unit. A special-
ization for a class template has at most one point of instantiation within a translation unit. A specialization
for any template may have points of instantiation in multiple translation units. If two different points of
instantiation give a template specialization different meanings according to the one definition rule (3.2), the
program is ill-formed, no diagnostic required.

[temp.dep.candidate] 14.6.4.2 Candidate functions

1 For a function call that depends on a template parameter, if the function name is anunqualified-idbut not a
template-id, the candidate functions are found using the usual lookup rules (3.4.1, 3.4.2) except that:

— For the part of the lookup using unqualified name lookup (3.4.1), only function declarations with exter-
nal linkage from the template definition context are found.

— For the part of the lookup using associated namespaces (3.4.2), only function declarations with external
linkage found in either the template definition context or the template instantiation context are found.

If the call would be ill-formed or would find a better match had the lookup within the associated name-
spaces considered all the function declarations with external linkage introduced in those namespaces in all
translation units, not just considering those declarations found in the template definition and template
instantiation contexts, then the program has undefined behavior.

[temp.inject] 14.6.5 Friend names declared within a class template

1 Friend classes or functions can be declared within a class template. When a template is instantiated, the
names of its friends are treated as if the specialization had been explicitly declared at its point of instantia-
tion.

2 As with non-template classes, the names of namespace-scope friend functions of a class template special-
ization are not visible during an ordinary lookup unless explicitly declared at namespace scope (11.4).
Such names may be found under the rules for associated classes (3.4.2).131) [Example:

template<typename T> class number {
number(int);
// ...
friend number gcd(number& x, number& y) { /* ... */ }
// ...

};

131)Friend declarations do not introduce new names into any scope, either when the template is declared or when it is instantiated.

266

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.6.5 Friend names declared within a class template

void g()
{

number<double> a(3), b(4);
// ...
a = gcd(a,b); // findsgcd becausenumber<double> is an

// associated class, makinggcd visible
// in its namespace (global scope)

b = gcd(3,4); // ill-formed; gcd is not visible
}

—end example]

[temp.spec] 14.7 Template instantiation and specialization

1 The act of instantiating a function, a class, a member of a class template or a member template is referred to
astemplate instantiation.

2 A function instantiated from a function template is called an instantiated function. A class instantiated from
a class template is called an instantiated class. A member function, a member class, or a static data member
of a class template instantiated from the member definition of the class template is called, respectively, an
instantiated member function, member class or static data member. A member function instantiated from a
member function template is called an instantiated member function. A member class instantiated from a
member class template is called an instantiated member class.

3 An explicit specialization may be declared for a function template, a class template, a member of a class
template or a member template. An explicit specialization declaration is introduced bytemplate<> . In
an explicit specialization declaration for a class template, a member of a class template or a class member
template, the name of the class that is explicitly specialized shall be atemplate-id. In the explicit special-
ization declaration for a function template or a member function template, the name of the function or
member function explicitly specialized may be atemplate-id. [Example:

template<class T = int> struct A {
static int x;

};
template<class U> void g(U) { }

template<> struct A<double> { }; // specialize forT == double
template<> struct A<> { }; // specialize forT == int
template<> void g(char) { } // specialize forU == char

// U is deduced from the parameter type
template<> void g<int>(int) { } // specialize forU == int
template<> int A<char>::x = 0; // specialize forT == char

template<class T = int> struct B {
static int x;

};
template<> int B<>::x = 1; // specialize forT == int

—end example]

4 An instantiated template specialization can be either implicitly instantiated (14.7.1) for a given argument
list or be explicitly instantiated (14.7.2). A specialization is a class, function, or class member that is either
instantiated or explicitly specialized (14.7.3).

5 No program shall explicitly instantiate any template more than once, both explicitly instantiate and explic-
itly specialize a template, or specialize a template more than once for a given set oftemplate-arguments.
An implementation is not required to diagnose a violation of this rule.

6 Each class template specialization instantiated from a template has its own copy of any static members.
[Example:

267

ISO/IEC 14882:1998(E) © ISO/IEC

14.7 Template instantiation and specialization 14 Templates

template<class T> class X {
static T s;
// ...

};
template<class T> T X<T>::s = 0;
X<int> aa;
X<char*> bb;

X<int> has a static members of typeint andX<char*> has a static members of typechar* .]

[temp.inst] 14.7.1 Implicit instantiation

1 Unless a class template specialization has been explicitly instantiated (14.7.2) or explicitly specialized
(14.7.3), the class template specialization is implicitly instantiated when the specialization is referenced in a
context that requires a completely-defined object type or when the completeness of the class type affects the
semantics of the program. The implicit instantiation of a class template specialization causes the implicit
instantiation of the declarations, but not of the definitions or default arguments, of the class member func-
tions, member classes, static data members and member templates; and it causes the implicit instantiation
of the definitions of member anonymous unions. Unless a member of a class template or a member tem-
plate has been explicitly instantiated or explicitly specialized, the specialization of the member is implicitly
instantiated when the specialization is referenced in a context that requires the member definition to exist;
in particular, the initialization (and any associated side-effects) of a static data member does not occur
unless the static data member is itself used in a way that requires the definition of the static data member to
exist.

2 Unless a function template specialization has been explicitly instantiated or explicitly specialized, the func-
tion template specialization is implicitly instantiated when the specialization is referenced in a context that
requires a function definition to exist. Unless a call is to a function template explicit specialization or to a
member function of an explicitly specialized class template, a default argument for a function template or a
member function of a class template is implicitly instantiated when the function is called in a context that
requires the value of the default argument.

3 [Example:

template<class T> class Z {
public:

void f();
void g();

};

void h()
{

Z<int> a; // instantiation of classZ<int> required
Z<char>* p; // instantiation of classZ<char> not

// required
Z<double>* q; // instantiation of classZ<double>

// not required

a.f(); // instantiation ofZ<int>::f() required
p->g(); // instantiation of classZ<char> required, and

// instantiation ofZ<char>::g() required
}

Nothing in this example requiresclass Z<double> , Z<int>::g() , or Z<char>::f() to be
implicitly instantiated.]

4 A class template specialization is implicitly instantiated if the class type is used in a context that requires a
completely-defined object type or if the completeness of the class type affects the semantics of the program;
in particular, if an expression whose type is a class template specialization is involved in overload resolu-
tion, pointer conversion, pointer to member conversion, the class template specialization is implicitly

268

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.7.1 Implicit instantiation

instantiated (3.2); in addition, a class template specialization is implicitly instantiated if the operand of a
delete expression is of class type or is of pointer to class type and the class type is a template specialization.
[Example:

template<class T> class B { /* ... */ };
template<class T> class D : public B<T> { /* ... */ };

void f(void*);
void f(B<int>*);

void g(D<int>* p, D<char>* pp, D<double> ppp)
{

f(p); // instantiation ofD<int> required: callf(B<int>*)

B<char>* q = pp; // instantiation ofD<char> required:
// convertD<char>* to B<char>*

delete ppp; // instantiation ofD<double> required
}

—end example]

5 If the overload resolution process can determine the correct function to call without instantiating a class
template definition, it is unspecified whether that instantiation actually takes place. [Example:

template <class T> struct S {
operator int();

};

void f(int);
void f(S<int>&);
void f(S<float>);

void g(S<int>& sr) {
f(sr); // instantiation ofS<int> allowed but not required

// instantiation ofS<float> allowed but not required
};

—end example]

6 If an implicit instantiation of a class template specialization is required and the template is declared but not
defined, the program is ill-formed. [Example:

template<class T> class X;

X<char> ch; // error: definition ofX required

—end example]

7 The implicit instantiation of a class template does not cause any static data members of that class to be
implicitly instantiated.

8 If a function template or a member function template specialization is used in a way that involves overload
resolution, a declaration of the specialization is implicitly instantiated (14.8.3).

9 An implementation shall not implicitly instantiate a function template, a member template, a non-virtual
member function, a member class or a static data member of a class template that does not require instantia-
tion. It is unspecified whether or not an implementation implicitly instantiates a virtual member function of
a class template if the virtual member function would not otherwise be instantiated. The use of a template
specialization in a default argument shall not cause the template to be implicitly instantiated except that a
class template may be instantiated where its complete type is needed to determine the correctness of the
default argument. The use of a default argument in a function call causes specializations in the default
argument to be implicitly instantiated.

269

ISO/IEC 14882:1998(E) © ISO/IEC

14.7.1 Implicit instantiation 14 Templates

10 Implicitly instantiated class and function template specializations are placed in the namespace where the
template is defined. Implicitly instantiated specializations for members of a class template are placed in the
namespace where the enclosing class template is defined. Implicitly instantiated member templates are
placed in the namespace where the enclosing class or class template is defined. [Example:

namespace N {
template<class T> class List {
public:

T* get();
// ...
};

}

template<class K, class V> class Map {
N::List<V> lt;
V get(K);
// ...

};

void g(Map<char*,int>& m)
{

int i = m.get("Nicholas");
// ...

}

a call of lt.get() from Map<char*,int>::get() would placeList<int>::get() in the
namespaceN rather than in the global namespace.]

11 If a function templatef is called in a way that requires a default argument expression to be used, the depen-
dent names are looked up, the semantics constraints are checked, and the instantiation of any template used
in the default argument expression is done as if the default argument expression had been an expression
used in a function template specialization with the same scope, the same template parameters and the same
access as that of the function templatef used at that point. This analysis is calleddefault argument
instantiation. The instantiated default argument is then used as the argument off .

12 Each default argument is instantiated independently. [Example:

template<class T> void f(T x, T y = ydef(T()), T z = zdef(T()));

class A { };

A zdef(A);

void g(A a, A b, A c) {
f(a, b, c); // no default argument instantiation
f(a, b); // default argumentz = zdef(T()) instantiated
f(a); // ill-formed; ydef is not declared

}

—end example]

13 [Note:14.6.4.1 defines the point of instantiation of a template specialization.]

14 There is an implementation-defined quantity that specifies the limit on the total depth of recursive instantia-
tions, which could involve more than one template. The result of an infinite recursion in instantiation is
undefined. [Example:

270

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.7.1 Implicit instantiation

template<class T> class X {
X<T>* p; // OK
X<T*> a; // implicit generation ofX<T> requires

// the implicit instantiation ofX<T*> which requires
// the implicit instantiation ofX<T**> which ...

};

—end example]

[temp.explicit] 14.7.2 Explicit instantiation

1 A class, a function or member template specialization can be explicitly instantiated from its template. A
member function, member class or static data member of a class template can be explicitly instantiated
from the member definition associated with its class template.

2 The syntax for explicit instantiation is:

explicit-instantiation:
template declaration

If the explicit instantiation is for a class, a function or a member template specialization, theunqualified-id
in the declaration shall be either atemplate-idor, where all template arguments can be deduced, a
template-name. [Note: the declaration may declare aqualified-id, in which case theunqualified-idof the
qualified-id must be atemplate-id.] If the explicit instantiation is for a member function, a member class
or a static data member of a class template specialization, the name of the class template specialization in
thequalified-id for the memberdeclaratorshall be atemplate-id. [Example:

template<class T> class Array { void mf(); };
template class Array<char>;
template void Array<int>::mf();

template<class T> void sort(Array<T>& v) { /* ... */ }
template void sort(Array<char>&); // argument is deduced here

namespace N {
template<class T> void f(T&) { }

}
template void N::f<int>(int&);

—end example]

3 A declaration of a function template shall be in scope at the point of the explicit instantiation of the function
template. A definition of the class or class template containing a member function template shall be in
scope at the point of the explicit instantiation of the member function template. A definition of a class tem-
plate or class member template shall be in scope at the point of the explicit instantiation of the class tem-
plate or class member template. A definition of a class template shall be in scope at the point of an explicit
instantiation of a member function or a static data member of the class template. A definition of a member
class of a class template shall be in scope at the point of an explicit instantiation of the member class. If the
declarationof the explicit instantiation names an implicitly-declared special member function (clause 12),
the program is ill-formed.

4 The definition of a non-exported function template, a non-exported member function template, or a non-
exported member function or static data member of a class template shall be present in every translation
unit in which it is explicitly instantiated.

5 An explicit instantiation of a class or function template specialization is placed in the namespace in which
the template is defined. An explicit instantiation for a member of a class template is placed in the name-
space where the enclosing class template is defined. An explicit instantiation for a member template is
placed in the namespace where the enclosing class or class template is defined. [Example:

271

ISO/IEC 14882:1998(E) © ISO/IEC

14.7.2 Explicit instantiation 14 Templates

namespace N {
template<class T> class Y { void mf() { } };

}

template class Y<int>; // error: class templateY not visible
// in the global namespace

using N::Y;
template class Y<int>; // OK: explicit instantiation in namespaceN

template class N::Y<char*>; // OK: explicit instantiation in namespaceN
template void N::Y<double>::mf(); // OK: explicit instantiation

// in namespaceN

—end example]

6 A trailing template-argumentcan be left unspecified in an explicit instantiation of a function template spe-
cialization or of a member function template specialization provided it can be deduced from the type of a
function parameter (14.8.2). [Example:

template<class T> class Array { /* ... */ };
template<class T> void sort(Array<T>& v);

// instantiatesort(Array<int>&) – template-argument deduced
template void sort<>(Array<int>&);

—end example]

7 The explicit instantiation of a class template specialization implies the instantiation of all of its members
not previously explicitly specialized in the translation unit containing the explicit instantiation.

8 The usual access checking rules do not apply to names used to specify explicit instantiations. [Note: In par-
ticular, the template arguments and names used in the function declarator (including parameter types, return
types and exception specifications) may be private types or objects which would normally not be accessible
and the template may be a member template or member function which would not normally be accessible.
]

9 An explicit instantiation does not constitute a use of a default argument, so default argument instantiation is
not done. [Example:

char* p = 0;
template<class T> T g(T = &p);
template int g<int>(int); // OK even though&p isn’t an int .

—end example]

[temp.expl.spec] 14.7.3 Explicit specialization

1 An explicit specialization of any of the following:

— function template

— class template

— member function of a class template

— static data member of a class template

— member class of a class template

— member class template of a class template

— member function template of a class template

272

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.7.3 Explicit specialization

can be declared by a declaration introduced bytemplate<> ; that is:

explicit-specialization:
template < > declaration

[Example:

template<class T> class stream;

template<> class stream<char> { /* ... */ };

template<class T> class Array { /* ... */ };
template<class T> void sort(Array<T>& v) { /* ... */ }

template<> void sort<char*>(Array<char*>&) ;

Given these declarations,stream<char> will be used as the definition of streams ofchar s; other
streams will be handled by class template specializations instantiated from the class template. Similarly,
sort<char*> will be used as the sort function for arguments of typeArray<char*> ; otherArray
types will be sorted by functions generated from the template.]

2 An explicit specialization shall be declared in the namespace of which the template is a member, or, for
member templates, in the namespace of which the enclosing class or enclosing class template is a member.
An explicit specialization of a member function, member class or static data member of a class template
shall be declared in the namespace of which the class template is a member. Such a declaration may also
be a definition. If the declaration is not a definition, the specialization may be defined later in the name-
space in which the explicit specialization was declared, or in a namespace that encloses the one in which
the explicit specialization was declared.

3 A declaration of a function template or class template being explicitly specialized shall be in scope at the
point of declaration of an explicit specialization. [Note:a declaration, but not a definition of the template is
required.] The definition of a class or class template shall be in scope at the point of declaration of an
explicit specialization for a member template of the class or class template. [Example:

template<> class X<int> { /* ... */ }; // error: X not a template

template<class T> class X;

template<> class X<char*> { /* ... */ }; // OK: X is a template

—end example]

4 A member function, a member class or a static data member of a class template may be explicitly special-
ized for a class specialization that is implicitly instantiated; in this case, the definition of the class template
shall be in scope at the point of declaration of the explicit specialization for the member of the class tem-
plate. If such an explicit specialization for the member of a class template names an implicitly-declared
special member function (clause 12), the program is ill-formed.

5 A member of an explicitly specialized class is not implicitly instantiated from the member declaration of
the class template; instead, the member of the class template specialization shall itself be explicitly defined.
In this case, the definition of the class template explicit specialization shall be in scope at the point of decla-
ration of the explicit specialization of the member. The definition of an explicitly specialized class is unre-
lated to the definition of a generated specialization. That is, its members need not have the same names,
types, etc. as the members of the a generated specialization. Definitions of members of an explicitly spe-
cialized class are defined in the same manner as members of normal classes, and not using the explicit spe-
cialization syntax. [Example:

273

ISO/IEC 14882:1998(E) © ISO/IEC

14.7.3 Explicit specialization 14 Templates

template<class T> struct A {
void f(T) { /* ... */ }

};

template<> struct A<int> {
void f(int);

};

void h()
{

A<int> a;
a.f(16); // A<int>::f must be defined somewhere

}

// explicit specialization syntax not used for a member of
// explicitly specialized class template specialization
void A<int>::f() { /* ... */ }

—end example]

6 If a template, a member template or the member of a class template is explicitly specialized then that spe-
cialization shall be declared before the first use of that specialization that would cause an implicit instantia-
tion to take place, in every translation unit in which such a use occurs; no diagnostic is required. If the pro-
gram does not provide a definition for an explicit specialization and either the specialization is used in a
way that would cause an implicit instantiation to take place or the member is a virtual member function, the
program is ill-formed, no diagnostic required. An implicit instantiation is never generated for an explicit
specialization that is declared but not defined. [Example:

template<class T> class Array { /* ... */ };
template<class T> void sort(Array<T>& v) { /* ... */ }

void f(Array<String>& v)
{

sort(v); // use primary template
// sort(Array<T>&) , T is String

}

template<> void sort<String>(Array<String>& v); // error: specialization
// after use of primary template

template<> void sort<>(Array<char*>& v); // OK: sort<char*> not yet used

—end example]

7 The placement of explicit specialization declarations for function templates, class templates, member func-
tions of class templates, static data members of class templates, member classes of class templates, member
class templates of class templates, member function templates of class templates, member functions of
member templates of class templates, member functions of member templates of non-template classes,
member function templates of member classes of class templates, etc., and the placement of partial special-
ization declarations of class templates, member class templates of non-template classes, member class tem-
plates of class templates, etc., can affect whether a program is well-formed according to the relative posi-
tioning of the explicit specialization declarations and their points of instantiation in the translation unit as
specified above and below. When writing a specialization, be careful about its location; or to make it com-
pile will be such a trial as to kindle its self-immolation.

8 When a specialization for which an explicit specialization exists is used within the instantiation of an
exported template, and the unspecialized template name is non-dependent in the exported template, a decla-
ration of the explicit specialization shall be declared before the definition of the exported template, in the
translation unit containing that definition. [Example:

274

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.7.3 Explicit specialization

// file #1
#include <vector>
// Primary class templatevector
export template<class T> void f(t) {

vector<T> vec; // should match the specialization
/* ... */

}

// file #2
#include <vector>
class B { };
// Explicit specialization ofvector for vector
template<class T> class vector { /* ... */ }
template<class T> void f(T);
void g(B b) {

f(b); // ill-formed:
// f should refer tovector , but the
// specialization was not declared with the
// definition off in file #1

}

—end example]

9 A template explicit specialization is in the scope of the namespace in which the template was defined.
[Example:

namespace N {
template<class T> class X { /* ... */ };
template<class T> class Y { /* ... */ };

template<> class X<int> { /* ... */ }; // OK: specialization
// in same namespace

template<> class Y<double>; // forward declare intent to
// specialize fordouble

}

template<> class N::Y<double> { /* ... */ }; // OK: specialization
// in same namespace

—end example]

10 A template-idthat names a class template explicit specialization that has been declared but not defined can
be used exactly like the names of other incompletely-defined classes (3.9). [Example:

template<class T> class X; // X is a class template
template<> class X<int>;

X<int>* p; // OK: pointer to declared classX<int>
X<int> x; // error: object of incomplete classX<int>

—end example]

11 A trailing template-argumentcan be left unspecified in thetemplate-idnaming an explicit function tem-
plate specialization provided it can be deduced from the function argument type. [Example:

template<class T> class Array { /* ... */ };
template<class T> void sort(Array<T>& v);

// explicit specialization forsort(Array<int>&)
// with deduces template-argument of typeint
template<> void sort(Array<int>&);

—end example]

275

ISO/IEC 14882:1998(E) © ISO/IEC

14.7.3 Explicit specialization 14 Templates

12 It is possible for a specialization with a given function signature to be instantiated from more than one func-
tion template. In such cases, explicit specification of the template arguments must be used to uniquely
identify the function template specialization being specialized. [Example:

template <class T> void f(T);
template <class T> void f(T*);
template <> void f(int*); // Ambiguous
template <> void f<int>(int*); // OK
template <> void f(int); // OK

—end example]

13 A function with the same name as a template and a type that exactly matches that of a template specializa-
tion is not an explicit specialization (14.5.5).

14 An explicit specialization of a function template is inline only if it is explicitly declared to be, and indepen-
dently of whether its function template is. [Example:

template<class T> void f(T) { /* ... */ }
template<class T> inline T g(T) { /* ... */ }

template<> inline void f<>(int) { /* ... */ } // OK: inline
template<> int g<>(int) { /* ... */ } // OK: not inline

—end example]

15 An explicit specialization of a static data member of a template is a definition if the declaration includes an
initializer; otherwise, it is a declaration. [Note: there is no syntax for the definition of a static data member
of a template that requires default initialization.

template<> X Q<int>::x;

This is a declaration regardless of whether X can be default initialized (8.5).]

16 A member or a member template of a class template may be explicitly specialized for a given implicit
instantiation of the class template, even if the member or member template is defined in the class template
definition. An explicit specialization of a member or member template is specified using the template spe-
cialization syntax. [Example:

template<class T> struct A {
void f(T);
template<class X> void g(T,X);
void h(T) { }

};

// specialization
template<> void A<int>::f(int);

// out of class member template definition
template<class T> template<class X> void A<T>::g(T,X) { }

// member template partial specialization
template<> template<class X> void A<int>::g(int,X);

// member template specialization
template<> template<>

void A<int>::g(int,char); // X deduced aschar
template<> template<>

void A<int>::g<char>(int,char); // X specified aschar

// member specialization even if defined in class definition
template<> void A<int>::h(int) { }

—end example]

276

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.7.3 Explicit specialization

17 A member or a member template may be nested within many enclosing class templates. If the declaration
of an explicit specialization for such a member appears in namespace scope, the member declaration shall
be preceded by atemplate<> for each enclosing class template that is explicitly specialized. [Example:

template<class T1> class A {
template<class T2> class B {

void mf();
};

};
template<> template<> A<int>::B<double> { };
template<> template<> void A<char>::B<char>::mf() { };

—end example]

18 In an explicit specialization declaration for a member of a class template or a member template that appears
in namespace scope, the member template and some of its enclosing class templates may remain unspecial-
ized, except that the declaration shall not explicitly specialize a class member template if its enclosing class
templates are not explicitly specialized as well. In such explicit specialization declaration, the keyword
template followed by atemplate-parameter-listshall be provided instead of thetemplate<> preced-
ing the explicit specialization declaration of the member. The types of thetemplate-parametersin the
template-parameter-listshall be the same as those specified in the primary template definition. [Example:

template<class T1> class A {
template<class T2> class B {

template<class T3> void mf1(T3);
void mf2();

};
};
template<> template<class X>

class A<int>::B { };
template<> template<> template<class T>

void A<int>::B<double>::mf1(T t) { };
template<class Y> template<>

void A<Y>::B<double>::mf2() { }; // ill-formed; B<double> is specialized but
// its enclosing class templateA is not

—end example]

19 A specialization of a member function template or member class template of a non-specialized class tem-
plate is itself a template.

20 An explicit specialization declaration shall not be a friend declaration.

21 Default function arguments shall not be specified in a declaration or a definition for one of the following
explicit specializations:

— the explicit specialization of a function template;

— the explicit specialization of a member function template;

— the explicit specialization of a member function of a class template where the class template specializa-
tion to which the member function specialization belongs is implicitly instantiated. [Note:default func-
tion arguments may be specified in the declaration or definition of a member function of a class tem-
plate specialization that is explicitly specialized.]

[temp.fct.spec] 14.8 Function template specializations

1 A function instantiated from a function template is called a function template specialization; so is an
explicit specialization of a function template. Template arguments can either be explicitly specified when
naming the function template specialization or be deduced (14.8.2) from the context, e.g. from the function
arguments in a call to the function template specialization.

277

ISO/IEC 14882:1998(E) © ISO/IEC

14.8 Function template specializations 14 Templates

2 Each function template specialization instantiated from a template has its own copy of any static variable.
[Example:

template<class T> void f(T* p)
{

static T s;
// ...

};

void g(int a, char* b)
{

f(&a); // call f<int>(int*)
f(&b); // call f<char*>(char**)

}

Heref<int>(int*) has a static variables of typeint andf<char*>(char**) has a static variable
s of typechar* .]

[temp.arg.explicit] 14.8.1 Explicit template argument specification

1 Template arguments can be specified when referring to a function template specialization by qualifying the
function template name with the list oftemplate-arguments in the same way astemplate-arguments are
specified in uses of a class template specialization. [Example:

template<class T> void sort(Array<T>& v);
void f(Array<dcomplex>& cv, Array<int>& ci)
{

sort<dcomplex>(cv); // sort(Array<dcomplex>&)
sort<int>(ci); // sort(Array<int>&)

}

and

template<class U, class V> U convert(V v);

void g(double d)
{

int i = convert<int,double>(d); // int convert(double)
char c = convert<char,double>(d); // char convert(double)

}

—end example]

2 A template argument list may be specified when referring to a specialization of a function template

— when a function is called,

— when the address of a function is taken, when a function initializes a reference to function, or when a
pointer to member function is formed,

— in an explicit specialization,

— in an explicit instantiation, or

— in a friend declaration.

Trailing template arguments that can be deduced (14.8.2) may be omitted from the list of explicittemplate-
arguments. If all of the template arguments can be deduced, they may all be omitted; in this case, the
empty template argument list<> itself may also be omitted. [Example:

278

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.8.1 Explicit template argument specification

template<class X, class Y> X f(Y);
void g()
{

int i = f<int>(5.6); // Y is deduced to bedouble
int j = f(5.6); // ill-formed: X cannot be deduced

}

—end example] [Note:An empty template argument list can be used to indicate that a given use refers to a
specialization of a function template even when a normal (i.e., nontemplate) function is visible that would
otherwise be used. For example:

template <class T> int f(T); // #1
int f(int); // #2
int k = f(1); // uses #2
int l = f<>(1); // uses #1

—end note]

3 Template arguments that are present shall be specified in the declaration order of their corresponding
template-parameters. The template argument list shall not specify moretemplate-arguments than there are
correspondingtemplate-parameters. [Example:

template<class X, class Y, class Z> X f(Y,Z);
void g()
{

f<int,char*,double>("aa",3.0);
f<int,char*>("aa",3.0); // Z is deduced to bedouble
f<int>("aa",3.0); // Y is deduced to bechar* , and

// Z is deduced to bedouble
f("aa",3.0); // error: X cannot be deduced

}

—end example]

4 Implicit conversions (clause 4) will be performed on a function argument to convert it to the type of the
corresponding function parameter if the parameter type contains notemplate-parameters that participate in
template argument deduction. [Note: template parameters do not participate in template argument deduc-
tion if they are explicitly specified. For example,

template<class T> void f(T);

class Complex {
// ...
Complex(double);

};

void g()
{

f<Complex>(1); // OK, meansf<Complex>(Complex(1))
}

—end note]

5 [Note:because the explicit template argument list follows the function template name, and because conver-
sion member function templates and constructor member function templates are called without using a
function name, there is no way to provide an explicit template argument list for these function templates.]

6 [Note:For simple function names, argument dependent lookup (3.4.2) applies even when the function name
is not visible within the scope of the call. This is because the call still has the syntactic form of a function
call (3.4.1). But when a function template with explicit template arguments is used, the call does not have
the correct syntactic form unless there is a function template with that name visible at the point of the call.
If no such name is visible, the call is not syntactically well-formed and argument-dependent lookup does
not apply. If some such name is visible, argument dependent lookup applies and additional function

279

ISO/IEC 14882:1998(E) © ISO/IEC

14.8.1 Explicit template argument specification 14 Templates

templates may be found in other namespaces. [Example:

namespace A {
struct B { };
template<int X> void f();

}
namespace C {

template<class T> void f(T t);
}
void g(A::B b) {

f<3>(b); // ill-formed: not a function call
A::f<3>(b); // well-formed
C::f<3>(b); // ill-formed; argument dependent lookup

// only applies to unqualified names
using C::f;
f<3>(b); // well-formed becauseC::f is visible; then

// A::f is found by argument dependent lookup
}

—end example] —end note]

[temp.deduct] 14.8.2 Template argument deduction

1 When a template function specialization is referenced, all of the template arguments must have values. The
values can be either explicitly specified or, in some cases, deduced from the use. [Example:

void f(Array<dcomplex>& cv, Array<int>& ci)
{

sort(cv); // call sort(Array<dcomplex>&)
sort(ci); // call sort(Array<int>&)

}

and

void g(double d)
{

int i = convert<int>(d); // call convert<int,double>(double)
int c = convert<char>(d); // call convert<char,double>(double)

}

—end example]

2 When an explicit template argument list is specified, the template arguments must be compatible with the
template parameter list and must result in a valid function type as described below; otherwise type deduc-
tion fails. Specifically, the following steps are performed when evaluating an explicitly specified template
argument list with respect to a given function template:

— The specified template arguments must match the template parameters in kind (i.e., type, nontype, tem-
plate), and there must not be more arguments than there are parameters; otherwise type deduction fails.

— Nontype arguments must match the types of the corresponding nontype template parameters, or must be
convertible to the types of the corresponding nontype parameters as specified in 14.3.2, otherwise type
deduction fails.

— All references in the function type of the function template to the corresponding template parameters are
replaced by the specified template argument values. If a substitution in a template parameter or in the
function type of the function template results in an invalid type, type deduction fails. [Note: The equiv-
alent substitution in exception specifications is done only when the function is instantiated, at which
point a program is ill-formed if the substitution results in an invalid type.] Type deduction may fail for
the following reasons:

— Attempting to create an array with an element type that isvoid , a function type, or a reference type,
or attempting to create an array with a size that is zero or negative. [Example:

280

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.8.2 Template argument deduction

template <class T> int f(T[5]);
int I = f<int>(0);
int j = f<void>(0); // invalid array

]

— Attempting to use a type that is not a class type in a qualified name. [Example:

template <class T> int f(typename T::B*);
int i = f<int>(0);

]

— Attempting to use a type in the qualifier portion of a qualified name that names a type when that
type does not contain the specified member, or if the specified member is not a type where a type is
required. [Example:

template <class T> int f(typename T::B*);
struct A {};
struct C { int B; };
int i = f<A>(0);
int j = f<C>(0);

]

— Attempting to create a pointer to reference type.

— Attempting to create a reference to a reference type or a reference tovoid .

— Attempting to create "pointer to member ofT" whenT is not a class type. [Example:

template <class T> int f(int T::*);
int i = f<int>(0);

]

— Attempting to perform an invalid conversion in either a template argument expression, or an expres-
sion used in the function declaration. [Example:

template <class T, T*> int f(int);
int i2 = f<int,1>(0); // can’t conv 1 toint*

]

— Attempting to create a function type in which a parameter has a type ofvoid .

— Attempting to create acv-qualifiedfunction type.

3 After this substitution is performed, the function parameter type adjustments described in 8.3.5 are per-
formed. [Example: A parameter type of “void ()(const int, int[5]) ” becomes
“void(*)(int,int*) ”.] [Note: A top-level qualifier in a function parameter declaration does not
affect the function type but still affects the type of the function parameter variable within the function.
—end note] [Example:

281

ISO/IEC 14882:1998(E) © ISO/IEC

14.8.2 Template argument deduction 14 Templates

template <class T> void f(T t);
template <class X> void g(const X x);
template <class Z> void h(Z, Z*);

int main()
{

// #1: function type isf(int) , t is nonconst
f<int>(1);

// #2: function type isf(int) , t is const
f<const int>(1);

// #3: function type isg(int) , x is const
g<int>(1);

// #4: function type isg(int) , x is const
g<const int>(1);

// #5: function type ish(int, const int*)
h<const int>(1,0);

}

—end example] [Note: f<int>(1) and f<const int>(1) call distinct functions even though both
of the functions called have the same function type.—end note]

4 The resulting substituted and adjusted function type is used as the type of the function template for template
argument deduction. When all template arguments have been deduced, all uses of template parameters in
nondeduced contexts are replaced with the corresponding deduced argument values. If the substitution
results in an invalid type, as described above, type deduction fails.

5 Except as described above, the use of an invalid value shall not cause type deduction to fail. [Example:In
the following example 1000 is converted tosigned char and results in an implementation-defined
value as specified in (4.7). In other words, both templates are considered even though 1000, when con-
verted tosigned char , results in an implementation-defined value.

template <int> int f(int);
template <signed char> int f(int);
int i1 = f<1>(0); // ambiguous
int i2 = f<1000>(0); // ambiguous

—end example]

[temp.deduct.call] 14.8.2.1 Deducing template arguments from a function call

1 Template argument deduction is done by comparing each function template parameter type (call itP) with
the type of the corresponding argument of the call (call itA) as described below.

2 If P is not a reference type:

— If A is an array type, the pointer type produced by the array-to-pointer standard conversion (4.2) is used
in place ofA for type deduction; otherwise,

— If A is a function type, the pointer type produced by the function-to-pointer standard conversion (4.3) is
used in place ofA for type deduction; otherwise,

— If A is a cv-qualified type, the top level cv-qualifiers ofA’s type are ignored for type deduction.

If P is a cv-qualified type, the top level cv-qualifiers ofP’s type are ignored for type deduction. IfP is a
reference type, the type referred to byP is used for type deduction.

3 In general, the deduction process attempts to find template argument values that will make the deducedA
identical toA (after the typeA is transformed as described above). However, there are three cases that
allow a difference:

282

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.8.2.1 Deducing template arguments from a function call

— If the originalP is a reference type, the deducedA (i.e., the type referred to by the reference) can be
more cv-qualified thanA.

— A can be another pointer or pointer to member type that can be converted to the deducedA via a qualifi-
cation conversion (4.4).

— If P is a class, andP has the formtemplate-id, thenA can be a derived class of the deducedA. Like-
wise, if P is a pointer to a class of the formtemplate-id, A can be a pointer to a derived class pointed to
by the deducedA.

These alternatives are considered only if type deduction would otherwise fail. If they yield more than one
possible deducedA, the type deduction fails. [Note: if a template-parameteris not used in any of the func-
tion parameters of a function template, or is used only in a non-deduced context, its corresponding
template-argumentcannot be deduced from a function call and thetemplate-argumentmust be explicitly
specified.]

[temp.deduct.funcaddr] 14.8.2.2 Deducing template arguments taking the address of a function
template

1 Template arguments can be deduced from the type specified when taking the address of an overloaded
function (13.4). The function template’s function type and the specified type are used as the types ofP and
A, and the deduction is done as described in 14.8.2.4.

[temp.deduct.conv] 14.8.2.3 Deducing conversion function template arguments

1 Template argument deduction is done by comparing the return type of the template conversion function
(call it P) with the type that is required as the result of the conversion (call itA) as described in 14.8.2.4.

2 If A is not a reference type:

— If P is an array type, the pointer type produced by the array-to-pointer standard conversion (4.2) is used
in place ofP for type deduction; otherwise,

— If P is a function type, the pointer type produced by the function-to-pointer standard conversion (4.3) is
used in place ofP for type deduction; otherwise,

— If P is a cv-qualified type, the top level cv-qualifiers ofP’s type are ignored for type deduction.

If A is a cv-qualified type, the top level cv-qualifiers ofA’s type are ignored for type deduction. IfA is a
reference type, the type referred to byA is used for type deduction.

3 In general, the deduction process attempts to find template argument values that will make the deducedA
identical toA. However, there are two cases that allow a difference:

— If the original A is a reference type,A can be more cv-qualified than the deducedA (i.e., the type
referred to by the reference)

— The deducedA can be another pointer or pointer to member type that can be converted toA via a quali-
fication conversion.

These alternatives are considered only if type deduction would otherwise fail. If they yield more than one
possible deducedA, the type deduction fails.

[temp.deduct.type] 14.8.2.4 Deducing template arguments from a type

1 Template arguments can be deduced in several different contexts, but in each case a type that is specified in
terms of template parameters (call itP) is compared with an actual type (call itA), and an attempt is made
to find template argument values (a type for a type parameter, a value for a non-type parameter, or a tem-
plate for a template parameter) that will makeP, after substitution of the deduced values (call it the deduced
A), compatible withA.

283

ISO/IEC 14882:1998(E) © ISO/IEC

14.8.2.4 Deducing template arguments from a type 14 Templates

2 In some cases, the deduction is done using a single set of typesP andA, in other cases, there will be a set of
corresponding typesP andA. Type deduction is done independently for eachP/A pair, and the deduced
template argument values are then combined. If type deduction cannot be done for anyP/A pair, or if for
any pair the deduction leads to more than one possible set of deduced values, or if different pairs yield dif-
ferent deduced values, or if any template argument remains neither deduced nor explicitly specified, tem-
plate argument deduction fails.

3 A given typeP can be composed from a number of other types, templates, and non-type values:

— A function type includes the types of each of the function parameters and the return type.

— A pointer to member type includes the type of the class object pointed to and the type of the member
pointed to.

— A type that is a specialization of a class template (e.g.,A<int>) includes the types, templates, and
non-type values referenced by the template argument list of the specialization.

— An array type includes the array element type and the value of the array bound.

In most cases, the types, templates, and non-type values that are used to composeP participate in template
argument deduction. That is, they may be used to determine the value of a template argument, and the
value so determined must be consistent with the values determined elsewhere. In certain contexts, how-
ever, the value does not participate in type deduction, but instead uses the values of template arguments that
were either deduced elsewhere or explicitly specified. If a template parameter is used only in nondeduced
contexts and is not explicitly specified, template argument deduction fails.

4 The nondeduced contexts are:

— Thenested-name-specifierof a type that was specified using aqualified-id.

— A type that is atemplate-idin which one or more of thetemplate-arguments is an expression that refer-
ences atemplate-parameter.

When a type name is specified in a way that includes a nondeduced context, all of the types that comprise
that type name are also nondeduced. However, a compound type can include both deduced and nonde-
duced types. [Example:If a type is specified asA<T>::B<T2> , bothT andT2 are nondeduced. Like-
wise, if a type is specified asA<I+J>::X<T> , I , J , andT are nondeduced. If a type is specified asvoid
f(A<T>::B, A<T>) , theT in A<T>::B is nondeduced but theT in A<T> is deduced.]

5 [Example:Here is an example in which different parameter/argument pairs produce inconsistent template
argument deductions:

template<class T> void f(T x, T y) { /* ... */ }
struct A { /* ... */ };
struct B : A { /* ... */ };
int g(A a, B b)
{

f(a,b); // error: T could beA or B
f(b,a); // error: T could beA or B
f(a,a); // OK: T is A
f(b,b); // OK: T is B

}

6 Here is an example where two template arguments are deduced from a single function parameter/argument
pair. This can lead to conflicts that cause type deduction to fail:

284

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.8.2.4 Deducing template arguments from a type

template <class T, class U> void f(T (*)(T, U, U));

int g1(int, float, float);
char g2(int, float, float);
int g3(int, char, float);

void r()
{

f(g1); // OK: T is int andU is float
f(g2); // error: T could bechar or int
f(g3); // error: Ucould bechar or float

}

7 Here is an example where a qualification conversion applies between the argument type on the function call
and the deduced template argument type:

template<class T> void f(const T*) {}
int *p;
void s()
{

f(p); // f(const int *)
}

8 Here is an example where the template argument is used to instantiate a derived class type of the corre-
sponding function parameter type:

template <class T> struct B { };
template <class T> struct D : public B<T> {};
struct D2 : public B<int> {};
template <class T> void f(B<T>&){}
void t()
{

D<int> d;
D2 d2;
f(d); // calls f(B<int>&)
f(d2); // calls f(B<int>&)

}

—end example]

9 A template type argumentT, a template template argumentTT or a template non-type argumenti can be
deduced ifP andA have one of the following forms:

285

ISO/IEC 14882:1998(E) © ISO/IEC

14.8.2.4 Deducing template arguments from a type 14 Templates

T
cv-list T
T*
T&
T[integer-constant]
template-name<T> (where template-namerefers to a class template)
type(*)(T)
T(*)()
T(*)(T)
T type::*
type T::*
T T::*
T (type::*)()
type (T::*)()
type (type::*)(T)
type (T::*)(T)
T (type::*)(T)
T (T::*)()
T (T::*)(T)
type[i]
template-name<i> (where template-namerefers to a class template)
TT<T>
TT<i>
TT<>

where(T) represents argument lists where at least one argument type contains aT, and () represents
argument lists where no parameter contains aT. Similarly, <T> represents template argument lists where
at least one argument contains aT, <i> represents template argument lists where at least one argument
contains ani and<> represents template argument lists where no argument contains aT or ani .

10 These forms can be used in the same way asT is for further composition of types. [Example:

X<int> (*)(char[6])

is of the form

template-name<T> (*)(type[i])

which is a variant of

type (*)(T)

where type isX<int> andT is char[6] .]

11 Template arguments cannot be deduced from function arguments involving constructs other than the ones
specified above.

12 A template type argument cannot be deduced from the type of a non-typetemplate-argument. [Example:

template<class T, T i> void f(double a[10][i]);
int v[10][20];
f(v); // error: argument for template-parameterT cannot be deduced

—end example]

13 [Note:except for reference and pointer types, a major array bound is not part of a function parameter type
and cannot be deduced from an argument:

template<int i> void f1(int a[10][i]);
template<int i> void f2(int a[i][20]);
template<int i> void f3(int (&a)[i][20]);

286

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.8.2.4 Deducing template arguments from a type

void g()
{

int v[10][20];
f1(v); // OK: i deduced to be20
f1<20>(v); // OK
f2(v); // error: cannot deduce template-argumenti
f2<10>(v); // OK
f3(v); // OK: i deduced to be10

}

14 If, in the declaration of a function template with a non-typetemplate-parameter, the non-typetemplate-
parameteris used in an expression in the function parameter-list, the correspondingtemplate-argument
must always be explicitly specified or deduced elsewhere because type deduction would otherwise always
fail for such atemplate-argument.

template<int i> class A { /* ... */ };
template<short s> void g(A<s+1>);
void k() {

A<1> a;
g(a); // error: deduction fails for expressions+1
g<0>(a); // OK

}

—end note] [Note: template parameters do not participate in template argument deduction if they are used
only in nondeduced contexts. For example,

template<int i, typename T>
T deduce(typename A<T>::X x, // T is not deduced here

T t, // but T is deduced here
typename B<i>::Y y); // i is not deduced here

A<int> a;
B<77> b;

int x = deduce<77>(a.xm, 62, y.ym);
// T is deduced to beint , a.xm must be convertible to
// A<int>::X
// i is explicitly specified to be77 , y.ym must be convertible
// to B<77>::Y

—end note]

15 If, in the declaration of a function template with a non-typetemplate-parameter,the non-typetemplate-
parameter is used in an expression in the function parameter-list and, if the correspondingtemplate-
argumentis deduced, thetemplate-argumenttype shall match the type of thetemplate-parameterexactly,
except that atemplate-argumentdeduced from an array bound may be of any integral type.132) [Example:

template<int i> class A { /* ... */ };
template<short s> void f(A<s>);
void k1() {

A<1> a;
f(a); // error: deduction fails for conversion fromint to short
f<1>(a); // OK

}

132)Although thetemplate-argumentcorresponding to atemplate-parameterof typebool may be deduced from an array bound, the
resulting value will always betrue because the array bound will be non-zero.

287

ISO/IEC 14882:1998(E) © ISO/IEC

14.8.2.4 Deducing template arguments from a type 14 Templates

template<const short cs> class B { };
template<short s> void h(B<s>);
void k2() {

B<1> b;
g(b); // OK: cv-qualifiers are ignored on template parameter types

}

—end example]

16 A template-argumentcan be deduced from a pointer to function or pointer to member function argument if
the set of overloaded functions does not contain function templates and at most one of a set of overloaded
functions provides a unique match. [Example:

template<class T> void f(void(*)(T,int));
template<class T> void foo(T,int);
void g(int,int);
void g(char,int);

void h(int,int,int);
void h(char,int);
int m()
{

f(&g); // error: ambiguous
f(&h); // OK: voidh(char,int) is a unique match
f(&foo); // error: type deduction fails becausefoo is a template

}

—end example]

17 A templatetype-parametercannot be deduced from the type of a function default argument. [Example:

template <class T> void f(T = 5, T = 7);
void g()
{

f(1); // OK: call f<int>(1,7)
f(); // error: cannot deduceT
f<int>(); // OK: call f<int>(5,7)

}

—end example]

18 The template-argumentcorresponding to a templatetemplate-parameteris deduced from the type of the
template-argumentof a class template specialization used in the argument list of a function call. [Example:

template <template X<class T> > struct A { };
template <template X<class T> > void f(A<X>) { }
template<class T> struct B { };
A ab;
f(ab); // calls f(A)

—end example] [Note:a defaulttemplate-argumentcannot be specified in a function template declaration
or definition; therefore defaulttemplate-arguments cannot be used to influence template argument deduc-
tion.]

[temp.over] 14.8.3 Overload resolution

1 A function template can be overloaded either by (non-template) functions of its name or by (other) function
templates of the same name. When a call to that name is written (explicitly, or implicitly using the operator
notation), template argument deduction (14.8.2) and checking of any explicit template arguments (14.3) are
performed for each function template to find the template argument values (if any) that can be used with
that function template to instantiate a function template specialization that can be invoked with the call
arguments. For each function template, if the argument deduction and checking succeeds, thetemplate-
arguments (deduced and/or explicit) are used to instantiate a single function template specialization which

288

© ISO/IEC ISO/IEC 14882:1998(E)

14 Templates 14.8.3 Overload resolution

is added to the candidate functions set to be used in overload resolution. If, for a given function template,
argument deduction fails, no such function is added to the set of candidate functions for that template. The
complete set of candidate functions includes all the function templates instantiated in this way and all of the
non-template overloaded functions of the same name. The function template specializations are treated like
any other functions in the remainder of overload resolution, except as explicitly noted in 13.3.3.133)

2 [Example:

template<class T> T max(T a, T b) { return a>b?a:b; }

void f(int a, int b, char c, char d)
{

int m1 = max(a,b); // max(int a, int b)
char m2 = max(c,d); // max(char a, char b)
int m3 = max(a,c); // error: cannot generatemax(int,char)

}

3 Adding the non-template function

int max(int,int);

to the example above would resolve the third call, by providing a function that could be called for
max(a,c) after using the standard conversion ofchar to int for c .

4 Here is an example involving conversions on a function argument involved intemplate-argumentdeduc-
tion:

template<class T> struct B { /* ... */ };
template<class T> struct D : public B<T> { /* ... */ };
template<class T> void f(B<T>&);

void g(B<int>& bi, D<int>& di)
{

f(bi); // f(bi)
f(di); // f((B<int>&)di)

}

5 Here is an example involving conversions on a function argument not involved intemplate-parameter
deduction:

template<class T> void f(T*,int); // #1
template<class T> void f(T,char); // #2

void h(int* pi, int i, char c)
{

f(pi,i); // #1: f<int>(pi,i)
f(pi,c); // #2: f<int*>(pi,c)

f(i,c); // #2: f<int>(i,c);
f(i,i); // #2: f<int>(i,char(i))

}

—end example]

133) The parameters of function template specializations contain no template parameter types. The set of conversions allowed on
deduced arguments is limited, because the argument deduction process produces function templates with parameters that either match
the call arguments exactly or differ only in ways that can be bridged by the allowed limited conversions. Non-deduced arguments
allow the full range of conversions. Note also that 13.3.3 specifies that a non-template function will be given preference over a tem-
plate specialization if the two functions are otherwise equally good candidates for an overload match.

289

ISO/IEC 14882:1998(E) © ISO/IEC

14.8.3 Overload resolution 14 Templates

6 Only the signature of a function template specialization is needed to enter the specialization in a set of can-
didate functions. Therefore only the function template declaration is needed to resolve a call for which a
template specialization is a candidate. [Example:

template<class T> void f(T); // declaration

void g()
{

f("Annemarie"); // call of f<const char*>
}

The call off is well-formed even if the templatef is only declared and not defined at the point of the call.
The program will be ill-formed unless a specialization forf<const char*> , either implicitly or explic-
itly generated, is present in some translation unit.]

290

© ISO/IEC ISO/IEC 14882:1998(E)

15 Exception handling [except]

1 Exception handling provides a way of transferring control and information from a point in the execution of
a program to an exception handler associated with a point previously passed by the execution. A handler
will be invoked only by athrow-expressioninvoked in code executed in the handler’s try block or in func-
tions called from the handler’s try block .

try-block:
try compound-statement handler-seq

function-try-block:
try ctor-initializeropt function-body handler-seq

handler-seq:
handler handler-seqopt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq
...

throw-expression:
throw assignment-expressionopt

A try-block is a statement(clause 6). Athrow-expressionis of typevoid . Code that executes athrow-
expressionis said to“throw an exception;” code that subsequently gets control is called a“handler.” [Note:
within this clause“try block” is taken to mean bothtry-blockandfunction-try-block.]

2 A goto , break , return , or continue statement can be used to transfer control out of a try block or
handler, but not into one. When this happens, each variable declared in the try block will be destroyed in
the context that directly contains its declaration. [Example:

lab: try {
T1 t1;
try {

T2 t2;
if (condition)

goto lab;
} catch(...) { /* handler 2 */ }

} catch(...) { /* handler 1 */ }

Here, executinggoto lab; will destroy first t2 , then t1 , assuming thecondition does not declare a
variable. Any exception raised while destroyingt2 will result in executinghandler 2; any exception raised
while destroyingt1 will result in executinghandler 1.]

3 A function-try-blockassociates ahandler-seqwith thector-initializer, if present, and thefunction-body. An
exception thrown during the execution of the initializer expressions in thector-initializer or during the exe-
cution of thefunction-bodytransfers control to a handler in afunction-try-blockin the same way as an
exception thrown during the execution of atry-blocktransfers control to other handlers. [Example:

291

ISO/IEC 14882:1998(E) © ISO/IEC

15 Exception handling 15 Exception handling

int f(int);
class C {

int i;
double d;

public:
C(int, double);

};

C::C(int ii, double id)
try

: i(f(ii)), d(id)
{

// constructor function body
}
catch (...)
{

// handles exceptions thrown from the ctor-initializer
// and from the constructor function body

}

—end example]

[except.throw] 15.1 Throwing an exception

1 Throwing an exception transfers control to a handler. An object is passed and the type of that object deter-
mines which handlers can catch it. [Example:

throw "Help!";

can be caught by ahandlerof const char* type:

try {
// ...

}
catch(const char* p) {

// handle character string exceptions here
}

and

class Overflow {
// ...

public:
Overflow(char,double,double);

};

void f(double x)
{

// ...
throw Overflow(’+’,x,3.45e107);

}

can be caught by a handler for exceptions of typeOverflow

try {
// ...
f(1.2);
// ...

}
catch(Overflow& oo) {

// handle exceptions of typeOverflow here
}

—end example]

292

© ISO/IEC ISO/IEC 14882:1998(E)

15 Exception handling 15.1 Throwing an exception

2 When an exception is thrown, control is transferred to the nearest handler with a matching type (15.3);
“nearest” means the handler for which thecompound-statement, ctor-initializer, or function-bodyfollowing
thetry keyword was most recently entered by the thread of control and not yet exited.

3 A throw-expressioninitializes a temporary object, the type of which is determined by removing any top-
level cv-qualifiersfrom the static type of the operand ofthrow and adjusting the type from“array ofT” or
“function returningT” to “pointer toT” or “pointer to function returningT”, respectively. [Note: the tem-
porary object created for athrow-expressionthat is a string literal is never of typechar* or wchar_t* ;
that is, the special conversions for string literals from the types“array of const char ” and “array of
const wchar_t ” to the types“pointer tochar ” and“pointer towchar_t ”, respectively (4.2), are never
applied to athrow-expression.] The temporary is used to initialize the variable named in the matching
handler(15.3). The type of thethrow-expressionshall not be an incomplete type, or a pointer or reference
to an incomplete type, other thanvoid* , const void* , volatile void* , or const volatile
void* . Except for these restrictions and the restrictions on type matching mentioned in 15.3, the operand
of throw is treated exactly as a function argument in a call (5.2.2) or the operand of a return statement.

4 The memory for the temporary copy of the exception being thrown is allocated in an unspecified way,
except as noted in 3.7.3.1. The temporary persists as long as there is a handler being executed for that
exception. In particular, if a handler exits by executing athrow; statement, that passes control to another
handler for the same exception, so the temporary remains. When the last handler being executed for the
exception exits by any means other thanthrow; the temporary object is destroyed and the implementation
may deallocate the memory for the temporary object; any such deallocation is done in an unspecified way.
The destruction occurs immediately after the destruction of the object declared in theexception-declaration
in the handler.

5 If the use of the temporary object can be eliminated without changing the meaning of the program except
for the execution of constructors and destructors associated with the use of the temporary object (12.2), then
the exception in the handler can be initialized directly with the argument of the throw expression. When
the thrown object is a class object, and the copy constructor used to initialize the temporary copy is not
accessible, the program is ill-formed (even when the temporary object could otherwise be eliminated).
Similarly, if the destructor for that object is not accessible, the program is ill-formed (even when the tempo-
rary object could otherwise be eliminated).

6 A throw-expressionwith no operand rethrows the exception being handled. The exception is reactivated
with the existing temporary; no new temporary exception object is created. The exception is no longer con-
sidered to be caught; therefore, the value ofuncaught_exception() will again betrue . [Example:
code that must be executed because of an exception yet cannot completely handle the exception can be writ-
ten like this:

try {
// ...

}
catch (...) { // catch all exceptions

// respond (partially) to exception

throw; // pass the exception to some
// other handler

}

—end example]

7 The exception thrown is the one most recently caught and not finished. An exception is considered caught
when initialization is complete for the formal parameter of the corresponding catch clause, or when
terminate() or unexpected() is entered due to a throw. An exception is considered finished when
the corresponding catch clause exits or whenunexpected() exits after being entered due to athrow.

8 If no exception is presently being handled, executing athrow-expressionwith no operand calls
terminate() (15.5.1).

293

ISO/IEC 14882:1998(E) © ISO/IEC

15.2 Constructors and destructors 15 Exception handling

[except.ctor] 15.2 Constructors and destructors

1 As control passes from athrow-expressionto a handler, destructors are invoked for all automatic objects
constructed since the try block was entered. The automatic objects are destroyed in the reverse order of the
completion of their construction.

2 An object that is partially constructed or partially destroyed will have destructors executed for all of its
fully constructed subobjects, that is, for subobjects for which the constructor has completed execution and
the destructor has not yet begun execution. Should a constructor for an element of an automatic array
throw an exception, only the constructed elements of that array will be destroyed. If the object or array was
allocated in anew-expressionand thenew-expressiondoes not contain anew-placement, the deallocation
function (3.7.3.2, 12.5) is called to free the storage occupied by the object; the deallocation function is cho-
sen as specified in 5.3.4. If the object or array was allocated in anew-expressionand thenew-expression
contains anew-placement, the storage occupied by the object is deallocated only if an appropriate place-
ment operator delete is found, as specified in 5.3.4.

3 The process of calling destructors for automatic objects constructed on the path from a try block to a
throw-expressionis called“stack unwinding.” [Note: If a destructor called during stack unwinding exits
with an exception,terminate is called (15.5.1). So destructors should generally catch exceptions and
not let them propagate out of the destructor.—end note]

[except.handle] 15.3 Handling an exception

1 Theexception-declarationin ahandlerdescribes the type(s) of exceptions that can cause thathandlerto be
entered. Theexception-declarationshall not denote an incomplete type. Theexception-declarationshall
not denote a pointer or reference to an incomplete type, other thanvoid* , const void* , volatile
void* , orconst volatile void* . Types shall not be defined in anexception-declaration.

2 A handler of type“array ofT” or “function returningT” is adjusted to be of type“pointer toT” or “pointer
to function returningT”, respectively.

3 A handleris a match for athrow-expressionwith an object of typeE if

— The handler is of type cv T or cv T& and E and T are the same type (ignoring the top-levelcv-
qualifiers), or

— thehandleris of typecvT or cvT& andT is an unambiguous public base class ofE, or

— thehandleris of typecv1T* cv2andE is a pointer type that can be converted to the type of thehandler
by either or both of

— a standard pointer conversion (4.10) not involving conversions to pointers to private or protected or
ambiguous classes

— a qualification conversion
[Note: a throw-expressionwhich is an integral constant expression of integer type that evaluates to zero
does not match a handler of pointer type; that is, the null pointer constant conversions (4.10, 4.11) do not
apply.]

4 [Example:

class Matherr { /* ... */ virtual vf(); };
class Overflow: public Matherr { /* ... */ };
class Underflow: public Matherr { /* ... */ };
class Zerodivide: public Matherr { /* ... */ };

void f()
{

try {
g();

}

294

© ISO/IEC ISO/IEC 14882:1998(E)

15 Exception handling 15.3 Handling an exception

catch (Overflow oo) {
// ...

}
catch (Matherr mm) {

// ...
}

}

Here, theOverflow handler will catch exceptions of typeOverflow and theMatherr handler will
catch exceptions of typeMatherr and of all types publicly derived fromMatherr including exceptions
of typeUnderflow andZerodivide .]

5 The handlers for a try block are tried in order of appearance. That makes it possible to write handlers that
can never be executed, for example by placing a handler for a derived class after a handler for a correspond-
ing base class.

6 A ... in a handler’sexception-declarationfunctions similarly to... in a function parameter declara-
tion; it specifies a match for any exception. If present, a... handler shall be the last handler for its try
block.

7 If no match is found among the handlers for a try block, the search for a matching handler continues in a
dynamically surrounding try block.

8 An exception is considered handled upon entry to a handler. [Note: the stack will have been unwound at
that point.]

9 If no matching handler is found in a program, the functionterminate() is called; whether or not the
stack is unwound before this call toterminate() is implementation-defined (15.5.1).

10 Referring to any non-static member or base class of an object in the handler for afunction-try-blockof a
constructor or destructor for that object results in undefined behavior.

11 The fully constructed base classes and members of an object shall be destroyed before entering the handler
of a function-try-blockof a constructor or destructor for that object.

12 The scope and lifetime of the parameters of a function or constructor extend into the handlers of a
function-try-block.

13 Exceptions thrown in destructors of objects with static storage duration or in constructors of namespace-
scope objects are not caught by afunction-try-blockonmain() .

14 If the handlers of afunction-try-blockcontain a jump into the body of a constructor or destructor, the pro-
gram is ill-formed.

15 If a return statement appears in a handler of thefunction-try-blockof a constructor, the program is ill-
formed.

16 The exception being handled is rethrown if control reaches the end of a handler of thefunction-try-blockof
a constructor or destructor. Otherwise, a function returns when control reaches the end of a handler for the
function-try-block(6.6.3). Flowing off the end of afunction-try-blockis equivalent to areturn with no
value; this results in undefined behavior in a value-returning function (6.6.3).

17 When theexception-declarationspecifies a class type, a copy constructor is used to initialize either the
object declared in theexception-declarationor, if theexception-declarationdoes not specify a name, a tem-
porary object of that type. The object shall not have an abstract class type. The object is destroyed when
the handler exits, after the destruction of any automatic objects initialized within the handler. The copy
constructor and destructor shall be accessible in the context of the handler. If the copy constructor and
destructor are implicitly declared (12.8), such a use in the handler causes these functions to be implicitly
defined; otherwise, the program shall provide a definition for these functions.

295

ISO/IEC 14882:1998(E) © ISO/IEC

15.3 Handling an exception 15 Exception handling

18 If the use of a temporary object can be eliminated without changing the meaning of the program except for
execution of constructors and destructors associated with the use of the temporary object, then the optional
name can be bound directly to the temporary object specified in athrow-expressioncausing the handler to
be executed. The copy constructor and destructor associated with the object shall be accessible even when
the temporary object is eliminated.

19 When the handler declares a non-constant object, any changes to that object will not affect the temporary
object that was initialized by execution of thethrow-expression. When the handler declares a reference to a
non-constant object, any changes to the referenced object are changes to the temporary object initialized
when thethrow-expressionwas executed and will have effect should that object be rethrown.

[except.spec] 15.4 Exception specifications

1 A function declaration lists exceptions that its function might directly or indirectly throw by using an
exception-specificationas a suffix of its declarator.

exception-specification:
throw (type-id-listopt)

type-id-list:
type-id
type-id-list , type-id

An exception-specificationshall appear only on a function declarator in a function, pointer, reference or
pointer to member declaration or definition. Anexception-specificationshall not appear in a typedef decla-
ration. [Example:

void f() throw(int); // OK
void (*fp)() throw (int); // OK
void g(void pfa() throw(int)); // OK
typedef int (*pf)() throw(int); // ill-formed

—end example] A type denoted in anexception-specificationshall not denote an incomplete type. A type
denoted in anexception-specificationshall not denote a pointer or reference to an incomplete type, other
thanvoid* , const void* , volatile void* , orconst volatile void* .

2 If any declaration of a function has anexception-specification, all declarations, including the definition and
an explicit specialization, of that function shall have anexception-specificationwith the same set oftype-
ids. If any declaration of a pointer to function, reference to function, or pointer to member function has an
exception-specification, all occurrences of that declaration shall have anexception-specificationwith the
same set oftype-ids. In an explicit instantiation directive anexception-specificationmay be specified, but
is not required. If anexception-specificationis specified in an explicit instantiation directive, it shall have
the same set oftype-ids as other declarations of that function. A diagnostic is required only if the sets of
type-ids are different within a single translation unit.

3 If a virtual function has anexception-specification, all declarations, including the definition, of any function
that overrides that virtual function in any derived class shall only allow exceptions that are allowed by the
exception-specificationof the base class virtual function. [Example:

struct B {
virtual void f() throw (int, double);
virtual void g();

};

struct D: B {
void f(); // ill-formed
void g() throw (int); // OK

};

The declaration ofD::f is ill-formed because it allows all exceptions, whereasB::f allows onlyint and
double .] Similarly, any function or pointer to function assigned to, or initializing, a pointer to function
shall only allow exceptions that are allowed by the pointer or function being assigned to or initialized.

296

© ISO/IEC ISO/IEC 14882:1998(E)

15 Exception handling 15.4 Exception specifications

[Example:

class A { /* ... */ };
void (*pf1)(); // no exception specification
void (*pf2)() throw(A);

void f()
{

pf1 = pf2; // OK: pf1 is less restrictive
pf2 = pf1; // error: pf2 is more restrictive

}

—end example]

4 In such an assignment or initialization,exception-specifications on return types and parameter types shall
match exactly. In other assignments or initializations,exception-specifications shall match exactly.

5 Types shall not be defined inexception-specifications.

6 An exception-specificationcan include the same type more than once and can include classes that are
related by inheritance, even though doing so is redundant. Anexception-specificationcan also include the
classstd::bad_exception (18.6.2.1).

7 If a classX is in thetype-id-listof theexception-specificationof a function, that function is said toallow
exception objects of classX or any class publicly and unambiguously derived fromX. Similarly, if a
pointer typeY* is in thetype-id-listof theexception-specificationof a function, the function allows excep-
tions of typeY* or that are pointers to any type publicly and unambiguously derived fromY. Otherwise, a
function only allows exceptions that have the same type as the types specified in thetype-id-list of its
exception-specification.

8 Whenever an exception is thrown and the search for a handler (15.3) encounters the outermost block of a
function with anexception-specification, the functionunexpected() is called (15.5.2) if theexception-
specificationdoes not allow the exception. [Example:

class X { };
class Y { };
class Z: public X { };
class W { };

void f() throw (X, Y)
{

int n = 0;
if (n) throw X(); // OK
if (n) throw Z(); // also OK
throw W(); // will call unexpected()

}

—end example]

9 The functionunexpected() may throw an exception that will satisfy theexception-specificationfor
which it was invoked, and in this case the search for another handler will continue at the call of the function
with thisexception-specification(see 15.5.2), or it may callterminate() .

10 An implementation shall not reject an expression merely because when executed it throws or might throw
an exception that the containing function does not allow. [Example:

extern void f() throw(X, Y);

void g() throw(X)
{

f(); // OK
}

the call tof is well-formed even though when called,f might throw exceptionY thatg does not allow.]

297

ISO/IEC 14882:1998(E) © ISO/IEC

15.4 Exception specifications 15 Exception handling

11 A function with noexception-specificationallows all exceptions. A function with an emptyexception-
specification, throw() , does not allow any exceptions.

12 An exception-specificationis not considered part of a function’s type.

13 An implicitly declared special member function (clause 12) shall have an exception-specification. Iff is an
implicitly declared default constructor, copy constructor, destructor, or copy assignment operator, its
implicit exception-specification specifies thetype-id T if and only if T is allowed by the exception-
specification of a function directly invoked byf ’s implicitly definition; f shall allow all exceptions if any
function it directly invokes allows all exceptions, andf shall allow no exceptions if every function it
directly invokes allows no exceptions. [Example:

struct A {
A();
A(const A&) throw();
~A() throw(X);

};
struct B {

B() throw();
B(const B&) throw();
~B() throw(Y);

};
struct D : public A, public B {

// Implicit declaration ofD::D();
// Implicit declaration ofD::D(const D&) throw();
// Implicit declaration ofD::~D() throw (X,Y);

};

Furthermore, ifA::~A() or B::~B() were virtual,D::~D() would not be as restrictive as that of
A::~A , and the program would be ill-formed since a function that overrides a virtual function from a base
class shall have an exception-specification at least as restrictive as that in the base class.]

[except.special] 15.5 Special functions

1 The exception handling mechanism relies on two functions,terminate() and unexpected() , for
coping with errors related to the exception handling mechanism itself (18.6).

[except.terminate] 15.5.1 Theterminate() function

1 In the following situations exception handling must be abandoned for less subtle error handling techniques:

— when the exception handling mechanism, after completing evaluation of the expression to be thrown but
before the exception is caught (15.1), calls a user function that exits via an uncaught exception,134)

— when the exception handling mechanism cannot find a handler for a thrown exception (15.3), or

— when the destruction of an object during stack unwinding (15.2) exits using an exception, or

— when construction or destruction of a non-local object with static storage duration exits using an excep-
tion (3.6.2), or

— when execution of a function registered withatexit exits using an exception (18.3), or

— when athrow-expressionwith no operand attempts to rethrow an exception and no exception is being
handled (15.1), or

— whenunexpected throws an exception which is not allowed by the previously violatedexception-
specification, andstd::bad_exception is not included in thatexception-specification(15.5.2), or

— when the implementation’s defaultunexpected_handler is called (18.6.2.2)

134)For example, if the object being thrown is of a class with a copy constructor,terminate() will be called if that copy construc-
tor exits with an exception during athrow .

298

© ISO/IEC ISO/IEC 14882:1998(E)

15 Exception handling 15.5.1 Theterminate() function

2 In such cases,

void terminate();

is called (18.6.3). In the situation where no matching handler is found, it is implementation-defined
whether or not the stack is unwound beforeterminate() is called. In all other situations, the stack shall
not be unwound beforeterminate() is called. An implementation is not permitted to finish stack
unwinding prematurely based on a determination that the unwind process will eventually cause a call to
terminate() .

[except.unexpected] 15.5.2 Theunexpected() function

1 If a function with anexception-specificationthrows an exception that is not listed in theexception-
specification, the function

void unexpected();

is called (18.6.2) immediately after completing the stack unwinding for the former function

2 Theunexpected() function shall not return, but it can throw (or re-throw) an exception. If it throws a
new exception which is allowed by the exception specification which previously was violated, then the
search for another handler will continue at the call of the function whose exception specification was vio-
lated. If it throws or rethrows an exception that theexception-specificationdoes not allow then the follow-
ing happens: If theexception-specificationdoes not include the classstd::bad_exception (18.6.2.1)
then the function terminate() is called, otherwise the thrown exception is replaced by an
implementation-defined object of the typestd::bad_exception and the search for another handler
will continue at the call of the function whoseexception-specificationwas violated.

3 Thus, an exception-specificationguarantees that only the listed exceptions will be thrown. If the
exception-specificationincludes the typestd::bad_exception then any exception not on the list may
be replaced bystd::bad_exception within the functionunexpected() .

[except.uncaught] 15.5.3 Theuncaught_exception() function

1 The function

bool uncaught_exception()

returnstrue after completing evaluation of the object to be thrown until completing the initialization of
the exception-declarationin the matching handler (18.6.4). This includes stack unwinding. If the excep-
tion is rethrown (15.1),uncaught_exception() returnstrue from the point of rethrow until the
rethrown exception is caught again.

[except.access] 15.6 Exceptions and access

1 If the exception-declarationin a catch clause has class type, and the function in which the catch clause
occurs does not have access to the destructor of that class, the program is ill-formed.

2 An object can be thrown if it can be copied and destroyed in the context of the function in which the
throw-expressionoccurs.

299

ISO/IEC 14882:1998(E) © ISO/IEC

300

(Blank page)

© ISO/IEC ISO/IEC 14882:1998(E)

16 Preprocessing directives 16 Preprocessing directives

16 Preprocessing directives [cpp]

1 A preprocessing directive consists of a sequence of preprocessing tokens. The first token in the sequence is
a # preprocessing token that is either the first character in the source file (optionally after white space con-
taining no new-line characters) or that follows white space containing at least one new-line character. The
last token in the sequence is the first new-line character that follows the first token in the sequence.135)

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

135)Thus, preprocessing directives are commonly called“lines.” These“lines” have no other syntactic significance, as all white space
is equivalent except in certain situations during preprocessing (see the# character string literal creation operator in 16.3.2, for exam-
ple).

301

ISO/IEC 14882:1998(E) © ISO/IEC

16 Preprocessing directives 16 Preprocessing directives

lparen:
the left-parenthesis character without preceding white-space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

2 The only white-space characters that shall appear between preprocessing tokens within a preprocessing
directive (from just after the introducing# preprocessing token through just before the terminating new-line
character) are space and horizontal-tab (including spaces that have replaced comments or possibly other
white-space characters in translation phase 3).

3 The implementation can process and skip sections of source files conditionally, include other source files,
and replace macros. These capabilities are calledpreprocessing, because conceptually they occur before
translation of the resulting translation unit.

4 The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless other-
wise stated.

[cpp.cond] 16.1 Conditional inclusion

1 The expression that controls conditional inclusion shall be an integral constant expression except that: it
shall not contain a cast; identifiers (including those lexically identical to keywords) are interpreted as
described below;136)and it may contain unary operator expressions of the form

defined identifier
or

defined (identifier)

which evaluate to1 if the identifier is currently defined as a macro name (that is, if it is predefined or if it
has been the subject of a#define preprocessing directive without an intervening#undef directive with
the same subject identifier), zero if it is not.

2 Each preprocessing token that remains after all macro replacements have occurred shall be in the lexical
form of a token (2.6).

3 Preprocessing directives of the forms

if constant-expression new-line groupopt

elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

4 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling
constant expression are replaced (except for those macro names modified by thedefined unary operator),
just as in normal text. If the tokendefined is generated as a result of this replacement process or use of
the defined unary operator does not match one of the two specified forms prior to macro replacement,
the behavior is undefined. After all replacements due to macro expansion and thedefined unary operator
have been performed, all remaining identifiers and keywords137), except for true and false , are
replaced with the pp-number0, and then each preprocessing token is converted into a token. The resulting

136) Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not macro
names— there simply are no keywords, enumeration constants, and so on.
137) An alternative token (2.5) is not an identifier, even when its spelling consists entirely of letters and underscores. Therefore it is
not subject to this replacement.

302

© ISO/IEC ISO/IEC 14882:1998(E)

16 Preprocessing directives 16.1 Conditional inclusion

tokens comprise the controlling constant expression which is evaluated according to the rules of 5.19 using
arithmetic that has at least the ranges specified in 18.2, except thatint andunsigned int act as if they
have the same representation as, respectively,long and unsigned long . This includes interpreting
character literals, which may involve converting escape sequences into execution character set members.
Whether the numeric value for these character literals matches the value obtained when an identical charac-
ter literal occurs in an expression (other than within a#if or #elif directive) is implementation-
defined.138) Also, whether a single-character character literal may have a negative value is
implementation-defined. Each subexpression with typebool is subjected to integral promotion before
processing continues.

5 Preprocessing directives of the forms

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent
to #if defined identifier and#if !defined identifier respectively.

6 Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls is
skipped: directives are processed only through the name that determines the directive in order to keep track
of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as are the
other preprocessing tokens in the group. Only the first group whose control condition evaluates to true
(nonzero) is processed. If none of the conditions evaluates to true, and there is a#else directive, the
group controlled by the#else is processed; lacking a#else directive, all the groups until the#endif
are skipped.139)

[cpp.include] 16.2 Source file inclusion

1 A #include directive shall identify a header or source file that can be processed by the implementation.

2 A preprocessing directive of the form

include < h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by the specified
sequence between the< and> delimiters, and causes the replacement of that directive by the entire contents
of the header. How the places are specified or the header identified is implementation-defined.

3 A preprocessing directive of the form

include " q-char-sequence" new-line

causes the replacement of that directive by the entire contents of the source file identified by the specified
sequence between the" delimiters. The named source file is searched for in an implementation-defined
manner. If this search is not supported, or if the search fails, the directive is reprocessed as if it read

include < h-char-sequence> new-line

with the identical contained sequence (including> characters, if any) from the original directive.

4 A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens afterinclude

138)Thus, the constant expression in the following#if directive andif statement is not guaranteed to evaluate to the same value in
these two contexts.

#if ’z’ - ’a’ = = 25

if (’z’ - ’a’ = = 25)

139)As indicated by the syntax, a preprocessing token shall not follow a#else or #endif directive before the terminating new-line
character. However, comments may appear anywhere in a source file, including within a preprocessing directive.

303

ISO/IEC 14882:1998(E) © ISO/IEC

16.2 Source file inclusion 16 Preprocessing directives

in the directive are processed just as in normal text (each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). If the directive resulting after all replacements
does not match one of the two previous forms, the behavior is undefined.140) The method by which a
sequence of preprocessing tokens between a< and a> preprocessing token pair or a pair of" characters is
combined into a single header name preprocessing token is implementation-defined.

5 The mapping between the delimited sequence and the external source file name is implementation-defined.
The implementation provides unique mappings for sequences consisting of one or morenondigits (2.10)
followed by a period (.) and a singlenondigit. The implementation may ignore the distinctions of alpha-
betical case.

6 A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit.

7 [Example:The most common uses of#include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

—end example]

8 [Example:Here is a macro-replaced#include directive:

#if VERSION = = 1
#define INCFILE "vers1.h"

#elif VERSION = = 2
#define INCFILE "vers2.h" /* and so on*/

#else
#define INCFILE "versN.h"

#endif
#include INCFILE

—end example]

[cpp.replace] 16.3 Macro replacement

1 Two replacement lists are identical if and only if the preprocessing tokens in both have the same number,
ordering, spelling, and white-space separation, where all white-space separations are considered identical.

2 An identifier currently defined as a macro without use of lparen (anobject-likemacro) may be redefined by
another#define preprocessing directive provided that the second definition is an object-like macro defi-
nition and the two replacement lists are identical, otherwise the program is ill-formed.

3 An identifier currently defined as a macro using lparen (afunction-likemacro) may be redefined by another
#define preprocessing directive provided that the second definition is a function-like macro definition
that has the same number and spelling of parameters, and the two replacement lists are identical, otherwise
the program is ill-formed.

4 The number of arguments in an invocation of a function-like macro shall agree with the number of parame-
ters in the macro definition, and there shall exist a) preprocessing token that terminates the invocation.

5 A parameter identifier in a function-like macro shall be uniquely declared within its scope.

6 The identifier immediately following thedefine is called themacro name. There is one name space for
macro names. Any white-space characters preceding or following the replacement list of preprocessing
tokens are not considered part of the replacement list for either form of macro.

7 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocessing
directive could begin, the identifier is not subject to macro replacement.

140)Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 2.1); thus, an expan-
sion that results in two string literals is an invalid directive.

304

© ISO/IEC ISO/IEC 14882:1998(E)

16 Preprocessing directives 16.3 Macro replacement

8 A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name141) to be replaced by
the replacement list of preprocessing tokens that constitute the remainder of the directive.142) The replace-
ment list is then rescanned for more macro names as specified below.

9 A preprocessing directive of the form

define identifier lparen identifier-listopt) replacement-list new-line

defines a function-like macro with parameters, similar syntactically to a function call. The parameters are
specified by the optional list of identifiers, whose scope extends from their declaration in the identifier list
until the new-line character that terminates the#define preprocessing directive. Each subsequent
instance of the function-like macro name followed by a(as the next preprocessing token introduces the
sequence of preprocessing tokens that is replaced by the replacement list in the definition (an invocation of
the macro). The replaced sequence of preprocessing tokens is terminated by the matching) preprocessing
token, skipping intervening matched pairs of left and right parenthesis preprocessing tokens. Within the
sequence of preprocessing tokens making up an invocation of a function-like macro, new-line is considered
a normal white-space character.

10 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of
arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If (before argument substitution) any argument consists of no preprocessing tokens, the behav-
ior is undefined. If there are sequences of preprocessing tokens within the list of arguments that would oth-
erwise act as preprocessing directives, the behavior is undefined.

[cpp.subst] 16.3.1 Argument substitution

1 After the arguments for the invocation of a function-like macro have been identified, argument substitution
takes place. A parameter in the replacement list, unless preceded by a# or ## preprocessing token or fol-
lowed by a## preprocessing token (see below), is replaced by the corresponding argument after all macros
contained therein have been expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the translation unit; no other preprocessing tokens
are available.

[cpp.stringize] 16.3.2 The# operator

1 Each# preprocessing token in the replacement list for a function-like macro shall be followed by a parame-
ter as the next preprocessing token in the replacement list.

2 If, in the replacement list, a parameter is immediately preceded by a# preprocessing token, both are
replaced by a single character string literal preprocessing token that contains the spelling of the preprocess-
ing token sequence for the corresponding argument. Each occurrence of white space between the
argument’s preprocessing tokens becomes a single space character in the character string literal. White
space before the first preprocessing token and after the last preprocessing token comprising the argument is
deleted. Otherwise, the original spelling of each preprocessing token in the argument is retained in the
character string literal, except for special handling for producing the spelling of string literals and character
literals: a\ character is inserted before each" and\ character of a character literal or string literal (includ-
ing the delimiting " characters). If the replacement that results is not a valid character string literal, the
behavior is undefined. The order of evaluation of# and## operators is unspecified.

141)Since, by macro-replacement time, all character literals and string literals are preprocessing tokens, not sequences possibly con-
taining identifier-like subsequences (see 2.1.1.2, translation phases), they are never scanned for macro names or parameters.
142) An alternative token (2.5) is not an identifier, even when its spelling consists entirely of letters and underscores. Therefore it is
not possible to define a macro whose name is the same as that of an alternative token.

305

ISO/IEC 14882:1998(E) © ISO/IEC

16.3.3 The## operator 16 Preprocessing directives

[cpp.concat] 16.3.3 The## operator

1 A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either form
of macro definition.

2 If, in the replacement list, a parameter is immediately preceded or followed by a## preprocessing token,
the parameter is replaced by the corresponding argument’s preprocessing token sequence.

3 For both object-like and function-like macro invocations, before the replacement list is reexamined for
more macro names to replace, each instance of a## preprocessing token in the replacement list (not from
an argument) is deleted and the preceding preprocessing token is concatenated with the following prepro-
cessing token. If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluation of## operators is unspecified.

[cpp.rescan] 16.3.4 Rescanning and further replacement

1 After all parameters in the replacement list have been substituted, the resulting preprocessing token
sequence is rescanned with all subsequent preprocessing tokens of the source file for more macro names to
replace.

2 If the name of the macro being replaced is found during this scan of the replacement list (not including the
rest of the source file’s preprocessing tokens), it is not replaced. Further, if any nested replacements
encounter the name of the macro being replaced, it is not replaced. These nonreplaced macro name prepro-
cessing tokens are no longer available for further replacement even if they are later (re)examined in con-
texts in which that macro name preprocessing token would otherwise have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed as a preprocessing
directive even if it resembles one.

[cpp.scope] 16.3.5 Scope of macro definitions

1 A macro definition lasts (independent of block structure) until a corresponding#undef directive is
encountered or (if none is encountered) until the end of the translation unit.

2 A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified identi-
fier is not currently defined as a macro name.

3 [Note:The simplest use of this facility is to define a“manifest constant,” as in

#define TABSIZE 100

int table[TABSIZE];

4 The following defines a function-like macro whose value is the maximum of its arguments. It has the
advantages of working for any compatible types of the arguments and of generating in-line code without the
overhead of function calling. It has the disadvantages of evaluating one or the other of its arguments a sec-
ond time (including side effects) and generating more code than a function if invoked several times. It also
cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

5 To illustrate the rules for redefinition and reexamination, the sequence

306

© ISO/IEC ISO/IEC 14882:1998(E)

16 Preprocessing directives 16.3.5 Scope of macro definitions

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(~
#define m(a) a(w)
#define w 0,1
#define t(a) a

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h 5) & m

(f)^m(m);

results in

f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * (~ 5)) & f(2 * (0,1))^m(0,1);

6 To illustrate the rules for creating character string literals and concatenating tokens, the sequence

#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n /* from previous#include example */
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", ’\4’) /* this goes away */

= = 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) = = 0" ": @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) = = 0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the# and## tokens in the macro definition is optional.

7 And finally, to demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */ (1-1) /* other */
#define FTN_LIKE(a) (a)
#define FTN_LIKE(a)(/* note the white space */ \

a /* other stuff on this line
*/)

307

ISO/IEC 14882:1998(E) © ISO/IEC

16.3.5 Scope of macro definitions 16 Preprocessing directives

But the following redefinitions are invalid:

#define OBJ_LIKE (0) /* different token sequence*/
#define OBJ_LIKE (1 - 1) /* different white space*/
#define FTN_LIKE(b) (a) /* different parameter usage*/
#define FTN_LIKE(b) (b) /* different parameter spelling*/

—end note]

[cpp.line] 16.4 Line control

1 The string literal of a#line directive, if present, shall be a character string literal.

2 The line numberof the current source line is one greater than the number of new-line characters read or
introduced in translation phase 1 (2.1) while processing the source file to the current token.

3 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line
that has a line number as specified by the digit sequence (interpreted as a decimal integer). If the digit
sequence specifies zero or a number greater than 32767, the behavior is undefined.

4 A preprocessing directive of the form

line digit-sequence" s-char-sequenceopt" new-line

sets the line number similarly and changes the presumed name of the source file to be the contents of the
character string literal.

5 A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens afterline on
the directive are processed just as in normal text (each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). If the directive resulting after all replacements
does not match one of the two previous forms, the behavior is undefined; otherwise, the result is processed
as appropriate.

[cpp.error] 16.5 Error directive

1 A preprocessing directive of the form

error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of prepro-
cessing tokens, and renders the program ill-formed.

[cpp.pragma] 16.6 Pragma directive

1 A preprocessing directive of the form

pragma pp-tokensopt new-line

causes the implementation to behave in an implementation-defined manner. Any pragma that is not recog-
nized by the implementation is ignored.

[cpp.null] 16.7 Null directive

1 A preprocessing directive of the form

new-line

has no effect.

308

© ISO/IEC ISO/IEC 14882:1998(E)

16 Preprocessing directives 16.8 Predefined macro names

[cpp.predefined] 16.8 Predefined macro names

1 The following macro names shall be defined by the implementation:

_ _LINE_ _ The line number of the current source line (a decimal constant).

_ _FILE_ _ The presumed name of the source file (a character string literal).

_ _DATE_ _ The date of translation of the source file (a character string literal of the form
"Mmm dd yyyy" , where the names of the months are the same as those generated by theasctime
function, and the first character ofdd is a space character if the value is less than 10). If the date of
translation is not available, an implementation-defined valid date is supplied.

_ _TIME_ _ The time of translation of the source file (a character string literal of the form"hh:mm:ss"
as in the time generated by theasctime function). If the time of translation is not available, an
implementation-defined valid time is supplied.

_ _STDC_ _ Whether_ _STDC_ _ is predefined and if so, what its value is, are implementation-defined.

_ _cplusplus The name_ _cplusplus is defined to the value199711L when compiling a C++
translation unit.143)

2 The values of the predefined macros (except for_ _LINE_ _ and_ _FILE_ _) remain constant throughout
the translation unit.

3 If any of the pre-defined macro names in this subclause, or the identifierdefined , is the subject of a
#define or a#undef preprocessing directive, the behavior is undefined.

143)It is intended that future versions of this standard will replace the value of this macro with a greater value. Non-conforming com-
pilers should use a value with at most five decimal digits.

309

ISO/IEC 14882:1998(E) © ISO/IEC

310

(Blank page)

© ISO/IEC ISO/IEC 14882:1998(E)

17 Library introduction 17 Library introduction

17 Library introduction [lib.library]

1 This clause describes the contents of theC++ Standard Library, how a well-formed C++ program makes
use of the library, and how a conforming implementation may provide the entities in the library.

2 The C++ Standard Library provides an extensible framework, and contains components for: language sup-
port, diagnostics, general utilities, strings, locales, containers, iterators, algorithms, numerics, and
input/output. The language support components are required by certain parts of the C++ language, such as
memory allocation (5.3.4, 5.3.5) and exception processing (clause 15).

3 The general utilities include components used by other library elements, such as a predefined storage allo-
cator for dynamic storage management (3.7.3). The diagnostics components provide a consistent frame-
work for reporting errors in a C++ program, including predefined exception classes.

4 The strings components provide support for manipulating text represented as sequences of typechar ,
sequences of typewchar_t , or sequences of any other ‘‘character-like’’ type. The localization compo-
nents extend internationalization support for such text processing.

5 The containers, iterators, and algorithms provide a C++ program with access to a subset of the most widely
used algorithms and data structures.

6 Numeric algorithms and the complex number components extend support for numeric processing. The
valarray components provide support forn-at-a-time processing, potentially implemented as parallel
operations on platforms that support such processing.

7 The iostreams components are the primary mechanism for C++ program input/output. They can be
used with other elements of the library, particularly strings, locales, and iterators.

8 This library also makes available the facilities of the Standard C library, suitably adjusted to ensure static
type safety.

9 The following subclauses describe the definitions (17.1), and method of description (17.3) for the library.
Clause 17.4 and clauses 18 through 27 specify the contents of the library, and library requirements and con-
straints on both well-formed C++ programs and conforming implementations.

[lib.definitions] 17.1 Definitions

[defns.arbitrary.stream] 17.1.1 arbitrary-positional stream
a stream (described in clause 27) that can seek to any integral position within the length of the stream.
Every arbitrary-positional stream is also a repositional stream (17.1.16).

[defns.character] 17.1.2 character
in clauses 21, 22, and 27, means any object which, when treated sequentially, can represent text. The term
does not only meanchar andwchar_t objects, but any value that can be represented by a type that pro-
vides the definitions specified in these clauses.

[defns.character.container] 17.1.3 character container type
a class or a type used to represent acharacter(17.1.2). It is used for one of the template parameters of the
string and iostream class templates. A character container class shall be a POD (3.9) type.

[defns.comparison] 17.1.4 comparison function
an operator function (13.5) for any of the equality (5.10) or relational (5.9) operators.

311

ISO/IEC 14882:1998(E) © ISO/IEC

17.1.5 component 17 Library introduction

[defns.component] 17.1.5 component
a group of library entities directly related as members, parameters, or return types. For example, the class
templatebasic_string and the non-member template functions that operate on strings are referred to as
thestring component.

[defns.default.behavior] 17.1.6 default behavior
a description ofreplacement functionandhandler functionsemantics. Any specific behavior provided by
the implementation, within the scope of therequired behavior.

[defns.handler] 17.1.7 handler function
a non-reserved functionwhose definition may be provided by a C++ program. A C++ program may desig-
nate a handler function at various points in its execution, by supplying a pointer to the function when call-
ing any of the library functions that install handler functions (clause 18).

[defns.iostream.templates] 17.1.8 iostream class templates
templates, defined in clause 27, that take two template arguments:charT and traits . The argument
charT is a character container class, and the argumenttraits is a structure which defines additional
characteristics and functions of the character type represented bycharT necessary to implement the ios-
tream class templates.

[defns.modifier] 17.1.9 modifier function
a class member function (9.3), other than constructors, assignment, or destructor, that alters the state of an
object of the class.

[defns.obj.state] 17.1.10 object state
the current value of all nonstatic class members of an object (9.2). The state of an object can be obtained
by using one or moreobserver functions.

17.1.11 narrow-oriented iostream classes
the instantiations of the iostream class templates on the character container classchar and the default
value of thetraits parameter. The traditional iostream classes are regarded as the narrow-oriented ios-
tream classes (27.3.1).

[defns.ntcts] 17.1.12 NTCTS
a sequence of values that havecharacter type, that precede the terminating null character type value
charT() .

[defns.observer] 17.1.13 observer function
a class member function (9.3) that accesses the state of an object of the class, but does not alter that state.
Observer functions are specified asconst member functions (9.3.2).

[defns.replacement] 17.1.14 replacement function
a non-reserved functionwhose definition is provided by a C++ program. Only one definition for such a
function is in effect for the duration of the program’s execution, as the result of creating the program (2.1)
and resolving the definitions of all translation units (3.5).

[defns.required.behavior] 17.1.15 required behavior
a description ofreplacement functionandhandler functionsemantics, applicable to both the behavior pro-
vided by the implementation and the behavior that shall be provided by any function definition in the pro-
gram. If a function defined in a C++ program fails to meet the required behavior when it executes, the
behavior is undefined.

312

© ISO/IEC ISO/IEC 14882:1998(E)

17 Library introduction 17.1.16 repositional stream

[defns.repositional.stream] 17.1.16 repositional stream
a stream (described in clause 27) that can seek only to a position that was previously encountered.

[defns.reserved.function] 17.1.17 reserved function
a function, specified as part of the C++ Standard Library, that must be defined by the implementation. If a
C++ program provides a definition for any reserved function, the results are undefined.

[defns.traits] 17.1.18 traits class
a class that encapsulates a set of types and functions necessary for template classes and template functions
to manipulate objects of types for which they are instantiated. Traits classes defined in clauses 21, 22 and
27 arechararacter traits, which provide the character handling support needed by the string and iostream
classes.

17.1.19 wide-oriented iostream classes
the instantiations of the iostream class templates on the character container classwchar_t and the default
value of thetraits parameter (27.3.2).

[defns.additional] 17.2 Additional definitions

1 1.3 defines additional terms used elsewhere in this International Standard.

[lib.description] 17.3 Method of description (Informative)

1 17.3 describes the conventions used to describe the C++ Standard Library. It describes the structures of the
normative clauses 18 through 27 (17.3.1), and other editorial conventions (17.3.2).

[lib.structure] 17.3.1 Structure of each subclause

1 17.4.1 provides a summary of the C++ Standard library’s contents. Other Library clauses provide detailed
specifications for each of the components in the library, as shown in Table 10:

Table 10—Library Categories
_ _________________________
Clause Category_ __________________________ _________________________
18 Language support
19 Diagnostics
20 General utilities
21 Strings
22 Localization
23 Containers
24 Iterators
25 Algorithms
26 Numerics
27 Input/output_ _________________________

2 Each Library clause contains the following elements, as applicable:144)

— Summary

— Requirements

— Detailed specifications

144)To save space, items that do not apply to a clause are omitted. For example, if a clause does not specify any requirements, there
will be no ‘‘Requirements’’ subclause.

313

ISO/IEC 14882:1998(E) © ISO/IEC

17.3.1 Structure of each subclause 17 Library introduction

— References to the Standard C library

[lib.structure.summary] 17.3.1.1 Summary

1 The Summary provides a synopsis of the category, and introduces the first-level subclauses. Each sub-
clause also provides a summary, listing the headers specified in the subclause and the library entities pro-
vided in each header.

2 Paragraphs labelled ‘‘Note(s):’’ or ‘‘Example(s):’’ are informative, other paragraphs are normative.

3 The summary and the detailed specifications are presented in the order:

— Macros

— Values

— Types

— Classes

— Functions

— Objects

[lib.structure.requirements] 17.3.1.2 Requirements

1 The library can be extended by a C++ program. Each clause, as applicable, describes the requirements that
such extensions must meet. Such extensions are generally one of the following:

— Template arguments

— Derived classes

— Containers, iterators, and/or algorithms that meet an interface convention

2 The string and iostreams components use an explicit representation of operations required of template argu-
ments. They use a template class namechar_traits to define these constraints.

3 Interface convention requirements are stated as generally as possible. Instead of stating ‘‘class X has to
define a member functionoperator++() ,’’ the interface requires ‘‘for any objectx of classX, ++x is
defined.’’ That is, whether the operator is a member is unspecified.

4 Requirements are stated in terms of well-defined expressions, which define valid terms of the types that sat-
isfy the requirements. For every set of requirements there is a table that specifies an initial set of the valid
expressions and their semantics (20.1.5, 23.1, 24.1). Any generic algorithm (clause 25) that uses the
requirements is described in terms of the valid expressions for its formal type parameters.

5 Template argument requirements are sometimes referenced by name. See 17.3.2.1.

6 In some cases the semantic requirements are presented as C++ code. Such code is intended as a specifica-
tion of equivalence of a construct to another construct, not necessarily as the way the construct must be
implemented.145)

[lib.structure.specifications] 17.3.1.3 Specifications

1 The detailed specifications each contain the following elements:146)

— Name and brief description

— Synopsis (class definition or function prototype, as appropriate)

— Restrictions on template arguments, if any

145)Although in some cases the code given is unambiguously the optimum implementation.
146)The form of these specifications was designed to follow the conventions established by existing C++ library vendors.

314

© ISO/IEC ISO/IEC 14882:1998(E)

17 Library introduction 17.3.1.3 Specifications

— Description of class invariants

— Description of function semantics

2 Descriptions of class member functions follow the order (as appropriate):147)

— Constructor(s) and destructor

— Copying & assignment functions

— Comparison functions

— Modifier functions

— Observer functions

— Operators and other non-member functions

3 Descriptions of function semantics contain the following elements (as appropriate):148)

— Requires: the preconditions for calling the function

— Effects: the actions performed by the function

— Postconditions:the observable results established by the function

— Returns: a description of the value(s) returned by the function

— Throws: any exceptions thrown by the function, and the conditions that would cause the exception

— Complexity: the time and/or space complexity of the function

4 For non-reserved replacement and handler functions, Clause 18 specifies two behaviors for the functions in
question: their required and default behavior. Thedefault behaviordescribes a function definition provided
by the implementation. Therequired behaviordescribes the semantics of a function definition provided by
either the implementation or a C++ program. Where no distinction is explicitly made in the description, the
behavior described is the required behavior.

5 Complexity requirements specified in the library clauses are upper bounds, and implementations that pro-
vide better complexity guarantees satisfy the requirements.

[lib.structure.see.also] 17.3.1.4 C Library

1 Paragraphs labelled ‘‘SEE ALSO:’’ contain cross-references to the relevant portions of this Standard and the
ISO C standard, which is incorporated into this Standard by reference.

[lib.conventions] 17.3.2 Other conventions

1 This subclause describes several editorial conventions used to describe the contents of the C++ Standard
Library. These conventions are for describing implementation-defined types (17.3.2.1), and member func-
tions (17.3.2.2).

[lib.type.descriptions] 17.3.2.1 Type descriptions

1 The Requirements subclauses may describe names that are used to specify constraints on template argu-
ments.149) These names are used in clauses 20, 23, 25, and 26 to describe the types that may be supplied as
arguments by a C++ program when instantiating template components from the library.

147)To save space, items that do not apply to a class are omitted. For example, if a class does not specify any comparison functions,
there will be no ‘‘Comparison functions’’ subclause.
148)To save space, items that do not apply to a function are omitted. For example, if a function does not specify any preconditions,
there will be no ‘‘Requires’’ paragraph.
149) Examples from 20.1 include:EqualityComparable , LessThanComparable , CopyConstructable , etc. Examples
from 24.1 include:InputIterator , ForwardIterator , Function , Predicate , etc.

315

ISO/IEC 14882:1998(E) © ISO/IEC

17.3.2.1 Type descriptions 17 Library introduction

2 Certain types defined in clause 27 are used to describe implementation-defined types. They are based on
other types, but with added constraints.

[lib.enumerated.types] 17.3.2.1.1 Enumerated types

1 Several types defined in clause 27 areenumerated types. Each enumerated type may be implemented as an
enumeration or as a synonym for an enumeration.150)

2 The enumerated typeenumerated can be written:

enum enumerated { V0, V1, V2, V3,};

static const enumerated C0 (V0);
static const enumerated C1 (V1);
static const enumerated C2 (V2);
static const enumerated C3 (V3);

.....

3 Here, the namesC0, C1, etc. representenumerated elementsfor this particular enumerated type. All such
elements have distinct values.

[lib.bitmask.types] 17.3.2.1.2 Bitmask types

1 Several types defined in clause 27 arebitmask types. Each bitmask type can be implemented as an enumer-
ated type that overloads certain operators, as an integer type, or as abitset (23.3.5).

2 The bitmask typebitmask can be written:

enum bitmask {
V0 = 1 << 0, V1 = 1 << 1, V2 = 1 << 2, V3 = 1 << 3,

};

static const bitmask C0 (V0);
static const bitmask C1 (V1);
static const bitmask C2 (V2);
static const bitmask C3 (V3);

.....

bitmask operator& (bitmask X , bitmask Y)
// For exposition only.
// int_type is an integral type capable of
// representing all values ofbitmask
{ return static_cast< bitmask >(

static_cast<int_type>(X) &
static_cast<int_type>(Y)); }

bitmask operator| (bitmask X , bitmask Y)
{ return static_cast< bitmask >(

static_cast<int_type>(X) |
static_cast<int_type>(Y)); }

bitmask operator^ (bitmask X , bitmask Y)
{ return static_cast< bitmask >(

static_cast<int_type>(X) ^
static_cast<int_type>(Y)); }

bitmask operator~ (bitmask X)
{ return static_cast< bitmask >(static_cast<int_type>(~ X)); }

150)Such as an integer type, with constant integer values (3.9.1).

316

© ISO/IEC ISO/IEC 14882:1998(E)

17 Library introduction 17.3.2.1.2 Bitmask types

bitmask & operator&=(bitmask & X, bitmask Y)
{ X = X & Y; return X; }

bitmask & operator|=(bitmask & X, bitmask Y)
{ X = X | Y; return X; }

bitmask & operator^=(bitmask & X, bitmask Y)
{ X = X ^ Y; return X; }

3 Here, the namesC0, C1, etc. representbitmask elementsfor this particular bitmask type. All such ele-
ments have distinct values such that, for any pairCi andCj , Ci & Ci is nonzero andCi & Cj is zero.

4 The following terms apply to objects and values of bitmask types:

— To seta valueY in an objectX is to evaluate the expressionX = Y.

— To cleara valueY in an objectX is to evaluate the expressionX &= ˜Y.

— The valueY is setin the objectX if the expressionX & Y is nonzero.

[lib.character.seq] 17.3.2.1.3 Character sequences

1 The Standard C library makes widespread use of characters and character sequences that follow a few uni-
form conventions:

— A letter is any of the 26 lowercase or 26 uppercase letters in the basic execution character set.151)

— The decimal-point characteris the (single-byte) character used by functions that convert between a
(single-byte) character sequence and a value of one of the floating-point types. It is used in the charac-
ter sequence to denote the beginning of a fractional part. It is represented in clauses 18 through 27 by a
period,’.’ , which is also its value in the"C" locale, but may change during program execution by a
call tosetlocale(int, const char*) ,152) or by a change to alocale object, as described in
clauses 22.1 and 27.

— A character sequenceis an array object (8.3.4)A that can be declared asT A [N] , whereT is any of the
typeschar , unsigned char , or signed char (3.9.1), optionally qualified by any combination
of const or volatile . The initial elements of the array have defined contents up to and including
an element determined by some predicate. A character sequence can be designated by a pointer valueS
that points to its first element.

[lib.byte.strings] 17.3.2.1.3.1 Byte strings

1 A null-terminated byte string,or NTBS, is a character sequence whose highest-addressed element with
defined content has the value zero (theterminating nullcharacter).153)

2 The length of anNTBSis the number of elements that precede the terminating null character. AnemptyNTBS

has a length of zero.

3 The value of anNTBS is the sequence of values of the elements up to and including the terminating null
character.

4 A staticNTBSis anNTBS with static storage duration.154)

151)Note that this definition differs from the definition in ISO C subclause 7.1.1.
152)declared in<clocale> (22.3).
153) Many of the objects manipulated by function signatures declared in<cstring> (21.4) are character sequences orNTBSs. The
size of some of these character sequences is limited by a length value, maintained separately from the character sequence.
154)A string literal, such as"abc" , is a staticNTBS.

317

ISO/IEC 14882:1998(E) © ISO/IEC

17.3.2.1.3.2 Multibyte strings 17 Library introduction

[lib.multibyte.strings] 17.3.2.1.3.2 Multibyte strings

1 A null-terminated multibyte string,or NTMBS, is anNTBS that constitutes a sequence of valid multibyte char-
acters, beginning and ending in the initial shift state.155)

2 A staticNTMBSis anNTMBS with static storage duration.

[lib.wide.characters] 17.3.2.1.3.3 Wide-character sequences

1 A wide-character sequenceis an array object (8.3.4)A that can be declared asT A [N] , whereT is type
wchar_t (3.9.1), optionally qualified by any combination ofconst or volatile . The initial elements
of the array have defined contents up to and including an element determined by some predicate. A charac-
ter sequence can be designated by a pointer valueS that designates its first element.

2 A null-terminated wide-character string,or NTWCS, is a wide-character sequence whose highest-addressed
element with defined content has the value zero.156)

3 The length of anNTWCSis the number of elements that precede the terminating null wide character. An
emptyNTWCShas a length of zero.

4 The value of anNTWCSis the sequence of values of the elements up to and including the terminating null
character.

5 A staticNTWCSis anNTWCS with static storage duration.157)

[lib.functions.within.classes] 17.3.2.2 Functions within classes

1 For the sake of exposition, clauses 18 through 27 do not describe copy constructors, assignment operators,
or (non-virtual) destructors with the same apparent semantics as those that can be generated by default
(12.1, 12.4, 12.8).

2 It is unspecified whether the implementation provides explicit definitions for such member function signa-
tures, or for virtual destructors that can be generated by default.

[lib.objects.within.classes] 17.3.2.3 Private members

1 Clauses 18 through 27 do not specify the representation of classes, and intentionally omit specification of
class members (9.2). An implementation may define static or non-static class members, or both, as needed
to implement the semantics of the member functions specified in clauses 18 through 27.

2 Objects of certain classes are sometimes required by the external specifications of their classes to store data,
apparently in member objects. For the sake of exposition, some subclauses provide representative declara-
tions, and semantic requirements, for private member objects of classes that meet the external specifications
of the classes. The declarations for such member objects and the definitions of related member types are
enclosed in a comment that ends withexposition only, as in:

// streambuf* sb ; exposition only

3 Any alternate implementation that provides equivalent external behavior is equally acceptable.

[lib.requirements] 17.4 Library-wide requirements

1 This subclause specifies requirements that apply to the entire C++ Standard library. Clauses 18 through 27
specify the requirements of individual entities within the library.

155)An NTBS that contains characters only from the basic execution character set is also anNTMBS. Each multibyte character then con-
sists of a single byte.
156)Many of the objects manipulated by function signatures declared in<cwchar> are wide-character sequences orNTWCSs.
157)A wide string literal, such asL"abc" , is a staticNTWCS.

318

© ISO/IEC ISO/IEC 14882:1998(E)

17 Library introduction 17.4 Library-wide requirements

2 The following subclauses describe the library’s contents and organization (17.4.1), how well-formed C++
programs gain access to library entities (17.4.2), constraints on such programs (17.4.3), and constraints on
conforming implementations (17.4.4).

[lib.organization] 17.4.1 Library contents and organization

1 This subclause provides a summary of the entities defined in the C++ Standard Library. Subclause 17.4.1.1
provides an alphabetical listing of entities by type, while subclause 17.4.1.2 provides an alphabetical listing
of library headers.

[lib.contents] 17.4.1.1 Library contents

1 The C++ Standard Library provides definitions for the following types of entities: Macros, Values, Types,
Templates, Classes, Functions, Objects.

2 All library entities except macros,operator new and operator delete are defined within the
namespacestd or namespaces nested within namespacestd .

[lib.headers] 17.4.1.2 Headers

1 The elements of the C++ Standard Library are declared or defined (as appropriate) in aheader.158)

2 The C++ Standard Library provides 32C++ headers, as shown in Table 11:

Table 11—C++ Library Headers
_ ___
<algorithm> <iomanip> <list> <ostream> <streambuf>

<bitset> <ios> <locale> <queue> <string>

<complex> <iosfwd> <map> <set> <typeinfo>

<deque> <iostream> <memory> <sstream> <utility>

<exception> <istream> <new> <stack> <valarray>

<fstream> <iterator> <numeric> <stdexcept> <vector>

<functional> <limits>_ ___

3 The facilities of the Standard C Library are provided in 18 additional headers, as shown in Table 12:

Table 12—C++ Headers for C Library Facilities
_ __
<cassert> <ciso646> <csetjmp> <cstdio> <ctime>

<cctype> <climits> <csignal> <cstdlib> <cwchar>

<cerrno> <clocale> <cstdarg> <cstring> <cwctype>

<cfloat> <cmath> <cstddef>_ __

4 Except as noted in clauses 18 through 27, the contents of each headercnameshall be the same as that of the
corresponding headername.h , as specified in ISO/IEC 9899:1990 Programming Languages C (Clause 7),
or ISO/IEC:1990 Programming Languages—C AMENDMENT 1: C Integrity, (Clause 7), as appropriate,
as if by inclusion. In the C++ Standard Library, however, the declarations and definitions (except for
names which are defined as macros in C) are within namespace scope (3.3.5) of the namespacestd.

5 Names which are defined as macros in C shall be defined as macros in the C++ Standard Library, even if C
grants license for implementation as functions. [Note: the names defined as macros in C include the fol-
lowing: assert , errno , offsetof , setjmp , va_arg , va_end , andva_start . —end note]

158)A header is not necessarily a source file, nor are the sequences delimited by< and> in header names necessarily valid source file
names (16.2).

319

ISO/IEC 14882:1998(E) © ISO/IEC

17.4.1.2 Headers 17 Library introduction

6 Names that are defined as functions in C shall be defined as functions in the C++ Standard Library.159)

7 D.5, Standard C library headers, describes the effects of using thename.h (C header) form in a C++ pro-
gram.160)

[lib.compliance] 17.4.1.3 Freestanding implementations

1 Two kinds of implementations are defined:hostedand freestanding(1.4). For a hosted implementation,
this International Standard describes the set of available headers.

2 A freestanding implementation has an implementation-defined set of headers. This set shall include at least
the following headers, as shown in Table 13:

Table 13—C++ Headers for Freestanding Implementations
_ ___

Subclause Header(s)_ __ ___
18.1 Types <cstddef>_ ___
18.2 Implementation properties <limits>_ ___
18.3 Start and termination <cstdlib>_ ___
18.4 Dynamic memory management<new>_ ___
18.5 Type identification <typeinfo>_ ___
18.6 Exception handling <exception>_ ___
18.7 Other runtime support <cstdarg>_ ___

3 The supplied version of the header<cstdlib> shall declare at least the functionsabort() ,
atexit() , andexit() (18.3).

[lib.using] 17.4.2 Using the library

1 This subclause describes how a C++ program gains access to the facilities of the C++ Standard Library.
17.4.2.1 describes effects during translation phase 4, while 17.4.2.2 describes effects during phase 8 (2.1).

[lib.using.headers] 17.4.2.1 Headers

1 The entities in the C++ Standard Library are defined in headers, whose contents are made available to a
translation unit when it contains the appropriate#include preprocessing directive (16.2).

2 A translation unit may include library headers in any order (clause 2). Each may be included more than
once, with no effect different from being included exactly once, except that the effect of including either
<cassert> or <assert.h> depends each time on the lexically current definition ofNDEBUG.161)

3 A translation unit shall include a header only outside of any external declaration or definition, and shall
include the header lexically before the first reference to any of the entities it declares or first defines in that
translation unit.

159)This disallows the practice, allowed in C, of providing a "masking macro" in addition to the function prototype. The only way to
achieve equivalent "inline" behavior in C++ is to provide a definition as an extern inline function.
160) The ".h" headers dump all their names into the global namespace, whereas the newer forms keep their names in namespace
std . Therefore, the newer forms are the preferred forms for all uses except for C++ programs which are intended to be strictly com-
patible with C.
161)This is the same as the Standard C library.

320

© ISO/IEC ISO/IEC 14882:1998(E)

17 Library introduction 17.4.2.2 Linkage

[lib.using.linkage] 17.4.2.2 Linkage

1 Entities in the C++ Standard Library have external linkage (3.5). Unless otherwise specified, objects and
functions have the defaultextern "C++" linkage (7.5).

2 It is unspecified whether a name from the Standard C library declared with external linkage has either
extern "C" or extern "C++" linkage.162)

3 Objects and functions defined in the library and required by a C++ program are included in the program
prior to program startup.

SEE ALSO: replacement functions (17.4.3.4), run-time changes (17.4.3.5).

[lib.constraints] 17.4.3 Constraints on programs

1 This subclause describes restrictions on C++ programs that use the facilities of the C++ Standard Library.
The following subclauses specify constraints on the program’s namespace (17.4.3.1), its use of headers
(17.4.3.2), classes derived from standard library classes (17.4.3.3), definitions of replacement functions
(17.4.3.4), and installation of handler functions during execution (17.4.3.5).

[lib.reserved.names] 17.4.3.1 Reserved names

1 It is undefined for a C++ program to add declarations or definitions to namespacestd or namespaces
within namespacestd unless otherwise specified. A program may add template specializations for any
standard library template to namespacestd . Such a specialization (complete or partial) of a standard
library template results in undefined behavior unless the declaration depends on a user-defined name of
external linkage and unless the specialization meets the standard library requirements for the original tem-
plate.163)

2 The C++ Standard Library reserves the following kinds of names:

— Macros

— Global names

— Names with external linkage

3 If the program declares or defines a name in a context where it is reserved, other than as explicitly allowed
by this clause, the behavior is undefined.

[lib.macro.names] 17.4.3.1.1 Macro names

1 Each name defined as a macro in a header is reserved to the implementation for any use if the translation
unit includes the header.164)

2 A translation unit that includes a header shall not contain any macros that define names declared or defined
in that header. Nor shall such a translation unit define macros for names lexically identical to keywords.

[lib.global.names] 17.4.3.1.2 Global names

1 Certain sets of names and function signatures are always reserved to the implementation:

— Each name that contains a double underscore (_ _) or begins with an underscore followed by an upper-
case letter (2.11) is reserved to the implementation for any use.

— Each name that begins with an underscore is reserved to the implementation for use as a name in the

162) The only reliable way to declare an object or function signature from the Standard C library is by including the header that
declares it, notwithstanding the latitude granted in subclause 7.1.7 of the C Standard.
163)Any library code that instantiates other library templates must be prepared to work adequately with any user-supplied specializa-
tion that meets the minimum requirements of the Standard.
164)It is not permissible to remove a library macro definition by using the#undef directive.

321

ISO/IEC 14882:1998(E) © ISO/IEC

17.4.3.1.2 Global names 17 Library introduction

global namespace.165)

[lib.extern.names] 17.4.3.1.3 External linkage

1 Each name declared as an object with external linkage in a header is reserved to the implementation to des-
ignate that library object with external linkage,166)both in namespace std and in the global namespace.

2 Each global function signature declared with external linkage in a header is reserved to the implementation
to designate that function signature with external linkage.167)

3 Each name having two consecutive underscores (2.11) is reserved to the implementation for use as a name
with both extern "C" and extern "C++" linkage.

4 Each name from the Standard C library declared with external linkage is reserved to the implementation for
use as a name withextern "C" linkage, both in namespace std and in the global namespace.

5 Each function signature from the Standard C library declared with external linkage is reserved to the imple-
mentation for use as a function signature with bothextern "C" and extern "C++" linkage,168) or
as a name of namespace scope in the global namespace.

[lib.extern.types] 17.4.3.1.4 Types

1 For each type T from the Standard C library,169) the types::T andstd::T are reserved to the implemen-
tation and, when defined,::T shall be identical tostd::T .

[lib.alt.headers] 17.4.3.2 Headers

1 If a file with a name equivalent to the derived file name for one of the C++ Standard Library headers is not
provided as part of the implementation, and a file with that name is placed in any of the standard places for
a source file to be included (16.2), the behavior is undefined.

[lib.derived.classes] 17.4.3.3 Derived classes

1 Virtual member function signatures defined for a base class in the C++ Standard library may be overridden
in a derived class defined in the program (10.3).

[lib.replacement.functions] 17.4.3.4 Replacement functions

1 Clauses 18 through 27 describe the behavior of numerous functions defined by the C++ Standard Library.
Under some circumstances, however, certain of these function descriptions also apply to replacement func-
tions defined in the program (17.1).

2 A C++ program may provide the definition for any of eight dynamic memory allocation function signatures
declared in header<new> (3.7.3, clause 18):

— operator new(size_t)

— operator new(size_t, const std::nothrow_t&)

— operator new[](size_t)

— operator new[](size_t, const std::nothrow_t&)

165)Such names are also reserved in namespace::std (17.4.3.1).
166)The list of such reserved names includeserrno , declared or defined in<cerrno> .
167) The list of such reserved function signatures with external linkage includessetjmp(jmp_buf) , declared or defined in
<csetjmp> , andva_end(va_list) , declared or defined in<cstdarg> .
168)The function signatures declared in<cwchar> and<cwctype> are always reserved, notwithstanding the restrictions imposed
in subclause 4.5.1 of Amendment 1 to the C Standard for these headers.
169) These types areclock_t , div_t , FILE , fpos_t , lconv , ldiv_t , mbstate_t , ptrdiff_t , sig_atomic_t ,
size_t , time_t , tm , va_list , wctrans_t , wctype_t , andwint_t .

322

© ISO/IEC ISO/IEC 14882:1998(E)

17 Library introduction 17.4.3.4 Replacement functions

— operator delete(void*)

— operator delete(void*, const std::nothrow_t&)

— operator delete[](void*)

— operator delete[](void*, const std::nothrow_t&)

3 The program’s definitions are used instead of the default versions supplied by the implementation (8.4).
Such replacement occurs prior to program startup (3.2, 3.6).

[lib.handler.functions] 17.4.3.5 Handler functions

1 The C++ Standard Library provides default versions of the following handler functions (clause 18):

— unexpected_handler

— terminate_handler

2 A C++ program may install different handler functions during execution, by supplying a pointer to a func-
tion defined in the program or the library as an argument to (respectively):

— set_new_handler

— set_unexpected

— set_terminate

SEE ALSO: subclauses 18.4.2, Storage allocation errors, and 18.6, Exception handling.

[lib.res.on.functions] 17.4.3.6 Other functions

1 In certain cases (replacement functions, handler functions, operations on types used to instantiate standard
library template components), the C++ Standard Library depends on components supplied by a C++ pro-
gram. If these components do not meet their requirements, the Standard places no requirements on the
implementation.

2 In particular, the effects are undefined in the following cases:

— for replacement functions (18.4.1), if the installed replacement function does not implement the seman-
tics of the applicableRequired behaviorparagraph.

— for handler functions (18.4.2.2, 18.6.3.1, 18.6.2.2), if the installed handler function does not implement
the semantics of the applicableRequired behaviorparagraph

— for types used as template arguments when instantiating a template component, if the operations on the
type do not implement the semantics of the applicableRequirements subclause (20.1.5, 23.1, 24.1,
26.1). Operations on such types can report a failure by throwing an exception unless otherwise speci-
fied.

— if any replacement function or handler function or destructor operation throws an exception, unless
specifically allowed in the applicableRequired behaviorparagraph.

— if an incomplete type (3.9) is used as a template argument when instantiating a template component.

323

ISO/IEC 14882:1998(E) © ISO/IEC

17.4.3.6 Other functions 17 Library introduction

[lib.res.on.arguments] 17.4.3.7 Function arguments

1 Each of the following statements applies to all arguments to functions defined in the C++ Standard Library,
unless explicitly stated otherwise.

— If an argument to a function has an invalid value (such as a value outside the domain of the function, or
a pointer invalid for its intended use), the behavior is undefined.

— If a function argument is described as being an array, the pointer actually passed to the function shall
have a value such that all address computations and accesses to objects (that would be valid if the
pointer did point to the first element of such an array) are in fact valid.

[lib.res.on.required] 17.4.3.8 Required paragraph

1 Violation of the preconditions specified in a function’sRequired behavior paragraph results in undefined
behavior unless the function’sThrows paragraph specifies throwing an exception when the precondition is
violated.

[lib.conforming] 17.4.4 Conforming implementations

1 This subclause describes the constraints upon, and latitude of, implementations of the C++ Standard library.
The following subclauses describe an implementation’s use of headers (17.4.4.1), macros (17.4.4.2), global
functions (17.4.4.3), member functions (17.4.4.4), reentrancy (17.4.4.5), access specifiers (17.4.4.6), class
derivation (17.4.4.7), and exceptions (17.4.4.8).

[lib.res.on.headers] 17.4.4.1 Headers

1 A C++ header may include other C++ headers.170)

2 Certain types and macros are defined in more than one header. For such an entity, a second or subsequent
header that also defines it may be included after the header that provides its initial definition (3.2).

3 Header inclusion is limited as follows:

— The C headers (.h form, described in Annex D, D.5) shall include only their corresponding C++
header, as described above (17.4.1.2).

[lib.res.on.macro.definitions] 17.4.4.2 Restrictions on macro definitions

1 The names or global function signatures described in 17.4.1.1 are reserved to the implementation.

2 All object-like macros defined by the Standard C library and described in this clause as expanding to inte-
gral constant expressions are also suitable for use in#if preprocessing directives, unless explicitly stated
otherwise.

[lib.global.functions] 17.4.4.3 Global functions

1 It is unspecified whether any global functions in the C++ Standard Library are defined asinline (7.1.2).

2 A call to a global function signature described in Clauses 18 through 27 behaves the same as if the imple-
mentation declares no additional global function signatures.171)

3 A global function cannot be declared by the implementation as taking additional default arguments.

170)C++ headers must include a C++ header that contains any needed definition (3.2).
171) A valid C++ program always calls the expected library global function. An implementation may also define additional global
functions that would otherwise not be called by a valid C++ program.

324

© ISO/IEC ISO/IEC 14882:1998(E)

17 Library introduction 17.4.4.4 Member functions

[lib.member.functions] 17.4.4.4 Member functions

1 It is unspecified whether any member functions in the C++ Standard Library are defined asinline
(7.1.2).

2 An implementation can declare additional non-virtual member function signatures within a class:

— by adding arguments with default values to a member function signature;172)The same latitude doesnot
extend to the implementation of virtual or global functions, however.

— by replacing a member function signature with default values by two or more member function signa-
tures with equivalent behavior;

— by adding a member function signature for a member function name.

3 A call to a member function signature described in the C++ Standard library behaves the same as if the
implementation declares no additional member function signatures.173)

[lib.reentrancy] 17.4.4.5 Reentrancy

1 Which of the functions in the C++ Standard Library are notreentrant subroutinesis implementation-
defined.

[lib.protection.within.classes] 17.4.4.6 Protection within classes

1 It is unspecified whether a function signature or class described in clauses 18 through 27 is afriend of
another class in the C++ Standard Library.

[lib.derivation] 17.4.4.7 Derived classes

1 It is unspecified whether a class in the C++ Standard Library is itself derived from other classes (with
names reserved to the implementation).

2 Certain classes defined in the C++ Standard Library are derived from other classes in the C++ Standard
Library:

— It is unspecified whether a class described in the C++ Standard Library as derived from another class is
derived from that class directly, or through other classes (with names reserved to the implementation)
that are derived from the specified base class.

3 In any case:

— A base class described asvirtual is always virtual;

— A base class described as non-virtual is never virtual;

— Unless explicitly stated otherwise, types with distinct names are distinct types.174)

[lib.res.on.exception.handling] 17.4.4.8 Restrictions on exception handling

1 Any of the functions defined in the C++ Standard Library can report a failure by throwing an exception of
the type(s) described in theirThrows: paragraph and/or theirexception-specification(15.4). An implemen-
tation may strengthen theexception-specificationfor a function by removing listed exceptions.175)

172)Hence, taking the address of a member function has an unspecified type.
173) A valid C++ program always calls the expected library member function, or one with equivalent behavior. An implementation
may also define additional member functions that would otherwise not be called by a valid C++ program.
174) An implicit exception to this rule are types described as synonyms for basic integral types, such assize_t (18.1) and
streamoff (27.4.1).
175)That is, an implementation of the function will have an explicitexception-specificationthat lists fewer exceptions than those spec-
ified in this International Standard. It may not, however, change the types of exceptions listed in theexception-specficiationfrom those
specified, nor add others.

325

ISO/IEC 14882:1998(E) © ISO/IEC

17.4.4.8 Restrictions on exception handling 17 Library introduction

2 None of the functions from the Standard C library shall report an error by throwing an exception,176) unless
it calls a program-supplied function that throws an exception.177)

3 No destructor operation defined in the C++ Standard Library will throw an exception. Any other functions
defined in the C++ Standard Library that do not have anexception-specificationmay throw
implementation-defined exceptions unless otherwise specified.178) An implementation may strengthen this
implicit exception-specificationby adding an explicit one.179)

176)That is, the C library functions all have athrow() exception-specification. This allows implementations to make performance
optimizations based on the absence of exceptions at runtime.
177)The functionsqsort() andbsearch() (25.4) meet this condition.
178) In particular, they can report a failure to allocate storage by throwing an exception of typebad_alloc , or a class derived from
bad_alloc (18.4.2.1). Library implementations are encouraged (but not required) to report errors by throwing exceptions from (or
derived from) the standard exception classes (18.4.2.1, 18.6, 19.1).
179)That is, an implementation may provide an explicitexception-specificationthat defines the subset of ‘‘any’’ exceptions thrown by
that function. This implies that the implementation may list implementation-defined types in such anexception-specification.

326

© ISO/IEC ISO/IEC 14882:1998(E)

18 Language support library [lib.language.support]

1 This clause describes the function signatures that are called implicitly, and the types of objects generated
implicitly, during the execution of some C++ programs. It also describes the headers that declare these
function signatures and define any related types.

2 The following subclauses describe common type definitions used throughout the library, characteristics of
the predefined types, functions supporting start and termination of a C++ program, support for dynamic
memory management, support for dynamic type identification, support for exception processing, and other
runtime support, as summarized in Table 14:

Table 14—Language support library summary
_ ___

Subclause Header(s)_ __ ___
18.1 Types <cstddef>_ ___

<limits>
<climits>18.2 Implementation properties
<cfloat>_ ___

18.3 Start and termination <cstdlib>_ ___
18.4 Dynamic memory management<new>_ ___
18.5 Type identification <typeinfo>_ ___
18.6 Exception handling <exception>_ ___

<cstdarg>
<csetjmp>
<ctime>
<csignal>

18.7 Other runtime support

<cstdlib>_ ___

[lib.support.types] 18.1 Types

1 Common definitions.

2 Header<cstddef> (Table 15):

Table 15—Header<cstddef> synopsis
_ ____________________________________

Kind Name(s)_ ____________________________________
Macros: NULL offsetof_ ____________________________________
Types: ptrdiff_t size_t_ ____________________________________

3 The contents are the same as the Standard C library header<stddef.h> , with the following changes:

4 The macroNULL is an implementation-defined C++ null pointer constant in this International Standard
(4.10).180)

180)Possible definitions include0 and0L , but not(void*)0 .

327

ISO/IEC 14882:1998(E) © ISO/IEC

18.1 Types 18 Language support library

5 The macrooffsetof accepts a restricted set oftype arguments in this International Standard.type
shall be a POD structure or a POD union (clause 9). The result of applying the offsetof macro to a field that
is a static data member or a function member is undefined.

SEE ALSO: subclause 5.3.3, Sizeof, subclause 5.7, Additive operators, subclause 12.5, Free store, and ISO
C subclause 7.1.6.

[lib.support.limits] 18.2 Implementation properties

1 The headers<limits> , <climits> , and <cfloat> supply characteristics of implementation-
dependent fundamental types (3.9.1).

[lib.limits] 18.2.1 Numeric limits

1 Thenumeric_limits component provides a C++ program with information about various properties of
the implementation’s representation of the fundamental types.

2 Specializations shall be provided for each fundamental type, both floating point and integer, including
bool . The member is_specialized shall be true for all such specializations of
numeric_limits .

3 For all members declaredstatic const in the numeric_limits template, specializations shall
define these values in such a way that they are usable as integral constant expressions.

4 Non-fundamental standard types, such ascomplex<T> (26.2.2), shall not have specializations.

Header<limits> synopsis

namespace std {
template<class T> class numeric_limits;
enum float_round_style;
enum float_denorm_style;

template<> class numeric_limits<bool>;

template<> class numeric_limits<char>;
template<> class numeric_limits<signed char>;
template<> class numeric_limits<unsigned char>;
template<> class numeric_limits<wchar_t>;

template<> class numeric_limits<short>;
template<> class numeric_limits<int>;
template<> class numeric_limits<long>;
template<> class numeric_limits<unsigned short>;
template<> class numeric_limits<unsigned int>;
template<> class numeric_limits<unsigned long>;

template<> class numeric_limits<float>;
template<> class numeric_limits<double>;
template<> class numeric_limits<long double>;

}

[lib.numeric.limits] 18.2.1.1 Template classnumeric_limits

namespace std {
template<class T> class numeric_limits {
public:

static const bool is_specialized = false;
static T min() throw();
static T max() throw();

328

© ISO/IEC ISO/IEC 14882:1998(E)

18 Language support library 18.2.1.1 Template classnumeric_limits

static const int digits = 0;
static const int digits10 = 0;
static const bool is_signed = false;
static const bool is_integer = false;
static const bool is_exact = false;
static const int radix = 0;
static T epsilon() throw();
static T round_error() throw();

static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;

static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static T infinity() throw();
static T quiet_NaN() throw();
static T signaling_NaN() throw();
static T denorm_min() throw();

static const bool is_iec559 = false;
static const bool is_bounded = false;
static const bool is_modulo = false;

static const bool traps = false;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;

};
}

1 The memberis_specialized makes it possible to distinguish between fundamental types, which have
specializations, and non-scalar types, which do not.

2 The defaultnumeric_limits<T> template shall have all members, but with 0 orfalse values.

[lib.numeric.limits.members] 18.2.1.2numeric_limits members

static T min() throw();

1 Minimum finite value.181)

2 For floating types with denormalization, returns the minimum positive normalized value.

3 Meaningful for all specializations in whichis_bounded != false , or is_bounded == false
&& is_signed == false .

static T max() throw();

4 Maximum finite value.182)

5 Meaningful for all specializations in whichis_bounded != false .

181)Equivalent to CHAR_MIN, SHRT_MIN, FLT_MIN, DBL_MIN, etc.
182)Equivalent to CHAR_MAX, SHRT_MAX, FLT_MAX, DBL _MAX, etc.

329

ISO/IEC 14882:1998(E) © ISO/IEC

18.2.1.2numeric_limits members 18 Language support library

static const int digits;

6 Number ofradix digits that can be represented without change.

7 For built-in integer types, the number of non-sign bits in the representation.

8 For floating point types, the number ofradix digits in the mantissa.183)

static const int digits10;

9 Number of base 10 digits that can be represented without change.184)

10 Meaningful for all specializations in whichis_bounded != false .

static const bool is_signed;

11 True if the type is signed.

12 Meaningful for all specializations.

static const bool is_integer;

13 True if the type is integer.

14 Meaningful for all specializations.

static const bool is_exact;

15 True if the type uses an exact representation. All integer types are exact, but not all exact types are integer.
For example, rational and fixed-exponent representations are exact but not integer.

16 Meaningful for all specializations.

static const int radix;

17 For floating types, specifies the base or radix of the exponent representation (often 2).185)

18 For integer types, specifies the base of the representation.186)

19 Meaningful for all specializations.

static T epsilon() throw();

20 Machine epsilon: the difference between 1 and the least value greater than 1 that is representable.187)

21 Meaningful for all floating point types.

static T round_error() throw();

22 Measure of the maximum rounding error.188)

183)Equivalent to FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG.
184)Equivalent to FLT_DIG, DBL_DIG, LDBL_DIG.
185)Equivalent to FLT_RADIX.
186)Distinguishes types with bases other than 2 (e.g. BCD).
187)Equivalent to FLT_EPSILON, DBL_EPSILON, LDBL_EPSILON.
188)Rounding error is described in ISO/IEC 10967-1 Language independent arithmetic– Part 1 Section 5.2.8 and Annex A Rationale
Section A.5.2.8– Rounding constants.

330

© ISO/IEC ISO/IEC 14882:1998(E)

18 Language support library 18.2.1.2numeric_limits members

static const int min_exponent;

23 Minimum negative integer such thatradix raised to the power of one less than that integer is a normal-
ized floating point number.189)

24 Meaningful for all floating point types.

static const int min_exponent10;

25 Minimum negative integer such that 10 raised to that power is in the range of normalized floating point
numbers.190)

26 Meaningful for all floating point types.

static const int max_exponent;

27 Maximum positive integer such thatradix raised to the power one less than that integer is a representable
finite floating point number.191)

28 Meaningful for all floating point types.

static const int max_exponent10;

29 Maximum positive integer such that 10 raised to that power is in the range of representable finite floating
point numbers.192)

30 Meaningful for all floating point types.

static const bool has_infinity;

31 True if the type has a representation for positive infinity.

32 Meaningful for all floating point types.

33 Shall betrue for all specializations in whichis_iec559 != false .

static const bool has_quiet_NaN;

34 True if the type has a representation for a quiet (non-signaling) ‘‘Not a Number.’’193)

35 Meaningful for all floating point types.

36 Shall betrue for all specializations in whichis_iec559 != false .

static const bool has_signaling_NaN;

37 True if the type has a representation for a signaling ‘‘Not a Number.’’194)

38 Meaningful for all floating point types.

39 Shall betrue for all specializations in whichis_iec559 != false .

189)Equivalent to FLT_MIN_EXP, DBL_MIN_EXP, LDBL_MIN_EXP.
190)Equivalent to FLT_MIN_10_EXP, DBL_MIN_10_EXP, LDBL_MIN_10_EXP.
191)Equivalent to FLT_MAX _EXP, DBL_MAX _EXP, LDBL_MAX _EXP.
192)Equivalent to FLT_MAX _10_EXP, DBL_MAX _10_EXP, LDBL_MAX _10_EXP.
193)Required by LIA-1.
194)Required by LIA-1.

331

ISO/IEC 14882:1998(E) © ISO/IEC

18.2.1.2numeric_limits members 18 Language support library

static const float_denorm_style has_denorm;

40 denorm_present if the type allows denormalized values (variable number of exponent bits)195),
denorm_absent if the type does not allow denormalized values, anddenorm_indeterminate if it
is indeterminate at compile time whether the type allows denormalized values.

41 Meaningful for all floating point types.

static const bool has_denorm_loss;

42 True if loss of accuracy is detected as a denormalization loss, rather than as an inexact result.196)

static T infinity() throw();

43 Representation of positive infinity, if available.197)

44 Meaningful for all specializations for whichhas_infinity != false . Required in specializations
for which is_iec559 != false .

static T quiet_NaN() throw();

45 Representation of a quiet ‘‘Not a Number,’’ if available.198)

46 Meaningful for all specializations for whichhas_quiet_NaN != false . Required in specializations
for which is_iec559 != false .

static T signaling_NaN() throw();

47 Representation of a signaling ‘‘Not a Number,’’ if available.199)

48 Meaningful for all specializations for whichhas_signaling_NaN != false . Required in special-
izations for whichis_iec559 != false .

static T denorm_min() throw();

49 Minimum positive denormalized value.200)

50 Meaningful for all floating point types.

51 In specializations for whichhas_denorm == false , returns the minimum positive normalized value.

static const bool is_iec559;

52 True if and only if the type adheres to IEC 559 standard.201)

53 Meaningful for all floating point types.

195)Required by LIA-1.
196)See IEC 559.
197)Required by LIA-1.
198)Required by LIA-1.
199)Required by LIA-1.
200)Required by LIA-1.
201)International Electrotechnical Commission standard 559 is the same as IEEE 754.

332

© ISO/IEC ISO/IEC 14882:1998(E)

18 Language support library 18.2.1.2numeric_limits members

static const bool is_bounded;

54 True if the set of values representable by the type is finite.202) All built-in types are bounded, this member
would be false for arbitrary precision types.

55 Meaningful for all specializations.

static const bool is_modulo;

56 True if the type is modulo.203) A type is modulo if it is possible to add two positive numbers and have a
result that wraps around to a third number that is less.

57 Generally, this isfalse for floating types,true for unsigned integers, andtrue for signed integers on
most machines.

58 Meaningful for all specializations.

static const bool traps;

59 true if trapping is implemented for the type.204)

60 Meaningful for all specializations.

static const bool tinyness_before;

61 true if tinyness is detected before rounding.205)

62 Meaningful for all floating point types.

static const float_round_style round_style;

63 The rounding style for the type.206)

64 Meaningful for all floating point types. Specializations for integer types shall return
round_toward_zero .

[lib.round.style] 18.2.1.3 Typefloat_round_style

namespace std {
enum float_round_style {

round_indeterminate = -1,
round_toward_zero = 0,
round_to_nearest = 1,
round_toward_infinity = 2,
round_toward_neg_infinity = 3

};
}

1 The rounding mode for floating point arithmetic is characterized by the values:

— round_indeterminate if the rounding style is indeterminable

— round_toward_zero if the rounding style is toward zero

202)Required by LIA-1.
203)Required by LIA-1.
204)Required by LIA-1.
205)Refer to IEC 559. Required by LIA-1.
206)Equivalent to FLT_ROUNDS. Required by LIA-1.

333

ISO/IEC 14882:1998(E) © ISO/IEC

18.2.1.3 Typefloat_round_style 18 Language support library

— round_to_nearest if the rounding style is to the nearest representable value

— round_toward_infinity if the rounding style is toward infinity

— round_toward_neg_infinity if the rounding style is toward negative infinity

[lib.denorm.style] 18.2.1.4 Typefloat_denorm_style

namespace std {
enum float_denorm_style {

denorm_indeterminate = -1;
denorm_absent = 0;
denorm_present = 1;

};
}

1 The presence or absence of denormalization (variable number of exponent bits) is characterized by the val-
ues:

— denorm_indeterminate if it cannot be determined whether or not the type allows denormalized
values

— denorm_absent if the type does not allow denormalized values

— denorm_present if the type does allow denormalized values

[lib.numeric.special] 18.2.1.5numeric_limits specializations

1 All members shall be provided for all specializations. However, many values are only required to be mean-
ingful under certain conditions (for example,epsilon() is only meaningful ifis_integer is false).
Any value that is not ‘‘meaningful’’ shall be set to 0 orfalse .

2 [Example:

namespace std {
template<> class numeric_limits<float> {
public:

static const bool is_specialized = true;

inline static float min() throw() { return 1.17549435E-38F; }
inline static float max() throw() { return 3.40282347E+38F; }

static const int digits = 24;
static const int digits10 = 6;

static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;

static const int radix = 2;
inline static float epsilon() throw() { return 1.19209290E-07F; }
inline static float round_error() throw() { return 0.5F; }

static const int min_exponent = -125;
static const int min_exponent10 = - 37;
static const int max_exponent = +128;
static const int max_exponent10 = + 38;

334

© ISO/IEC ISO/IEC 14882:1998(E)

18 Language support library 18.2.1.5numeric_limits specializations

static const bool has_infinity = true;
static const bool has_quiet_NaN = true;
static const bool has_signaling_NaN = true;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;

inline static float infinity() throw() { return ...; }
inline static float quiet_NaN() throw() { return ...; }
inline static float signaling_NaN() throw() { return ...; }
inline static float denorm_min() throw() { return min(); }

static const bool is_iec559 = true;
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps = true;
static const bool tinyness_before = true;

static const float_round_style round_style = round_to_nearest;
};

}

—end example]

[lib.c.limits] 18.2.2 C Library

1 Header<climits> (Table 16):

Table 16—Header<climits> synopsis
_ __

Type Name(s)_ __
Values:
CHAR_BIT INT_MAX LONG_MIN SCHAR_MIN UCHAR_MAX USHRT_MAX

CHAR_MAX INT_MIN MB_LEN_MAX SHRT_MAX UINT_MAX

CHAR_MIN LONG_MAX SCHAR_MAX SHRT_MIN ULONG_MAX_ __

2 The contents are the same as the Standard C library header<limits.h> .

3 Header<cfloat> (Table 17):

Table 17—Header<cfloat> synopsis
_ __

Type Name(s)_ __
Values:
DBL_DIG DBL_MIN_EXP FLT_MIN_10_EXP LDBL_MAX_10_EXP

DBL_EPSILON FLT_DIG FLT_MIN_EXP LDBL_MAX_EXP

DBL_MANT_DIG FLT_EPSILON FLT_RADIX LDBL_MIN

DBL_MAX FLT_MANT_DIG FLT_ROUNDS LDBL_MIN_10_EXP

DBL_MAX_10_EXP FLT_MAX LDBL_DIG LDBL_MIN_EXP

DBL_MAX_EXP FLT_MAX_10_EXP LDBL_EPSILON

DBL_MIN FLT_MAX_EXP LDBL_MANT_DIG

DBL_MIN_10_EXP FLT_MIN LDBL_MAX_ __

4 The contents are the same as the Standard C library header<float.h> .

SEE ALSO: ISO C subclause 7.1.5, 5.2.4.2.2, 5.2.4.2.1.

335

ISO/IEC 14882:1998(E) © ISO/IEC

18.3 Start and termination 18 Language support library

[lib.support.start.term] 18.3 Start and termination

1 Header<cstdlib> (partial), Table 18:

Table 18—Header<cstdlib> synopsis

Type Name(s)___
Macros: EXIT_FAILURE EXIT_SUCCESS___
Functions: abort atexit exit___

2 The contents are the same as the Standard C library header<stdlib.h> , with the following changes:

abort(void)

3 The functionabort() has additional behavior in this International Standard:

— The program is terminated without executing destructors for objects of automatic or static storage dura-
tion and without calling the functions passed toatexit() (3.6.3).

extern "C" int atexit(void (* f)(void))
extern "C++" int atexit(void (* f)(void))

4 Effects: Theatexit() functions register the function pointed to byf , to be called without arguments at
normal program termination.

5 For the execution of a function registered withatexit() , if control leaves the function because it pro-
vides no handler for a thrown exception,terminate() is called (18.6.3.3).

6 Implementation Limits: The implementation shall support the registration of at least 32 functions.
7 Returns: Theatexit() function returns zero if the registration succeeds, nozero if it fails.

exit(int status)

8 The functionexit() has additional behavior in this International Standard:

— First, objects with static storage duration are destroyed and functions registered by callingatexit are
called. Objects with static storage duration are destroyed in the reverse order of the completion of their
constructor. (Automatic objects are not destroyed as a result of callingexit() .)207) Functions regis-
tered withatexit are called in the reverse order of their registration.208) A function registered with
atexit before an objectobj1 of static storage duration is initialized will not be called untilobj1 ’s
destruction has completed. A function registered withatexit after an objectobj2 of static storage
duration is initialized will be called beforeobj2 ’s destruction starts.

— Next, all open C streams (as mediated by the function signatures declared in<cstdio>) with unwrit-
ten buffered data are flushed, all open C streams are closed, and all files created by callingtmpfile()
are removed.209)

— Finally, control is returned to the host environment. Ifstatus is zero orEXIT_SUCCESS, an
implementation-defined form of the statussuccessful terminationis returned. If status is
EXIT_FAILURE , an implementation-defined form of the statusunsuccessful terminationis returned.
Otherwise the status returned is implementation-defined.210)

207) Objects with automatic storage duration are all destroyed in a program whose functionmain() contains no automatic objects
and executes the call toexit() . Control can be transferred directly to such amain() by throwing an exception that is caught in
main() .
208)A function is called for every time it is registered.
209) Any C streams associated withcin , cout , etc (27.3) are flushed and closed when static objects are destroyed in the previous
phase. The functiontmpfile() is declared in<cstdio> .
210)The macrosEXIT_FAILURE andEXIT_SUCCESSare defined in<cstdlib> .

336

© ISO/IEC ISO/IEC 14882:1998(E)

18 Language support library 18.3 Start and termination

9 The functionexit() never returns to its caller.

SEE ALSO: subclauses 3.6, 3.6.3, ISO C subclause 7.10.4.

[lib.support.dynamic] 18.4 Dynamic memory management

1 The header<new> defines several functions that manage the allocation of dynamic storage in a program.
It also defines components for reporting storage management errors.

Header<new> synopsis

namespace std {
class bad_alloc;
struct nothrow_t {};
extern const nothrow_t nothrow;
typedef void (*new_handler)();
new_handler set_new_handler(new_handler new_p) throw();

}

void* operator new(std::size_t size) throw(std::bad_alloc);
void* operator new(std::size_t size , const std::nothrow_t&) throw();
void operator delete(void* ptr) throw();
void operator delete(void* ptr , const std::nothrow_t&) throw();
void* operator new[](std::size_t size) throw(std::bad_alloc);
void* operator new[](std::size_t size , const std::nothrow_t&) throw();
void operator delete[](void* ptr) throw();
void operator delete[](void* ptr , const std::nothrow_t&) throw();

void* operator new (std::size_t size , void* ptr) throw();
void* operator new[](std::size_t size , void* ptr) throw();
void operator delete (void* ptr , void*) throw();
void operator delete[](void* ptr , void*) throw();

SEE ALSO: 1.7, 3.7.3, 5.3.4, 5.3.5, 12.5, 20.4.

[lib.new.delete] 18.4.1 Storage allocation and deallocation

[lib.new.delete.single] 18.4.1.1 Single-object forms

void* operator new(std::size_t size) throw(std::bad_alloc);

1 Effects: The allocation function(3.7.3.1) called by anew-expression(5.3.4) to allocatesize bytes of
storage suitably aligned to represent any object of that size.

2 Replaceable: a C++ program may define a function with this function signature that displaces the default
version defined by the C++ Standard library.

3 Required behavior: Return a non-null pointer to suitably aligned storage (3.7.3), or else throw a
bad_alloc exception. This requirement is binding on a replacement version of this function.

4 Default behavior:

— Executes a loop: Within the loop, the function first attempts to allocate the requested storage. Whether
the attempt involves a call to the Standard C library functionmalloc is unspecified.

— Returns a pointer to the allocated storage if the attempt is successful. Otherwise, if the last argument to
set_new_handler() was a null pointer, throwbad_alloc .

— Otherwise, the function calls the currentnew_handler(18.4.2.2). If the called function returns, the loop
repeats.

— The loop terminates when an attempt to allocate the requested storage is successful or when a called
new_handlerfunction does not return.

337

ISO/IEC 14882:1998(E) © ISO/IEC

18.4.1.1 Single-object forms 18 Language support library

void* operator new(std::size_t size , const std::nothrow_t&) throw();

5 Effects: Same as above, except that it is called by a placement version of anew-expressionwhen a C++
program prefers a null pointer result as an error indication, instead of abad_alloc exception.

6 Replaceable: a C++ program may define a function with this function signature that displaces the default
version defined by the C++ Standard library.

7 Required behavior: Return a non-null pointer to suitably aligned storage (3.7.3), or else return a null
pointer. This nothrow version ofoperator new returns a pointer obtained as if acquired from the
ordinary version. This requirement is binding on a replacement version of this function.

8 Default behavior:

— Executes a loop: Within the loop, the function first attempts to allocate the requested storage. Whether
the attempt involves a call to the Standard C library functionmalloc is unspecified.

— Returns a pointer to the allocated storage if the attempt is successful. Otherwise, if the last argument to
set_new_handler() was a null pointer, return a null pointer.

— Otherwise, the function calls the currentnew_handler(18.4.2.2). If the called function returns, the loop
repeats.

— The loop terminates when an attempt to allocate the requested storage is successful or when a called
new_handler function does not return. If the callednew_handler function terminates by throwing a
bad_alloc exception, the function returns a null pointer.

9 [Example:

T* p1 = new T; // throwsbad_alloc if it fails
T* p2 = new(nothrow) T; // returns0 if it fails

—end example]

void operator delete(void* ptr) throw();
void operator delete(void* ptr , const std::nothrow_t&) throw();

10 Effects: The deallocation function(3.7.3.2) called by adelete-expressionto render the value ofptr
invalid.

11 Replaceable: a C++ program may define a function with this function signature that displaces the default
version defined by the C++ Standard library.

12 Required behavior: accept a value ofptr that is null or that was returned by an earlier call to the default
operator new(std::size_t) or operator new(std::size_t,const
std::nothrow_t&) .

13 Default behavior:

— For a null value ofptr , do nothing.

— Any other value ofptr shall be a value returned earlier by a call to the defaultoperator new ,
which was not invalidated by an intervening call tooperator delete(void*) (17.4.3.7). For
such a non-null value ofptr , reclaims storage allocated by the earlier call to the defaultoperator
new.

14 Notes: It is unspecified under what conditions part or all of such reclaimed storage is allocated by a subse-
quent call tooperator new or any ofcalloc , malloc , or realloc , declared in<cstdlib> .

[lib.new.delete.array] 18.4.1.2 Array forms

void* operator new[](std::size_t size) throw(std::bad_alloc);

1 Effects: The allocation function(3.7.3.1) called by the array form of anew-expression(5.3.4) to allocate
size bytes of storage suitably aligned to represent any array object of that size or smaller.211)

211) It is not the direct responsibility ofoperator new[](std::size_t) or operator delete[](void*) to note the
repetition count or element size of the array. Those operations are performed elsewhere in the arraynew anddelete expressions.

338

© ISO/IEC ISO/IEC 14882:1998(E)

18 Language support library 18.4.1.2 Array forms

2 Replaceable: a C++ program can define a function with this function signature that displaces the default
version defined by the C++ Standard library.

3 Required behavior: Same as foroperator new(std::size_t) . This requirement is binding on a
replacement version of this function.

4 Default behavior: Returnsoperator new(size) .

void* operator new[](std::size_t size , const std::nothrow_t&) throw();

5 Effects: Same as above, except that it is called by a placement version of anew-expressionwhen a C++
program prefers a null pointer result as an error indication, instead of abad_alloc exception.

6 Replaceable: a C++ program can define a function with this function signature that displaces the default
version defined by the C++ Standard library.

7 Required behavior: Same as foroperator new(std::size_t,const std::nothrow_t&) .
This nothrow version ofoperator new[] returns a pointer obtained as if acquired from the ordinary
version.

8 Default behavior: Returnsoperator new(size ,nothrow) .

void operator delete[](void* ptr) throw();
void operator delete[](void* ptr , const std::nothrow_t&) throw();

9 Effects: The deallocation function(3.7.3.2) called by the array form of adelete-expressionto render the
value ofptr invalid.

10 Replaceable: a C++ program can define a function with this function signature that displaces the default
version defined by the C++ Standard library.

11 Required behavior: accept a value ofptr that is null or that was returned by an earlier call to
operator new[](std::size_t) or operator new[](std::size_t,const
std::nothrow_t&) .

12 Default behavior:

— For a null value ofptr , does nothing.

— Any other value ofptr shall be a value returned earlier by a call to the defaultoperator
new[](std::size_t) .212) For such a non-null value ofptr , reclaims storage allocated by the ear-
lier call to the defaultoperator new[] .

13 It is unspecified under what conditions part or all of such reclaimed storage is allocated by a subsequent call
to operator new or any ofcalloc , malloc , or realloc , declared in<cstdlib> .

[lib.new.delete.placement] 18.4.1.3 Placement forms

1 These functions are reserved, a C++ program may not define functions that displace the versions in the
Standard C++ library (17.4.3).

void* operator new(std::size_t size , void* ptr) throw();

2 Returns: ptr .
3 Notes: Intentionally performs no other action.

4 [Example:This can be useful for constructing an object at a known address:

char place[sizeof(Something)];
Something* p = new (place) Something();

—end example]

The arraynew expression, may, however, increase thesize argument tooperator new[](std::size_t) to obtain space to
store supplemental information.
212)The value must not have been invalidated by an intervening call tooperator delete[](void*) (17.4.3.7).

339

ISO/IEC 14882:1998(E) © ISO/IEC

18.4.1.3 Placement forms 18 Language support library

void* operator new[](std::size_t size , void* ptr) throw();

5 Returns: ptr .
6 Notes: Intentionally performs no other action.

void operator delete(void* ptr , void*) throw();

7 Effects: Intentionally performs no action.
8 Notes: Default function called when any part of the initialization in a placement new expression that

invokes the library’s non-array placement operator new terminates by throwing an exception (5.3.4).

void operator delete[](void* ptr , void*) throw();

9 Effects: Intentionally performs no action.
10 Notes: Default function called when any part of the initialization in a placement new expression that

invokes the library’s array placement operator new terminates by throwing an exception (5.3.4).

[lib.alloc.errors] 18.4.2 Storage allocation errors

[lib.bad.alloc] 18.4.2.1 Classbad_alloc

namespace std {
class bad_alloc : public exception {
public:

bad_alloc() throw();
bad_alloc(const bad_alloc&) throw();
bad_alloc& operator=(const bad_alloc&) throw();
virtual ~bad_alloc() throw();
virtual const char* what() const throw();

};
}

1 The classbad_alloc defines the type of objects thrown as exceptions by the implementation to report a
failure to allocate storage.

bad_alloc() throw();

2 Effects: Constructs an object of classbad_alloc .
3 Notes: The result of callingwhat() on the newly constructed object is implementation-defined.

bad_alloc(const bad_alloc&) throw();
bad_alloc& operator=(const bad_alloc&) throw();

4 Effects: Copies an object of classbad_alloc .

virtual const char* what() const throw();

5 Returns: An implementation-defined NTBS.

[lib.new.handler] 18.4.2.2 Typenew_handler

typedef void (*new_handler)();

1 The type of ahandler functionto be called byoperator new() or operator new[]() (18.4.1)
when they cannot satisfy a request for additional storage.

2 Required behavior: A new_handler shall perform one of the following:

— make more storage available for allocation and then return;

— throw an exception of typebad_alloc or a class derived frombad_alloc ;

340

© ISO/IEC ISO/IEC 14882:1998(E)

18 Language support library 18.4.2.2 Typenew_handler

— call eitherabort() or exit() ;

[lib.set.new.handler] 18.4.2.3set_new_handler

new_handler set_new_handler(new_handler new_p) throw();

1 Effects: Establishes the function designated bynew_p as the currentnew_handler .
2 Returns: 0 on the first call, the previousnew_handler on subsequent calls.

[lib.support.rtti] 18.5 Type identification

1 The header<typeinfo> defines a type associated with type information generated by the implementa-
tion. It also defines two types for reporting dynamic type identification errors.

Header<typeinfo> synopsis

namespace std {
class type_info;
class bad_cast;
class bad_typeid;

}

SEE ALSO: 5.2.7, 5.2.8.

[lib.type.info] 18.5.1 Classtype_info

namespace std {
class type_info {
public:

virtual ~type_info();
bool operator==(const type_info& rhs) const;
bool operator!=(const type_info& rhs) const;
bool before(const type_info& rhs) const;
const char* name() const;

private:
type_info(const type_info& rhs);
type_info& operator=(const type_info& rhs);

};
}

1 The classtype_info describes type information generated by the implementation. Objects of this class
effectively store a pointer to a name for the type, and an encoded value suitable for comparing two types for
equality or collating order. The names, encoding rule, and collating sequence for types are all unspecified
and may differ between programs.

bool operator==(const type_info& rhs) const;

2 Effects: Compares the current object withrhs .
3 Returns: true if the two values describe the same type.

bool operator!=(const type_info& rhs) const;

4 Returns: !(*this == rhs) .

bool before(const type_info& rhs) const;

5 Effects: Compares the current object withrhs .
6 Returns: true if *this precedesrhs in the implementation’s collation order.

341

ISO/IEC 14882:1998(E) © ISO/IEC

18.5.1 Classtype_info 18 Language support library

const char* name() const;

7 Returns: an implementation-defined NTBS.
8 Notes: The message may be a null-terminated multibyte string (17.3.2.1.3.2), suitable for conversion and

display as awstring (21.2, 22.2.1.5)

type_info(const type_info& rhs);
type_info& operator=(const type_info& rhs);

9 Effects: Copies atype_info object.
10 Notes: Since the copy constructor and assignment operator fortype_info are private to the class,

objects of this type cannot be copied.

[lib.bad.cast] 18.5.2 Classbad_cast

namespace std {
class bad_cast : public exception {
public:

bad_cast() throw();
bad_cast(const bad_cast&) throw();
bad_cast& operator=(const bad_cast&) throw();
virtual ~bad_cast() throw();
virtual const char* what() const throw();

};
}

1 The classbad_cast defines the type of objects thrown as exceptions by the implementation to report the
execution of an invaliddynamic-castexpression (5.2.7).

bad_cast() throw();

2 Effects: Constructs an object of classbad_cast .
3 Notes: The result of callingwhat() on the newly constructed object is implementation-defined.

bad_cast(const bad_cast&) throw();
bad_cast& operator=(const bad_cast&) throw();

4 Effects: Copies an object of classbad_cast .

virtual const char* what() const throw();

5 Returns: An implementation-defined NTBS.
6 Notes: The message may be a null-terminated multibyte string (17.3.2.1.3.2), suitable for conversion and

display as awstring (21.2, 22.2.1.5)

[lib.bad.typeid] 18.5.3 Classbad_typeid

namespace std {
class bad_typeid : public exception {
public:

bad_typeid() throw();
bad_typeid(const bad_typeid&) throw();
bad_typeid& operator=(const bad_typeid&) throw();
virtual ~bad_typeid() throw();
virtual const char* what() const throw();

};
}

1 The classbad_typeid defines the type of objects thrown as exceptions by the implementation to report a
null pointer in atypeidexpression (5.2.8).

342

© ISO/IEC ISO/IEC 14882:1998(E)

18 Language support library 18.5.3 Classbad_typeid

bad_typeid() throw();

2 Effects: Constructs an object of classbad_typeid .
3 Notes: The result of callingwhat() on the newly constructed object is implementation-defined.

bad_typeid(const bad_typeid&) throw();
bad_typeid& operator=(const bad_typeid&) throw();

4 Effects: Copies an object of classbad_typeid .

virtual const char* what() const throw();

5 Returns: An implementation-defined NTBS.
6 Notes: The message may be a null-terminated multibyte string (17.3.2.1.3.2), suitable for conversion and

display as awstring (21.2, 22.2.1.5)

[lib.support.exception] 18.6 Exception handling

1 The header<exception> defines several types and functions related to the handling of exceptions in a
C++ program.

Header<exception> synopsis

namespace std {
class exception;
class bad_exception;

typedef void (*unexpected_handler)();
unexpected_handler set_unexpected(unexpected_handler f) throw();
void unexpected();

typedef void (*terminate_handler)();
terminate_handler set_terminate(terminate_handler f) throw();
void terminate();

bool uncaught_exception();
}

SEE ALSO: 15.5.

[lib.exception] 18.6.1 Classexception

namespace std {
class exception {
public:

exception() throw();
exception(const exception&) throw();
exception& operator=(const exception&) throw();
virtual ~exception() throw();
virtual const char* what() const throw();

};
}

1 The classexception defines the base class for the types of objects thrown as exceptions by C++ Stan-
dard library components, and certain expressions, to report errors detected during program execution.

343

ISO/IEC 14882:1998(E) © ISO/IEC

18.6.1 Classexception 18 Language support library

exception() throw();

2 Effects: Constructs an object of classexception .
3 Notes: Does not throw any exceptions.

exception(const exception&) throw();
exception& operator=(const exception&) throw();

4 Effects: Copies anexception object.
5 Notes: The effects of callingwhat() after assignment are implementation-defined.

virtual ~exception() throw();

6 Effects: Destroys an object of classexception .
7 Notes: Does not throw any exceptions.

virtual const char* what() const throw();

8 Returns: An implementation-defined NTBS.
9 Notes: The message may be a null-terminated multibyte string (17.3.2.1.3.2), suitable for conversion and

display as awstring (21.2, 22.2.1.5)

[lib.exception.unexpected] 18.6.2 Violatingexception-specifications

[lib.bad.exception] 18.6.2.1 Classbad_exception

namespace std {
class bad_exception : public exception {
public:

bad_exception() throw();
bad_exception(const bad_exception&) throw();
bad_exception& operator=(const bad_exception&) throw();
virtual ~bad_exception() throw();
virtual const char* what() const throw();

};
}

1 The classbad_exception defines the type of objects thrown as described in (15.5.2).

bad_exception() throw();

2 Effects: Constructs an object of classbad_exception .
3 Notes: The result of callingwhat() on the newly constructed object is implementation-defined.

bad_exception(const bad_exception&) throw();
bad_exception& operator=(const bad_exception&) throw();

4 Effects: Copies an object of classbad_exception .

virtual const char* what() const throw();

5 Returns: An implementation-defined NTBS.
6 Notes: The message may be a null-terminated multibyte string (17.3.2.1.3.2), suitable for conversion and

display as awstring (21.2, 22.2.1.5)

344

© ISO/IEC ISO/IEC 14882:1998(E)

18 Language support library 18.6.2.1 Classbad_exception

[lib.unexpected.handler] 18.6.2.2 Typeunexpected_handler

typedef void (*unexpected_handler)();

1 The type of ahandler functionto be called byunexpected() when a function attempts to throw an
exception not listed in itsexception-specification.

2 Required behavior: An unexpected_handler shall not return. See also 15.5.2.
3 Default behavior: The implementation’s defaultunexpected_handler callsterminate() .

[lib.set.unexpected] 18.6.2.3set_unexpected

unexpected_handler set_unexpected(unexpected_handler f) throw();

1 Effects: Establishes the function designated byf as the currentunexpected_handler .
2 Requires: f shall not be a null pointer.
3 Returns: The previousunexpected_handler .

[lib.unexpected] 18.6.2.4unexpected

void unexpected();

1 Called by the implementation when a function exits via an exception not allowed by itsexception-
specification(15.5.2). May also be called directly by the program.

2 Effects: Calls theunexpected_handler function in effect immediately after evaluating thethrow-
expression(18.6.2.2), if called by the implementation, or calls the currentunexpected_handler , if
called by the program.

[lib.exception.terminate] 18.6.3 Abnormal termination

[lib.terminate.handler] 18.6.3.1 Typeterminate_handler

typedef void (*terminate_handler)();

1 The type of ahandler functionto be called byterminate() when terminating exception processing.
2 Required behavior: A terminate_handler shall terminate execution of the program without return-

ing to the caller.
3 Default behavior: The implementation’s defaultterminate_handler callsabort() .

[lib.set.terminate] 18.6.3.2set_terminate

terminate_handler set_terminate(terminate_handler f) throw();

1 Effects: Establishes the function designated byf as the current handler function for terminating exception
processing.

2 Requires: f shall not be a null pointer.
3 Returns: The previousterminate_handler .

[lib.terminate] 18.6.3.3 terminate

void terminate();

1 Called by the implementation when exception handling must be abandoned for any of several reasons
(15.5.1). May also be called directly by the program.

2 Effects: Calls the terminate_handler function in effect immediately after evaluating thethrow-
expression(18.6.3.1), if called by the implementation, or calls the currentterminate_handler
function, if called by the program.

345

ISO/IEC 14882:1998(E) © ISO/IEC

18.6.4uncaught_exception 18 Language support library

[lib.uncaught] 18.6.4 uncaught_exception

bool uncaught_exception();

1 Returns: true after completing evaluation of athrow-expressionuntil either completing initialization of
the exception-declarationin the matching handler or enteringunexpected() due to the throw; or
after enteringterminate() for any reason other than an explicit call toterminate(). [Note:
This includes stack unwinding (15.2).—end note]

2 Notes: When uncaught_exception() is true , throwing an exception can result in a call of
terminate() (15.5.1).

[lib.support.runtime] 18.7 Other runtime support

1 Headers<cstdarg> (variable arguments),<csetjmp> (nonlocal jumps),<ctime> (system clock
clock(), time()), <csignal> (signal handling), and<cstdlib> (runtime environment
getenv(), system()).

Table 19—Header<cstdarg> synopsis
_ __

Type Name(s)_ __
Macros: va_arg va_end va_start_ __
Type: va_list_ __

Table 20—Header<csetjmp> synopsis
_ ____________________

Type Name(s)_ ____________________
Macro: setjmp_ ____________________
Type: jmp_buf_ ____________________
Function: longjmp_ ____________________

Table 21—Header<ctime> synopsis
_ _____________________________

Type Name(s)_ _____________________________
Macros: CLOCKS_PER_SEC_ _____________________________
Types: clock_t_ _____________________________
Functions: clock_ _____________________________

Table 22—Header<csignal> synopsis
_ ___

Type Name(s)_ ___
Macros: SIGABRT SIGILL SIGSEGV SIG_DFL

SIG_IGN SIGFPE SIGINT SIGTERM SIG_ERR_ ___
Type: sig_atomic_t_ ___
Functions: raise signal_ ___

346

© ISO/IEC ISO/IEC 14882:1998(E)

18 Language support library 18.7 Other runtime support

Table 23—Header<cstdlib> synopsis
_ ______________________________

Type Name(s)_ ______________________________
Functions: getenv system_ ______________________________

2 The contents of these headers are the same as the Standard C library headers<stdarg.h> ,
<setjmp.h> , <time.h> , <signal.h> , and<stdlib.h> respectively, with the following changes:

3 The restrictions that ISO C places on the second parameter to theva_start() macro in header
<stdarg.h> are different in this International Standard. The parameterparmN is the identifier of the
rightmost parameter in the variable parameter list of the function definition (the one just before the...).
If the parameterparmN is declared with a function, array, or reference type, or with a type that is not com-
patible with the type that results when passing an argument for which there is no parameter, the behavior is
undefined.

SEE ALSO: ISO C subclause 4.8.1.1.

4 The function signaturelongjmp(jmp_buf jbuf , int val) has more restricted behavior in this
International Standard. If any automatic objects would be destroyed by a thrown exception transferring
control to another (destination) point in the program, then a call tolongjmp(jbuf , val) at the throw
point that transfers control to the same (destination) point has undefined behavior.

SEE ALSO: ISO C subclause 7.10.4, 7.8, 7.6, 7.12.

5 The common subset of the C and C++ languages consists of all declarations, definitions, and expressions
that may appear in a well formed C++ program and also in a conforming C program. A POF (‘‘plain old
function’’) is a function that uses only features from this common subset, and that does not directly or indi-
rectly use any function that is not a POF. All signal handlers shall have C linkage. A POF that could be
used as a signal handler in a conforming C program does not produce undefined behavior when used as a
signal handler in a C++ program. The behavior of any other function used as a signal handler in a C++ pro-
gram is implementation defined.213)

213)In particular, a signal handler using exception handling is very likely to have problems

347

ISO/IEC 14882:1998(E) © ISO/IEC

348

(Blank page)

© ISO/IEC ISO/IEC 14882:1998(E)

19 Diagnostics library 19 Diagnostics library

19 Diagnostics library [lib.diagnostics]

1 This clause describes components that C++ programs may use to detect and report error conditions.

2 The following subclauses describe components for reporting several kinds of exceptional conditions, docu-
menting program assertions, and a global variable for error number codes, as summarized in Table 24:

Table 24—Diagnostics library summary
_ ____________________________________

Subclause Header(s)_ _____________________________________ ____________________________________
19.1 Exception classes <stdexcept>_ ____________________________________
19.2 Assertions <cassert>_ ____________________________________
19.3 Error numbers <cerrno>_ ____________________________________

[lib.std.exceptions] 19.1 Exception classes

1 The Standard C++ library provides classes to be used to report certain errors (17.4.4.8) in C++ programs. In
the error model reflected in these classes, errors are divided into two broad categories:logic errors and
runtimeerrors.

2 The distinguishing characteristic of logic errors is that they are due to errors in the internal logic of the pro-
gram. In theory, they are preventable.

3 By contrast, runtime errors are due to events beyond the scope of the program. They cannot be easily pre-
dicted in advance. The header<stdexcept> defines several types of predefined exceptions for reporting
errors in a C++ program. These exceptions are related by inheritance.

Header<stdexcept> synopsis

namespace std {
class logic_error;

class domain_error;
class invalid_argument;
class length_error;
class out_of_range;

class runtime_error;
class range_error;
class overflow_error;
class underflow_error;

}

[lib.logic.error] 19.1.1 Classlogic_error

namespace std {
class logic_error : public exception {
public:

explicit logic_error(const string& what_arg);
};

}

1 The classlogic_error defines the type of objects thrown as exceptions to report errors presumably
detectable before the program executes, such as violations of logical preconditions or class invariants.

349

ISO/IEC 14882:1998(E) © ISO/IEC

19.1.1 Classlogic_error 19 Diagnostics library

logic_error(const string& what_arg);

2 Effects: Constructs an object of classlogic_error .
3 Postcondition: strcmp(what(), what_arg .c_str()) == 0 .

[lib.domain.error] 19.1.2 Classdomain_error

namespace std {
class domain_error : public logic_error {
public:

explicit domain_error(const string& what_arg);
};

}

1 The classdomain_error defines the type of objects thrown as exceptions by the implementation to
report domain errors.

domain_error(const string& what_arg);

2 Effects: Constructs an object of classdomain_error .
3 Postcondition: strcmp(what(), what_arg .c_str()) == 0 .

[lib.invalid.argument] 19.1.3 Classinvalid_argument

namespace std {
class invalid_argument : public logic_error {
public:

explicit invalid_argument(const string& what_arg);
};

}

1 The classinvalid_argument defines the type of objects thrown as exceptions to report an invalid
argument.

invalid_argument(const string& what_arg);

2 Effects: Constructs an object of classinvalid_argument .
3 Postcondition: strcmp(what(), what_arg .c_str()) == 0 .

[lib.length.error] 19.1.4 Classlength_error

namespace std {
class length_error : public logic_error {
public:

explicit length_error(const string& what_arg);
};

}

1 The classlength_error defines the type of objects thrown as exceptions to report an attempt to produce
an object whose length exceeds its maximum allowable size.

length_error(const string& what_arg);

2 Effects: Constructs an object of classlength_error .
3 Postcondition: strcmp(what(), what_arg .c_str()) == 0 .

350

© ISO/IEC ISO/IEC 14882:1998(E)

19 Diagnostics library 19.1.4 Classlength_error

[lib.out.of.range] 19.1.5 Classout_of_range

namespace std {
class out_of_range : public logic_error {
public:

explicit out_of_range(const string& what_arg);
};

}

1 The classout_of_range defines the type of objects thrown as exceptions to report an argument value
not in its expected range.

out_of_range(const string& what_arg);

2 Effects: Constructs an object of classout_of_range .
3 Postcondition: strcmp(what(), what_arg .c_str()) == 0 .

[lib.runtime.error] 19.1.6 Classruntime_error

namespace std {
class runtime_error : public exception {
public:

explicit runtime_error(const string& what_arg);
};

}

1 The classruntime_error defines the type of objects thrown as exceptions to report errors presumably
detectable only when the program executes.

runtime_error(const string& what_arg);

2 Effects: Constructs an object of classruntime_error .
3 Postcondition: strcmp(what(), what_arg .c_str()) == 0 .

[lib.range.error] 19.1.7 Classrange_error

namespace std {
class range_error : public runtime_error {
public:

explicit range_error(const string& what_arg);
};

}

1 The classrange_error defines the type of objects thrown as exceptions to report range errors in internal
computations.

range_error(const string& what_arg);

2 Effects: Constructs an object of classrange_error .
3 Postcondition: strcmp(what(), what_arg .c_str()) == 0 .

[lib.overflow.error] 19.1.8 Classoverflow_error

namespace std {
class overflow_error : public runtime_error {
public:

explicit overflow_error(const string& what_arg);
};

}

351

ISO/IEC 14882:1998(E) © ISO/IEC

19.1.8 Classoverflow_error 19 Diagnostics library

1 The classoverflow_error defines the type of objects thrown as exceptions to report an arithmetic
overflow error.

overflow_error(const string& what_arg);

2 Effects: Constructs an object of classoverflow_error .
3 Postcondition: strcmp(what(), what_arg .c_str()) == 0 .

[lib.underflow.error] 19.1.9 Classunderflow_error

namespace std {
class underflow_error : public runtime_error {
public:

explicit underflow_error(const string& what_arg);
};

}

1 The classunderflow_error defines the type of objects thrown as exceptions to report an arithmetic
underflow error.

underflow_error(const string& what_arg);

2 Effects: Constructs an object of classunderflow_error .
3 Postcondition: strcmp(what(), what_arg .c_str()) == 0 .

[lib.assertions] 19.2 Assertions

1 Provides macros for documenting C++ program assertions, and for disabling the assertion checks.

2 Header<cassert> (Table 25):

Table 25—Header<cassert> synopsis
_ ____________________

Type Name(s)_ ____________________
Macro: assert_ ____________________

3 The contents are the same as the Standard C library header<assert.h> .

SEE ALSO: ISO C subclause 7.2.

[lib.errno] 19.3 Error numbers

1 Header<cerrno> (Table 26):

Table 26—Header<cerrno> synopsis
_ __________________________________

Type Name(s)_ __________________________________
Macros: EDOM ERANGE errno_ __________________________________

2 The contents are the same as the Standard C library header<errno.h> .

SEE ALSO: ISO C subclause 7.1.4, 7.2, Amendment 1 subclause 4.3.

352

© ISO/IEC ISO/IEC 14882:1998(E)

20 General utilities library [lib.utilities]

1 This clause describes components used by other elements of the Standard C++ library. These components
may also be used by C++ programs.

2 The following clauses describe utility and allocator requirements, utility components, function objects,
dynamic memory management utilities, and date/time utilities, as summarized in Table 27:

Table 27—General utilities library summary
_ _____________________________________

Clause Header(s)_ ______________________________________ _____________________________________
20.1 Requirements_ _____________________________________
20.2 Utility components <utility>_ _____________________________________
20.3 Function objects <functional>_ _____________________________________
20.4 Memory <memory>_ _____________________________________
20.5 Date and time <ctime>_ _____________________________________

[lib.utility.requirements] 20.1 Requirements

1 20.1 describes requirements on template arguments. 20.1.1 through 20.1.3 describe requirements on types
used to instantiate templates. 20.1.5 describes the requirements on storage allocators.

[lib.equalitycomparable] 20.1.1 Equality comparison

1 In Table 28,T is a type to be supplied by a C++ program instantiating a template,a, b andc are values of
typeT.

Table 28—EqualityComparable requirements

expression return type requirement__
a == b convertible tobool == is an equivalence rela-

tion, that is, it satisfies the
following properties:

— For alla, a == a .

— If a == b , thenb == a .

— If a == b andb == c , thena == c .___

[lib.lessthancomparable] 20.1.2 Less than comparison

1 In the following Table 29,T is a type to be supplied by a C++ program instantiating a template,a andb are
values of typeT.

Table 29—LessThanComparable requirements
_ __
expression return type requirement_ ___ __
a < b convertible tobool < is a strict weak ordering relation (25.3)_ __

353

ISO/IEC 14882:1998(E) © ISO/IEC

20.1.3 Copy construction 20 General utilities library

[lib.copyconstructible] 20.1.3 Copy construction

1 In the following Table 30,T is a type to be supplied by a C++ program instantiating a template,t is a value
of typeT, andu is a value of typeconst T .

Table 30—CopyConstructible requirements
_ __
expression return type requirement_ ___ __
T(t) t is equivalent toT(t)_ __
T(u) u is equivalent toT(u)_ __
t.~T()_ __
&t T* denotes the address oft_ __
&u const T* denotes the address ofu_ __

[lib.default.con.req] 20.1.4 Default construction

1 The default constructor is not required. Certain container class member function signatures specify the
default constructor as a default argument.T() must be a well-defined expression (8.5) if one of those sig-
natures is called using the default argument (8.3.6).

[lib.allocator.requirements] 20.1.5 Allocator requirements

1 The library describes a standard set of requirements forallocators, which are objects that encapsulate the
information about an allocation model. This information includes the knowledge of pointer types, the type
of their difference, the type of the size of objects in this allocation model, as well as the memory allocation
and deallocation primitives for it. All of the containers (clause 23) are parameterized in terms of allocators.

2 Table 31 describes the requirements on types manipulated through allocators. All the operations on the
allocators are expected to be amortized constant time. Table 32 describes the requirements on allocator
types.

354

© ISO/IEC ISO/IEC 14882:1998(E)

20 General utilities library 20.1.5 Allocator requirements

Table 31—Descriptive variable definitions
_ ___

Variable Definition_ __ ___
T, U any type_ ___
X an Allocator class for typeT_ ___
Y the corresponding Allocator class for typeU_ ___
t a value of typeconst T&_ ___
a, a1, a2 values of typeX&_ ___
b a value of typeY_ ___
p a value of typeX::pointer , obtained by calling

a1.allocate , wherea1 == a ._ ___
q a value of typeX::const_pointer obtained by

conversion from a valuep._ ___
r a value of typeX::reference obtained by

the expression*p ._ ___
s a value of typeX::const_reference obtained by

the expression*q or by conversion from a valuer ._ ___
u a value of typeY::const_pointer obtained by

callingY::allocate , or else 0._ ___
n a value of typeX::size_type ._ ___

355

ISO/IEC 14882:1998(E) © ISO/IEC

20.1.5 Allocator requirements 20 General utilities library

Table 32—Allocator requirements
_ __

assertion/note
expression return type

pre/post-condition_ ___ __
X::pointer Pointer toT._ __
X::const_pointer Pointer toconst T ._ __

T&X::reference_ __
T const&X::const_reference_ __
Identical toTX::value_type_ __

X::size_type unsigned integral type a type that can represent the size
of the largest object in the alloca-
tion model._ __

X::difference_type signed integral type a type that can represent the dif-
ference between any two pointers
in the allocation model._ __

Ytypename X::template
rebind<U>::other

For allU (includingT),
Y::template
rebind<T>::other is X._ __

a.address(r) X::pointer_ __
a.address(s) X::const_pointer_ __
a.allocate(n)
a.allocate(n,u)

X::pointer Memory is allocated forn objects
of typeT but objects are not con-
structed. allocate may raise
an appropriate exception. The
result is a random access itera-
tor.214)

_ __
(not used)a.deallocate(p, n) All n T objects in the area pointed

by p must be destroyed prior to
this call. n must match the
value passed toallocate to
obtain this memory. Does not
throw exceptions. [Note:p must
not be null. —end note]_ __

a.max_size() X::size_type the largest value that can mean-
ingfully be passed to
X::allocate() ._ __

a1 == a2 bool returns true iff storage allocated
from each can be deallocated via
the other._ __

a1 != a2 bool same as!(a1 == a2)_ __
X() creates a default instance. Note: a

destructor is assumed._ __
X a(b); post:Y(a) == b_ __
a.construct(p,t) (not used) Effect:new((void*)p) T(t)_ __
a.destroy(p) (not used) Effect:((T*)p)->~T()_ __

214) It is intended thata.allocate be an efficient means of allocating a single object of typeT, even whensizeof(T) is small.
That is, there is no need for a container to maintain its own ‘‘free list’’.

356

© ISO/IEC ISO/IEC 14882:1998(E)

20 General utilities library 20.1.5 Allocator requirements

3 The template class memberrebind in the table above is effectively a template typedef: if the name Allo-
cator is bound toSomeAllocator<T> , thenAllocator::rebind<U>::other is the same type as
SomeAllocator<U> .

4 Implementations of containers described in this International Standard are permitted to assume that their
Allocator template parameter meets the following two additional requirements beyond those in Table 32.

— All instances of a given allocator type are required to be interchangeable and always compare equal to
each other.

— The typedef memberspointer , const_pointer , size_type , and difference_type are
required to beT* , T const* , size_t , andptrdiff_t , respectively.

5 Implementors are encouraged to supply libraries that can accept allocators that encapsulate more general
memory models and that support non-equal instances. In such implementations, any requirements imposed
on allocators by containers beyond those requirements that appear in Table 32, and the semantics of con-
tainers and algorithms when allocator instances compare non-equal, are implementation-defined.

[lib.utility] 20.2 Utility components

1 This subclause contains some basic template functions and classes that are used throughout the rest of the
library.

Header<utility> synopsis

namespace std {
// 20.2.1, operators:
namespace rel_ops {

template<class T> bool operator!=(const T&, const T&);
template<class T> bool operator> (const T&, const T&);
template<class T> bool operator<=(const T&, const T&);
template<class T> bool operator>=(const T&, const T&);

}

// 20.2.2, pairs:
template <class T1, class T2> struct pair;
template <class T1, class T2>

bool operator==(const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

bool operator< (const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

bool operator!=(const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

bool operator> (const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

bool operator>=(const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

bool operator<=(const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2> pair<T1,T2> make_pair(const T1&, const T2&);

}

[lib.operators] 20.2.1 Operators

1 To avoid redundant definitions ofoperator!= out of operator== and operators>, <=, and>= out of
operator< , the library provides the following:

357

ISO/IEC 14882:1998(E) © ISO/IEC

20.2.1 Operators 20 General utilities library

template <class T> bool operator!=(const T& x, const T& y);

2 Requires: TypeT is EqualityComparable (20.1.1).
3 Returns: !(x == y) .

template <class T> bool operator>(const T& x, const T& y);

4 Requires: TypeT is LessThanComparable (20.1.2).
5 Returns: y < x .

template <class T> bool operator<=(const T& x, const T& y);

6 Requires: TypeT is LessThanComparable (20.1.2).
7 Returns: !(y < x) .

template <class T> bool operator>=(const T& x, const T& y);

8 Requires: TypeT is LessThanComparable (20.1.2).
9 Returns: !(x < y) .

10 In this library, whenever a declaration is provided for anoperator!= , operator> , operator>= , or
operator<= , and requirements and semantics are not explicitly provided, the requirements and semantics
are as specified in this clause.

[lib.pairs] 20.2.2 Pairs

1 The library provides a template for heterogeneous pairs of values. The library also provides a matching
template function to simplify their construction.

template <class T1, class T2>
struct pair {

typedef T1 first_type;
typedef T2 second_type;

T1 first;
T2 second;
pair();
pair(const T1& x, const T2& y);
template<class U, class V> pair(const pair< U, V> & p);

};

pair();

2 Effects: Initializes its members as if implemented:pair() : first(T1()), second(T2()) {}

pair(const T1& x, const T2& y);

3 Effects: The constructor initializesfirst with x andsecond with y .

template<class U, class V> pair(const pair< U, V> & p);

4 Effects: Initializes members from the corresponding members of the argument, performing implicit con-
versions as needed.

template <class T1, class T2>
bool operator==(const pair<T1, T2>& x, const pair<T1, T2>& y);

5 Returns: x.first == y.first && x.second == y.second .

358

© ISO/IEC ISO/IEC 14882:1998(E)

20 General utilities library 20.2.2 Pairs

template <class T1, class T2>
bool operator<(const pair<T1, T2>& x, const pair<T1, T2>& y);

6 Returns: x.first < y.first || (!(y.first < x.first) && x.second <
y.second) .

template <class T1, class T2>
pair<T1, T2> make_pair(const T1& x, const T2& y);

7 Returns: pair<T1, T2>(x, y) .

8 [Example:In place of:

return pair<int, double>(5, 3.1415926); // explicit types

a C++ program may contain:

return make_pair(5, 3.1415926); // types are deduced

—end example]

[lib.function.objects] 20.3 Function objects

1 Function objects are objects with anoperator() defined. They are important for the effective use of the
library. In the places where one would expect to pass a pointer to a function to an algorithmic template
(clause 25), the interface is specified to accept an object with anoperator() defined. This not only
makes algorithmic templates work with pointers to functions, but also enables them to work with arbitrary
function objects.

Header<functional> synopsis

namespace std {
// 20.3.1, base:
template <class Arg, class Result> struct unary_function;
template <class Arg1, class Arg2, class Result> struct binary_function;

// 20.3.2, arithmetic operations:
template <class T> struct plus;
template <class T> struct minus;
template <class T> struct multiplies;
template <class T> struct divides;
template <class T> struct modulus;
template <class T> struct negate;

// 20.3.3, comparisons:
template <class T> struct equal_to;
template <class T> struct not_equal_to;
template <class T> struct greater;
template <class T> struct less;
template <class T> struct greater_equal;
template <class T> struct less_equal;

// 20.3.4, logical operations:
template <class T> struct logical_and;
template <class T> struct logical_or;
template <class T> struct logical_not;

359

ISO/IEC 14882:1998(E) © ISO/IEC

20.3 Function objects 20 General utilities library

// 20.3.5, negators:
template <class Predicate> struct unary_negate;
template <class Predicate>

unary_negate<Predicate> not1(const Predicate&);
template <class Predicate> struct binary_negate;
template <class Predicate>

binary_negate<Predicate> not2(const Predicate&);

// 20.3.6, binders:
template <class Operation> class binder1st;
template <class Operation, class T>

binder1st<Operation> bind1st(const Operation&, const T&);
template <class Operation> class binder2nd;
template <class Operation, class T>

binder2nd<Operation> bind2nd(const Operation&, const T&);

// 20.3.7, adaptors:
template <class Arg, class Result> class pointer_to_unary_function;
template <class Arg, class Result>

pointer_to_unary_function<Arg,Result> ptr_fun(Result (*)(Arg));
template <class Arg1, class Arg2, class Result>

class pointer_to_binary_function;
template <class Arg1, class Arg2, class Result>

pointer_to_binary_function<Arg1,Arg2,Result>
ptr_fun(Result (*)(Arg1,Arg2));

// 20.3.8, adaptors:
template<class S, class T> class mem_fun_t;
template<class S, class T, class A> class mem_fun1_t;
template<class S, class T>

mem_fun_t<S,T> mem_fun(S (T::*f)());
template<class S, class T, class A>

mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A));
template<class S, class T> class mem_fun_ref_t;
template<class S, class T, class A> class mem_fun1_ref_t;
template<class S, class T>

mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)());
template<class S, class T, class A>

mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A));

template <class S, class T> class const_mem_fun_t;
template <class S, class T, class A> class const_mem_fun1_t;
template <class S, class T>

const_mem_fun_t<S,T> mem_fun(S (T::*f)() const);
template <class S, class T, class A>

const_mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A) const);
template <class S, class T> class const_mem_fun_ref_t;
template <class S, class T, class A> class const_mem_fun1_ref_t;
template <class S, class T>

const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const);
template <class S, class T, class A>

const_mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A) const);
}

2 Using function objects together with function templates increases the expressive power of the library as
well as making the resulting code much more efficient.

3 [Example: If a C++ program wants to have a by-element addition of two vectorsa and b containing
double and put the result intoa, it can do:

360

© ISO/IEC ISO/IEC 14882:1998(E)

20 General utilities library 20.3 Function objects

transform(a.begin(), a.end(), b.begin(), a.begin(), plus<double>());

—end example]

4 [Example:To negate every element ofa:

transform(a.begin(), a.end(), a.begin(), negate<double>());

The corresponding functions will inline the addition and the negation.—end example]

5 To enable adaptors and other components to manipulate function objects that take one or two arguments it
is required that the function objects correspondingly provide typedefsargument_type and
result_type for function objects that take one argument andfirst_argument_type ,
second_argument_type , andresult_type for function objects that take two arguments.

[lib.base] 20.3.1 Base

1 The following classes are provided to simplify the typedefs of the argument and result types:

template <class Arg, class Result>
struct unary_function {

typedef Arg argument_type;
typedef Result result_type;

};

template <class Arg1, class Arg2, class Result>
struct binary_function {

typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;

};

[lib.arithmetic.operations] 20.3.2 Arithmetic operations

1 The library provides basic function object classes for all of the arithmetic operators in the language (5.6,
5.7).

template <class T> struct plus : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

2 operator() returnsx + y .

template <class T> struct minus : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

3 operator() returnsx - y .

template <class T> struct multiplies : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

4 operator() returnsx * y .

361

ISO/IEC 14882:1998(E) © ISO/IEC

20.3.2 Arithmetic operations 20 General utilities library

template <class T> struct divides : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

5 operator() returnsx / y .

template <class T> struct modulus : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

6 operator() returnsx % y .

template <class T> struct negate : unary_function<T,T> {
T operator()(const T& x) const;

};

7 operator() returns- x .

[lib.comparisons] 20.3.3 Comparisons

1 The library provides basic function object classes for all of the comparison operators in the language (5.9,
5.10).

template <class T> struct equal_to : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

2 operator() returnsx == y .

template <class T> struct not_equal_to : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

3 operator() returnsx != y .

template <class T> struct greater : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

4 operator() returnsx > y .

template <class T> struct less : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

5 operator() returnsx < y .

template <class T> struct greater_equal : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

6 operator() returnsx >= y .

362

© ISO/IEC ISO/IEC 14882:1998(E)

20 General utilities library 20.3.3 Comparisons

template <class T> struct less_equal : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

7 operator() returnsx <= y .

8 For templatesgreater , less , greater_equal , and less_equal , the specializations for any
pointer type yield a total order, even if the built-in operators<, >, <=, >= do not.

[lib.logical.operations] 20.3.4 Logical operations

1 The library provides basic function object classes for all of the logical operators in the language (5.14, 5.15,
5.3.1).

template <class T> struct logical_and : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

2 operator() returnsx && y .

template <class T> struct logical_or : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

3 operator() returnsx || y .

template <class T> struct logical_not : unary_function<T,bool> {
bool operator()(const T& x) const;

};

4 operator() returns! x .

[lib.negators] 20.3.5 Negators

1 Negatorsnot1 andnot2 take a unary and a binary predicate, respectively, and return their complements
(5.3.1).

template <class Predicate>
class unary_negate

: public unary_function<typename Predicate::argument_type,bool> {
public:

explicit unary_negate(const Predicate& pred);
bool operator()(const typename Predicate::argument_type& x) const;

};

2 operator() returns! pred (x) .

template <class Predicate>
unary_negate<Predicate> not1(const Predicate& pred);

3 Returns: unary_negate<Predicate>(pred) .

363

ISO/IEC 14882:1998(E) © ISO/IEC

20.3.5 Negators 20 General utilities library

template <class Predicate>
class binary_negate

: public binary_function<typename Predicate::first_argument_type,
typename Predicate::second_argument_type, bool> {

public:
explicit binary_negate(const Predicate& pred);
bool operator()(const typename Predicate::first_argument_type& x,

const typename Predicate::second_argument_type& y) const;
};

4 operator() returns! pred (x, y) .

template <class Predicate>
binary_negate<Predicate> not2(const Predicate& pred);

5 Returns: binary_negate<Predicate>(pred) .

[lib.binders] 20.3.6 Binders

1 Bindersbind1st andbind2nd take a function objectf of two arguments and a valuex and return a
function object of one argument constructed out off with the first or second argument correspondingly
bound tox .

[lib.binder.1st] 20.3.6.1 Template classbinder1st

template <class Operation>
class binder1st

: public unary_function<typename Operation::second_argument_type,
typename Operation::result_type> {

protected:
Operation op;
typename Operation::first_argument_type value;

public:
binder1st(const Operation& x,

const typename Operation::first_argument_type& y);
typename Operation::result_type

operator()(const typename Operation::second_argument_type& x) const;
};

1 The constructor initializesop with x andvalue with y .

2 operator() returnsop(value, x) .

[lib.bind.1st] 20.3.6.2bind1st

template <class Operation, class T>
binder1st<Operation> bind1st(const Operation& op, const T& x);

1 Returns: binder1st<Operation>(op, typename Operation::first_argument_type(x)) .

[lib.binder.2nd] 20.3.6.3 Template classbinder2nd

template <class Operation>
class binder2nd

: public unary_function<typename Operation::first_argument_type,
typename Operation::result_type> {

protected:
Operation op;
typename Operation::second_argument_type value;

364

© ISO/IEC ISO/IEC 14882:1998(E)

20 General utilities library 20.3.6.3 Template classbinder2nd

public:
binder2nd(const Operation& x,

const typename Operation::second_argument_type& y);
typename Operation::result_type

operator()(const typename Operation::first_argument_type& x) const;
};

1 The constructor initializesop with x andvalue with y .

2 operator() returnsop(x,value) .

[lib.bind.2nd] 20.3.6.4bind2nd

template <class Operation, class T>
binder2nd<Operation> bind2nd(const Operation& op, const T& x);

1 Returns: binder2nd<Operation>(op, typename Operation::second_argument_type(x)) .

2 [Example:

find_if(v.begin(), v.end(), bind2nd(greater<int>(), 5));

finds the first integer in vectorv greater than 5;

find_if(v.begin(), v.end(), bind1st(greater<int>(), 5));

finds the first integer inv less than 5.—end example]

[lib.function.pointer.adaptors] 20.3.7 Adaptors for pointers to functions

1 To allow pointers to (unary and binary) functions to work with function adaptors the library provides:

template <class Arg, class Result>
class pointer_to_unary_function : public unary_function<Arg, Result> {
public:

explicit pointer_to_unary_function(Result (* f)(Arg));
Result operator()(Arg x) const;

};

2 operator() returnsf (x) .

template <class Arg, class Result>
pointer_to_unary_function<Arg, Result> ptr_fun(Result (* f)(Arg));

3 Returns: pointer_to_unary_function<Arg, Result>(f) .

template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function :

public binary_function<Arg1,Arg2,Result> {
public:

explicit pointer_to_binary_function(Result (* f)(Arg1, Arg2));
Result operator()(Arg1 x, Arg2 y) const;

};

4 operator() returnsf (x, y) .

template <class Arg1, class Arg2, class Result>
pointer_to_binary_function<Arg1,Arg2,Result>

ptr_fun(Result (* f)(Arg1, Arg2));

5 Returns: pointer_to_binary_function<Arg1,Arg2,Result>(f) .

365

ISO/IEC 14882:1998(E) © ISO/IEC

20.3.7 Adaptors for pointers to functions 20 General utilities library

6 [Example:

replace_if(v.begin(), v.end(), not1(bind2nd(ptr_fun(strcmp), "C")), "C ++");

replaces eachCwith C++ in sequencev .215) —end example]

[lib.member.pointer.adaptors] 20.3.8 Adaptors for pointers to members

1 The purpose of the following is to provide the same facilities for pointer to members as those provided for
pointers to functions in 20.3.7.

template <class S, class T> class mem_fun_t
: public unary_function<T*, S> {

public:
explicit mem_fun_t(S (T::*p)());
S operator()(T* p) const;

};

2 mem_fun_t calls the member function it is initialized with given a pointer argument.

template <class S, class T, class A> class mem_fun1_t
: public binary_function<T*, A, S> {

public:
explicit mem_fun1_t(S (T::*p)(A));
S operator()(T* p, A x) const;

};

3 mem_fun1_t calls the member function it is initialized with given a pointer argument and an additional
argument of the appropriate type.

template<class S, class T> mem_fun_t<S,T>
mem_fun(S (T::*f)());

template<class S, class T, class A> mem_fun1_t<S,T,A>
mem_fun(S (T::*f)(A));

4 mem_fun(&X::f) returns an object through whichX::f can be called given a pointer to anX followed
by the argument required forf (if any).

template <class S, class T> class mem_fun_ref_t
: public unary_function<T, S> {

public:
explicit mem_fun_ref_t(S (T::*p)());
S operator()(T& p) const;

};

5 mem_fun_ref_t calls the member function it is initialized with given a reference argument.

template <class S, class T, class A> class mem_fun1_ref_t
: public binary_function<T, A, S> {

public:
explicit mem_fun1_ref_t(S (T::*p)(A));
S operator()(T& p, A x) const;

};

6 mem_fun1_ref_t calls the member function it is initialized with given a reference argument and an
additional argument of the appropriate type.

215)Implementations that have multiple pointer to function types provide additionalptr_fun template functions.

366

© ISO/IEC ISO/IEC 14882:1998(E)

20 General utilities library 20.3.8 Adaptors for pointers to members

template<class S, class T> mem_fun_ref_t<S,T>
mem_fun_ref(S (T::*f)());

template<class S, class T, class A> mem_fun1_ref_t<S,T,A>
mem_fun_ref(S (T::*f)(A));

7 mem_fun_ref(&X::f) returns an object through whichX::f can be called given a reference to anX
followed by the argument required forf (if any).

template <class S, class T> class const_mem_fun_t
: public unary_function<T*, S> {

public:
explicit const_mem_fun_t(S (T::*p)() const);
S operator()(const T* p) const;

};

8 const_mem_fun_t calls the member function it is initialized with given a pointer argument.

template <class S, class T, class A> class const_mem_fun1_t
: public binary_function<T*, A, S> {

public:
explicit const_mem_fun1_t(S (T::*p)(A) const);
S operator()(const T* p, A x) const;

};

9 const_mem_fun1_t calls the member function it is initialized with given a pointer argument and an
additional argument of the appropriate type.

template<class S, class T> const_mem_fun_t<S,T>
mem_fun(S (T::*f)() const);

template<class S, class T, class A> const_mem_fun1_t<S,T,A>
mem_fun(S (T::*f)(A) const);

10 mem_fun(&X::f) returns an object through whichX::f can be called given a pointer to anX followed
by the argument required forf (if any).

template <class S, class T> class const_mem_fun_ref_t
: public unary_function<T, S> {

public:
explicit const_mem_fun_ref_t(S (T::*p)() const);
S operator()(const T& p) const;

};

11 const_mem_fun_ref_t calls the member function it is initialized with given a reference argument.

template <class S, class T, class A> class const_mem_fun1_ref_t
: public binary_function<T, A, S> {

public:
explicit const_mem_fun1_ref_t(S (T::*p)(A) const);
S operator()(const T& p, A x) const;

};

12 const_mem_fun1_ref_t calls the member function it is initialized with given a reference argument
and an additional argument of the appropriate type.

template<class S, class T> const_mem_fun_ref_t<S,T>
mem_fun_ref(S (T::*f)() const);

template<class S, class T, class A> const_mem_fun1_ref_t<S,T,A>
mem_fun_ref(S (T::*f)(A) const);

367

ISO/IEC 14882:1998(E) © ISO/IEC

20.3.8 Adaptors for pointers to members 20 General utilities library

13 mem_fun_ref(&X::f) returns an object through whichX::f can be called given a reference to anX
followed by the argument required forf (if any).

[lib.memory] 20.4 Memory

Header<memory> synopsis

namespace std {
// 20.4.1, the default allocator:
template <class T> class allocator;
template <> class allocator<void>;
template <class T, class U>

bool operator==(const allocator<T>&, const allocator<U>&) throw();
template <class T, class U>

bool operator!=(const allocator<T>&, const allocator<U>&) throw();

// 20.4.2, raw storage iterator:
template <class OutputIterator, class T> class raw_storage_iterator;

// 20.4.3, temporary buffers:
template <class T>

pair<T*,ptrdiff_t> get_temporary_buffer(ptrdiff_t n);
template <class T>

void return_temporary_buffer(T* p);

// 20.4.4, specialized algorithms:
template <class InputIterator, class ForwardIterator>

ForwardIterator
uninitialized_copy(InputIterator first , InputIterator last ,

ForwardIterator result);
template <class ForwardIterator, class T>

void uninitialized_fill(ForwardIterator first , ForwardIterator last ,
const T& x);

template <class ForwardIterator, class Size, class T>
void uninitialized_fill_n(ForwardIterator first , Size n, const T& x);

// 20.4.5, pointers:
template<class X> class auto_ptr;

}

[lib.default.allocator] 20.4.1 The default allocator

namespace std {
template <class T> class allocator;

// specialize forvoid :
template <> class allocator<void> {
public:

typedef void* pointer;
typedef const void* const_pointer;
// reference-to-void members are impossible.
typedef void value_type;
template <class U> struct rebind { typedef allocator<U> other; };

};

368

© ISO/IEC ISO/IEC 14882:1998(E)

20 General utilities library 20.4.1 The default allocator

template <class T> class allocator {
public:

typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
template <class U> struct rebind { typedef allocator<U> other; };

allocator() throw();
allocator(const allocator&) throw();
template <class U> allocator(const allocator<U>&) throw();

~allocator() throw();

pointer address(reference x) const;
const_pointer address(const_reference x) const;

pointer allocate(
size_type, allocator<void>::const_pointer hint = 0);

void deallocate(pointer p, size_type n);
size_type max_size() const throw();

void construct(pointer p, const T& val);
void destroy(pointer p);

};
}

[lib.allocator.members] 20.4.1.1allocator members

pointer address(reference x) const;

1 Returns: &x .

const_pointer address(const_reference x) const;

2 Returns: &x .

pointer allocate(size_type n, allocator<void>::const_pointer hint =0);

3 Notes: Uses::operator new(size_t) (18.4.1).
4 Requires: hint either 0 or previously obtained from memberallocate and not yet passed to member

deallocate . The valuehint may be used by an implementation to help improve performance216).
5 Returns: a pointer to the initial element of an array of storage of sizen * sizeof(T) , aligned appro-

priately for objects of typeT.
6 Note: the storage is obtained by calling::operator new(size_t) , but it is unspecified when or

how often this function is called. The use ofhint is unspecified, but intended as an aid to locality if
an implementation so desires.

7 Throws: bad_alloc if the storage cannot be obtained.

216)In a container member function, the address of an adjacent element is often a good choice to pass for this argument.

369

ISO/IEC 14882:1998(E) © ISO/IEC

20.4.1.1allocator members 20 General utilities library

void deallocate(pointer p, size_type n);

8 Requires: p shall be a pointer value obtained fromallocate() . n shall equal the value passed as the
first argument to the invocation of allocate which returnedp.

9 Effects: Deallocates the storage referenced byp.
10 Notes: Uses::operator delete(void*) (18.4.1), but it is unspecified when this function is called.

size_type max_size() const throw();

11 Returns: the largest valueN for which the callallocate(N,0) might succeed.

void construct(pointer p, const_reference val);

12 Returns: new((void *) p) T(val)

void destroy(pointer p);

13 Returns: ((T*) p)->~T()

[lib.allocator.globals] 20.4.1.2allocator globals

template <class T1, class T2>
bool operator==(const allocator<T1>&, const allocator<T2>&) throw();

1 Returns: true .

template <class T1, class T2>
bool operator!=(const allocator<T1>&, const allocator<T2>&) throw();

2 Returns: false .

[lib.storage.iterator] 20.4.2 Raw storage iterator

1 raw_storage_iterator is provided to enable algorithms to store their results into uninitialized mem-
ory. The formal template parameterOutputIterator is required to have itsoperator* return an
object for whichoperator& is defined and returns a pointer toT, and is also required to satisfy the
requirements of an output iterator (24.1.2).

namespace std {
template <class OutputIterator, class T>
class raw_storage_iterator

: public iterator<output_iterator_tag,void,void,void,void> {
public:

explicit raw_storage_iterator(OutputIterator x);

raw_storage_iterator<OutputIterator,T>& operator*();
raw_storage_iterator<OutputIterator,T>& operator=(const T& element);
raw_storage_iterator<OutputIterator,T>& operator++();
raw_storage_iterator<OutputIterator,T> operator++(int);

};
}

raw_storage_iterator(OutputIterator x);

2 Effects: Initializes the iterator to point to the same value to whichx points.

370

© ISO/IEC ISO/IEC 14882:1998(E)

20 General utilities library 20.4.2 Raw storage iterator

raw_storage_iterator<OutputIterator,T>& operator*();

3 Returns: *this

raw_storage_iterator<OutputIterator,T>& operator=(const T& element);

4 Effects: Constructs a value fromelement at the location to which the iterator points.
5 Returns: A reference to the iterator.

raw_storage_iterator<OutputIterator,T>& operator++();

6 Effects: Pre-increment: advances the iterator and returns a reference to the updated iterator.

raw_storage_iterator<OutputIterator,T> operator++(int);

7 Effects: Post-increment: advances the iterator and returns the old value of the iterator.

[lib.temporary.buffer] 20.4.3 Temporary buffers

template <class T>
pair<T*, ptrdiff_t> get_temporary_buffer(ptrdiff_t n);

1 Effects: Obtains a pointer to storage sufficient to store up ton adjacentT objects.
2 Returns: A pair containing the buffer’s address and capacity (in the units ofsizeof(T)), or a pair of

0 values if no storage can be obtained.

template <class T> void return_temporary_buffer(T* p);

3 Effects: Deallocates the buffer to whichp points.
4 Requires: The buffer shall have been previously allocated byget_temporary_buffer .

[lib.specialized.algorithms] 20.4.4 Specialized algorithms

1 All the iterators that are used as formal template parameters in the following algorithms are required to
have theiroperator* return an object for whichoperator& is defined and returns a pointer toT. In
the algorithmuninitialized_copy , the formal template parameterInputIterator is required to
satisfy the requirements of an input iterator (24.1.1). In all of the following algorithms, the formal template
parameterForwardIterator is required to satisfy the requirements of a forward iterator (24.1.3) and
also to satisfy the requirements of a mutable iterator (24.1), and is required to have the property that no
exceptions are thrown from increment, assignment, comparison, or dereference of valid iterators. In the fol-
lowing algorithms, if an exception is thrown there are no effects.

[lib.uninitialized.copy] 20.4.4.1uninitialized_copy

template <class InputIterator, class ForwardIterator>
ForwardIterator

uninitialized_copy(InputIterator first , InputIterator last ,
ForwardIterator result);

1 Effects:

for (; first != last; ++result, ++first)
new (static_cast<void*>(&*result))

typename iterator_traits<ForwardIterator>::value_type(*first);

2 Returns: result

371

ISO/IEC 14882:1998(E) © ISO/IEC

20.4.4.2uninitialized_fill 20 General utilities library

[lib.uninitialized.fill] 20.4.4.2uninitialized_fill

template <class ForwardIterator, class T>
void uninitialized_fill(ForwardIterator first , ForwardIterator last ,

const T& x);

1 Effects:

for (; first != last; ++first)
new (static_cast<void*>(&*first))

typename iterator_traits<ForwardIterator>::value_type(x);

[lib.uninitialized.fill.n] 20.4.4.3uninitialized_fill_n

template <class ForwardIterator, class Size, class T>
void uninitialized_fill_n(ForwardIterator first , Size n, const T& x);

1 Effects:

for (; n--; ++first)
new (static_cast<void*>(&*first))

typename iterator_traits<ForwardIterator>::value_type(x);

[lib.auto.ptr] 20.4.5 Template classauto_ptr

1 Templateauto_ptr stores a pointer to an object obtained vianew and deletes that object when it itself is
destroyed (such as when leaving block scope 6.7).

2 Templateauto_ptr_ref holds a reference to anauto_ptr . It is used by theauto_ptr conversions
to allowauto_ptr objects to be passed to and returned from functions.

namespace std {
template<class X> class auto_ptr {

template <class Y> struct auto_ptr_ref {};
public:

typedef X element_type;

// 20.4.5.1 construct/copy/destroy:
explicit auto_ptr(X* p =0) throw();
auto_ptr(auto_ptr&) throw();
template<class Y> auto_ptr(auto_ptr<Y>&) throw();
auto_ptr& operator=(auto_ptr&) throw();
template<class Y> auto_ptr& operator=(auto_ptr<Y>&) throw();

~auto_ptr() throw();

// 20.4.5.2 members:
X& operator*() const throw();
X* operator->() const throw();
X* get() const throw();
X* release() throw();
void reset(X* p =0) throw();

// 20.4.5.3 conversions:
auto_ptr(auto_ptr_ref<X>) throw();
template<class Y> operator auto_ptr_ref<Y>() throw();
template<class Y> operator auto_ptr<Y>() throw();

};
}

372

© ISO/IEC ISO/IEC 14882:1998(E)

20 General utilities library 20.4.5 Template classauto_ptr

3 The auto_ptr provides a semantics of strict ownership. Anauto_ptr owns the object it holds a
pointer to. Copying anauto_ptr copies the pointer and transfers ownership to the destination. If more
than oneauto_ptr owns the same object at the same time the behavior of the program is undefined.
[Note: The uses ofauto_ptr include providing temporary exception-safety for dynamically allocated
memory, passing ownership of dynamically allocated memory to a function, and returning dynamically
allocated memory from a function.auto_ptr does not meet theCopyConstructible and
Assignable requirements for Standard Library container elements and thus instantiating a Standard
Library container with anauto_ptr results in undefined behavior.—end note]

[lib.auto.ptr.cons] 20.4.5.1auto_ptr constructors

explicit auto_ptr(X* p =0) throw();

1 Postconditions: *this holds the pointerp.

auto_ptr(auto_ptr& a) throw();

2 Effects: Callsa.release() .
3 Postconditions: *this holds the pointer returned froma.release() .

template<class Y> auto_ptr(auto_ptr<Y>& a) throw();

4 Requires: Y* can be implicitly converted toX* .
5 Effects: Callsa.release() .
6 Postconditions: *this holds the pointer returned froma.release() .

auto_ptr& operator=(auto_ptr& a) throw();

7 Requires: The expressiondelete get() is well formed.
8 Effects: reset(a.release()) .
9 Returns: *this .

template<class Y> auto_ptr& operator=(auto_ptr<Y>& a) throw();

10 Requires: Y* can be implicitly converted toX* . The expressiondelete get() is well formed.
11 Effects: reset(a.release()) .
12 Returns: *this .

~auto_ptr() throw();

13 Requires: The expressiondelete get() is well formed.
14 Effects: delete get() .

[lib.auto.ptr.members] 20.4.5.2auto_ptr members

X& operator*() const throw();

1 Requires: get() != 0
2 Returns: *get()

X* operator->() const throw();

3 Returns: get()

373

ISO/IEC 14882:1998(E) © ISO/IEC

20.4.5.2auto_ptr members 20 General utilities library

X* get() const throw();

4 Returns: The pointer*this holds.

X* release() throw();

5 Returns: get()
6 Postcondition: *this holds the null pointer.

void reset(X* p=0) throw();

7 Effects: If get() != p thendelete get() .
8 Postconditions: *this holds the pointerp.

[lib.auto.ptr.conv] 20.4.5.3auto_ptr conversions

auto_ptr(auto_ptr_ref<X> r) throw();

1 Effects: Callsp.release() for theauto_ptr p thatr holds.
2 Postconditions: *this hold the pointer returned fromrelease() .

template<class Y> operator auto_ptr_ref<Y>() throw();

3 Returns: An auto_ptr_ref<Y> that holds*this .

template<class Y> operator auto_ptr<Y>() throw();

4 Effects: Callsrelease() .
5 Returns: An auto_ptr<Y> that holds the pointer returned fromrelease() .

[lib.c.malloc] 20.4.6 C Library

1 Header<cstdlib> (Table 33):

Table 33—Header<cstdlib> synopsis
_ _______________________________

Type Name(s)_ _______________________________
Functions: calloc malloc

free realloc_ _______________________________

2 The contents are the same as the Standard C library header<stdlib.h>, with the following changes:

3 The functionscalloc() , malloc() , and realloc() do not attempt to allocate storage by calling
::operator new() (18.4).

4 The functionfree() does not attempt to deallocate storage by calling::operator delete() .

SEE ALSO: ISO C clause 7.11.2.

374

© ISO/IEC ISO/IEC 14882:1998(E)

20 General utilities library 20.4.6 C Library

5 Header<cstring> (Table 34):

Table 34—Header<cstring> synopsis
_ _______________________________

Type Name(s)_ _______________________________
Macro: NULL_ _______________________________
Type: size_t_ _______________________________
Functions: memchr memcmp

memcpy memmove memset_ _______________________________

6 The contents are the same as the Standard C library header<string.h> , with the change tomemchr()
specified in 21.4.

SEE ALSO: ISO C clause 7.11.2.

[lib.date.time] 20.5 Date and time

1 Header<ctime> (Table 35):

Table 35—Header<ctime> synopsis
_ ___

Type Name(s)_ ___
Macros: NULL_ ___
Types: size_t clock_t time_t_ ___
Struct: tm_ ___
Functions:
asctime clock difftime localtime strftime

ctime gmtime mktime time_ ___

2 The contents are the same as the Standard C library header<time.h>.

SEE ALSO: ISO C clause 7.12, Amendment 1 clause 4.6.4.

375

ISO/IEC 14882:1998(E) © ISO/IEC

376

(Blank page)

© ISO/IEC ISO/IEC 14882:1998(E)

21 Strings library 21 Strings library

21 Strings library [lib.strings]

1 This clause describes components for manipulating sequences of“characters,” where characters may be of
any POD (3.9) type. In this clause such types are called char-like types, and objects of char-like types are
called char-like objects or simply“characters.”

2 The following subclauses describe a character traits class, a string class, and null-terminated sequence utili-
ties, as summarized in Table 36:

Table 36—Strings library summary
_ ___

Subclause Header(s)_ __ ___
21.1 Character traits <string>_ ___
21.2 String classes <string>_ ___

<cctype>

<cwctype>

<cstring>

<cwchar>

21.4 Null-terminated sequence utilities

<cstdlib>_ ___

[lib.char.traits] 21.1 Character traits

1 This subclause defines requirements on classes representingcharacter traits, and defines a class template
char_traits<charT> , along with two specializations, char_traits<char> and
char_traits<wchar_t> , that satisfy those requirements.

2 Most classes specified in clauses 21.2 and 27 need a set of related types and functions to complete the defi-
nition of their semantics. These types and functions are provided as a set of member typedefs and functions
in the template parameter ‘traits’ used by each such template. This subclause defines the semantics guaran-
teed by these members.

3 To specialize those templates to generate a string or iostream class to handle a particular character container
type CharT , that and its related character traits classTraits are passed as a pair of parameters to the
string or iostream template as formal parameterscharT and traits . Traits::char_type shall be
the same asCharT .

4 This subclause specifies a struct template,char_traits<charT> , and two explicit specializations of it,
char_traits<char> andchar_traits<wchar_t> , all of which appear in the header<string>
and satisfy the requirements below.

[lib.char.traits.require] 21.1.1 Character traits requirements

1 In Table 37,X denotes a Traits class defining types and functions for the character container typeCharT ; c
andd denote values of typeCharT ; p andq denote values of typeconst CharT* ; s denotes a value of
typeCharT* ; n, i andj denote values of typesize_t ; e andf denote values of typeX::int_type ;
pos denotes a value of typeX::pos_type ; and state denotes a value of typeX::state_type .
Operations on Traits shall not throw exceptions.

377

ISO/IEC 14882:1998(E) © ISO/IEC

21.1.1 Character traits requirements 21 Strings library

Table 37—Traits requirements
_ ___

assertion/note
expression return type

pre/post-condition
complexity

_ __ ___
X::char_type charT (described in 21.1.2) compile-time_ ___
X::int_type (described in 21.1.2) compile-time_ ___
X::off_type (described in 21.1.2) compile-time_ ___
X::pos_type (described in 21.1.2) compile-time_ ___
X::state_type (described in 21.1.2) compile-time_ ___
X::assign(c,d) (not used) assignsc=d . constant_ ___
X::eq(c,d) bool constant yields: whetherc is to be treated as equal tod._ ___
X::lt(c,d) bool constant yields: whetherc is to be treated as less thand._ ___

int linearX::compare
(p,q,n)

yields: 0 if for eachi in [0,n),
X::eq(p[i],q[i]) is true; else, a negative
value if, for somej in [0,n),
X::lt(p[j],q[j]) is true and for eachi in
[0,j) X::eq(p[i],q[i]) is true; else a posi-
tive value._ ___

X::length(p) size_t linear yields: the smallesti such that
X::eq(p[i],charT()) is true._ ___

X::find(p,n,c) linearconst X::
char_type*

yields: the smallestq in [p,p+n) such that
X::eq(*q,c) is true, zero otherwise._ ___

X::move(s,p,n) linearX::
char_type*

for eachi in [0,n), performs
X::assign(s[i],p[i]) . Copies correctly
even wherep is in [s,s+n). yields:s ._ ___

X::copy(s,p,n) linearX::
char_type*

pre:p not in [s,s+n). yields:s . for eachi in
[0,n), performsX::assign(s[i],p[i]) ._ ___

linearX::assign
(s,n,c)

X::
char_type*

for eachi in [0,n), performs
X::assign(s[i],c) . yields:s ._ ___

X::not_eof(e) int_type constant yields:e if X::eq_int_type(e,X::eof())
is false, otherwise a valuef such that
X::eq_int_type(f,X::eof()) is false._ ___

constantX::to_char_type
(e)

X::
char_type

yields: if for somec ,
X::eq_int_type(e,X::to_int_type(c))
is true,c ; else some unspecified value._ ___

constantX::to_int_type
(c)

X::
int_type

yields: some valuee, constrained by the definitions
of to_char_type andeq_int_type ._ ___

bool constantX::eq_int_type
(e,f)

yields: for allc andd, X::eq(c,d) is equal to
X::eq_int_type(X::to_int_type(c),
X::to_int_type(d)) ; otherwise, yields true if
e andf are both copies ofX::eof() ; otherwise,
yields false if one ofe andf are copies of
X::eof() and the other is not; otherwise the
value is unspecified._ ___

X::eof() constantX::
int_type

yields: a valuee such that
X::eq_int_type(e,X::to_int_type(c))
is false for all valuesc ._ ___

2 The struct template

template<class charT> struct char_traits;

shall be provided in the header<string> as a basis for explicit specializations.

378

© ISO/IEC ISO/IEC 14882:1998(E)

21 Strings library 21.1.1 Character traits requirements

3 In the following subclauses, the tokencharT represents the parameter of the traits template.

[lib.char.traits.typedefs] 21.1.2 traits typedefs

typedef CHAR_T char_type;

1 The typechar_type is used to refer to the character container type in the implementation of the library
classes defined in 21.2 and clause 27.

typedef INT_T int_type;

2 Requires: For a certain character container typechar_type , a related container typeINT_T shall be a
type or class which can represent all of the valid characters converted from the corresponding
char_type values, as well as an end-of-file value,eof() . The typeint_type represents a charac-
ter container type which can hold end-of-file to be used as a return type of the iostream class member
functions.217)

typedef OFF_T off_type;
typedef POS_T pos_type;

3 Requires: Requirements foroff_type andpos_type are described in 27.1.2.

typedef STATE_T state_type;

4 Requires: state_type shall meet the requirements ofCopyConstructible types (20.1.3).

[lib.char.traits.specializations] 21.1.3 char_traits specializations

namespace std {
template<> struct char_traits<char>;
template<> struct char_traits<wchar_t>;

}

1 The header<string> declares two structs that are specializations of the template structchar_traits .

2 The structchar_traits<char> is thechar type specialization of the template structchar_traits ,
which contains all of the types and functions necessary to ensure the behavior of the classes in 21.2 and
clause 27.

3 The types and static member functions are described in detail in 21.1.1.

[lib.char.traits.specializations.char] 21.1.3.1struct char_traits<char>

namespace std {
template<>
struct char_traits<char> {

typedef char char_type;
typedef int int_type;
typedef streamoff off_type;
typedef streampos pos_type;
typedef mbstate_t state_type;

static void assign(char_type& c1, const char_type& c2);
static bool eq(const char_type& c1, const char_type& c2);
static bool lt(const char_type& c1, const char_type& c2);

217)If eof() can be held inchar_type then some iostreams operations may give surprising results.

379

ISO/IEC 14882:1998(E) © ISO/IEC

21.1.3.1struct char_traits<char> 21 Strings library

static int compare(const char_type* s1, const char_type* s2, size_t n);
static size_t length(const char_type* s);
static const char_type* find(const char_type* s, size_t n,

const char_type& a);
static char_type* move(char_type* s1, const char_type* s2, size_t n);
static char_type* copy(char_type* s1, const char_type* s2, size_t n);
static char_type* assign(char_type* s, size_t n, char_type a);

static int_type not_eof(const int_type& c);
static char_type to_char_type(const int_type& c);
static int_type to_int_type(const char_type& c);
static bool eq_int_type(const int_type& c1, const int_type& c2);
static int_type eof();

};
}

1 The header<string> (21.2) declares a specialization of the template structchar_traits for char . It
is for narrow-oriented iostream classes.

2 The defined types forint_type , pos_type , off_type , andstate_type are int , streampos ,
streamoff , andmbstate_t respectively.

3 The typestreampos is an implementation-defined type that satisfies the requirements forPOS_T in
21.1.2.

4 The typestreamoff is an implementation-defined type that satisfies the requirements forOFF_T in
21.1.2.

5 The typembstate_t is defined in<cwchar> and can represent any of the conversion states possible to
occur in an implementation-defined set of supported multibyte character encoding rules.

6 The two-argument membersassign , eq , andlt are defined identically to the built-in operators=, ==,
and< respectively.

7 The membereof() returnsEOF.

[lib.char.traits.specializations.wchar.t] 21.1.3.2struct char_traits<wchar_t>

namespace std {
template<>
struct char_traits<wchar_t> {

typedef wchar_t char_type;
typedef wint_t int_type;
typedef streamoff off_type;
typedef wstreampos pos_type;
typedef mbstate_t state_type;

static void assign(char_type& c1, const char_type& c2);
static bool eq(const char_type& c1, const char_type& c2);
static bool lt(const char_type& c1, const char_type& c2);

static int compare(const char_type* s1, const char_type* s2, size_t n);
static size_t length(const char_type* s);
static const char_type* find(const char_type* s, size_t n,

const char_type& a);
static char_type* move(char_type* s1, const char_type* s2, size_t n);
static char_type* copy(char_type* s1, const char_type* s2, size_t n);
static char_type* assign(char_type* s, size_t n, char_type a);

380

© ISO/IEC ISO/IEC 14882:1998(E)

21 Strings library 21.1.3.2struct char_traits<wchar_t>

static int_type not_eof(const int_type& c);
static char_type to_char_type(const int_type& c);
static int_type to_int_type(const char_type& c);
static bool eq_int_type(const int_type& c1, const int_type& c2);
static int_type eof();

};
}

The header<string> (21.2) declares a specialization of the template structchar_traits for
wchar_t . It is for wide-oriented iostream classes.

1 The defined types forint_type , pos_type , and state_type are wint_t , wstreampos , and
mbstate_t respectively.

2 The typewstreampos is an implementation-defined type that satisfies the requirements forPOS_T in
21.1.2.

3 The typesstreampos andwstreampos may be different if the implementation supports no shift encod-
ing in narrow-oriented iostreams but supports one or more shift encodings in wide-oriented streams.

4 The typembstate_t is defined in<cwchar> and can represent any of the conversion states possible to
occur in an implementation-defined set of supported multibyte character encoding rules.

5 The two-argument membersassign , eq , andlt are defined identically to the built-in operators=, ==,
and< respectively.

6 The membereof() returnsWEOF.

[lib.string.classes] 21.2 String classes

1 The header<string> defines a basic string class template and its traits that can handle all char-like
(clause 21) template arguments with several function signatures for manipulating varying-length sequences
of char-like objects.

2 The header<string> also defines two specific template classesstring andwstring and their special
traits.

Header<string> synopsis

namespace std {
// 21.1, character traits:
template<class charT>

struct char_traits;
template <> struct char_traits<char>;
template <> struct char_traits<wchar_t>;

// 21.3, basic_string:
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_string;

381

ISO/IEC 14882:1998(E) © ISO/IEC

21.2 String classes 21 Strings library

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const basic_string<charT,traits,Allocator>& lhs ,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const charT* lhs ,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(charT lhs , const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

basic_string<charT,traits,Allocator>
operator+(const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);
template<class charT, class traits, class Allocator>

basic_string<charT,traits,Allocator>
operator+(const basic_string<charT,traits,Allocator>& lhs , charT rhs);

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator==(const charT* lhs ,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);
template<class charT, class traits, class Allocator>

bool operator!=(const basic_string<charT,traits,Allocator>& lhs ,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator!=(const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator!=(const basic_string<charT,traits,Allocator>& lhs ,
const charT* rhs);

template<class charT, class traits, class Allocator>
bool operator< (const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator< (const basic_string<charT,traits,Allocator>& lhs ,
const charT* rhs);

template<class charT, class traits, class Allocator>
bool operator< (const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator> (const basic_string<charT,traits,Allocator>& lhs ,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator> (const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);
template<class charT, class traits, class Allocator>

bool operator> (const charT* lhs ,
const basic_string<charT,traits,Allocator>& rhs);

382

© ISO/IEC ISO/IEC 14882:1998(E)

21 Strings library 21.2 String classes

template<class charT, class traits, class Allocator>
bool operator<=(const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator<=(const basic_string<charT,traits,Allocator>& lhs ,
const charT* rhs);

template<class charT, class traits, class Allocator>
bool operator<=(const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator>=(const basic_string<charT,traits,Allocator>& lhs ,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator>=(const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);
template<class charT, class traits, class Allocator>

bool operator>=(const charT* lhs ,
const basic_string<charT,traits,Allocator>& rhs);

// 21.3.7.8:
template<class charT, class traits, class Allocator>

void swap(basic_string<charT,traits,Allocator>& lhs ,
basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&

operator>>(basic_istream<charT,traits>& is ,
basic_string<charT,traits,Allocator>& str);

template<class charT, class traits, class Allocator>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os ,
const basic_string<charT,traits,Allocator>& str);

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&

getline(basic_istream<charT,traits>& is ,
basic_string<charT,traits,Allocator>& str ,
charT delim);

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&

getline(basic_istream<charT,traits>& is ,
basic_string<charT,traits,Allocator>& str);

typedef basic_string<char> string;
typedef basic_string<wchar_t> wstring;

}

[lib.basic.string] 21.3 Template classbasic_string

1 For a char-like typecharT , the template classbasic_string describes objects that can store a
sequence consisting of a varying number of arbitrary char-like objects (clause 21). The first element of the
sequence is at position zero. Such a sequence is also called a“string” if the given char-like type is clear
from context. In the rest of this clause,charT denotes such a given char-like type. Storage for the string
is allocated and freed as necessary by the member functions of classbasic_string , via the
Allocator class passed as template parameter.Allocator::value_type shall be the same as
charT .

2 The template classbasic_string conforms to the requirements of a Sequence, as specified in (23.1.1).
Additionally, because the iterators supported bybasic_string are random access iterators (24.1.5),
basic_string conforms to the the requirements of a Reversible Container, as specified in (23.1).

383

ISO/IEC 14882:1998(E) © ISO/IEC

21.3 Template classbasic_string 21 Strings library

3 In all cases,size() <= capacity() .

4 The functions described in this clause can report two kinds of errors, each associated with a distinct excep-
tion:

— a lengtherror is associated with exceptions of typelength_error (19.1.4);

— anout-of-rangeerror is associated with exceptions of typeout_of_range (19.1.5).

5 References, pointers, and iterators referring to the elements of a basic_string sequence may be invalidated
by the following uses of that basic_string object:

— As an argument to non-member functionsswap() (21.3.7.8), operator>>() (21.3.7.9), and
getline() (21.3.7.9).

— As an argument tobasic_string::swap() .

— Calling data() andc_str() member functions.

— Calling non-const member functions, exceptoperator[]() , at() , begin() , rbegin() ,
end() , andrend() .

— Subsequent to any of the above uses except the forms ofinsert() anderase() which return itera-
tors, the first call to non-const member functionsoperator[]() , at() , begin() , rbegin() ,
end() , or rend() .

6 [Note: These rules are formulated to allow, but not require, a reference counted implemenation. A refer-
ence counted implementation must have the same semantics as a non-reference counted implementation.
[Example:

string s1("abc");

string::iterator i = s1.begin();
string s2 = s1;

*i = ’a’; // Must modify onlys1

—end example] —end note]

namespace std {
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_string {
public:

// types:
typedef traits traits_type;
typedef typename traits::char_type value_type;
typedef Allocator allocator_type;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;

typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;

typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
static const size_type npos = -1;

384

© ISO/IEC ISO/IEC 14882:1998(E)

21 Strings library 21.3 Template classbasic_string

// 21.3.1 construct/copy/destroy:
explicit basic_string(const Allocator& a = Allocator());
basic_string(const basic_string& str , size_type pos = 0,

size_type n = npos, const Allocator& a = Allocator());
basic_string(const charT* s,

size_type n, const Allocator& a = Allocator());
basic_string(const charT* s, const Allocator& a = Allocator());
basic_string(size_type n, charT c, const Allocator& a = Allocator());
template<class InputIterator>

basic_string(InputIterator begin , InputIterator end ,
const Allocator& a = Allocator());

~basic_string();
basic_string& operator=(const basic_string& str);
basic_string& operator=(const charT* s);
basic_string& operator=(charT c);

// 21.3.2 iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// 21.3.3 capacity:
size_type size() const;
size_type length() const;
size_type max_size() const;
void resize(size_type n, charT c);
void resize(size_type n);
size_type capacity() const;
void reserve(size_type res_arg = 0);
void clear();
bool empty() const;

// 21.3.4 element access:
const_reference operator[](size_type pos) const;
reference operator[](size_type pos);
const_reference at(size_type n) const;
reference at(size_type n);

// 21.3.5 modifiers:
basic_string& operator+=(const basic_string& str);
basic_string& operator+=(const charT* s);
basic_string& operator+=(charT c);
basic_string& append(const basic_string& str);
basic_string& append(const basic_string& str , size_type pos ,

size_type n);
basic_string& append(const charT* s, size_type n);
basic_string& append(const charT* s);
basic_string& append(size_type n, charT c);
template<class InputIterator>

basic_string& append(InputIterator first , InputIterator last);
void push_back(const charT);

385

ISO/IEC 14882:1998(E) © ISO/IEC

21.3 Template classbasic_string 21 Strings library

basic_string& assign(const basic_string&);
basic_string& assign(const basic_string& str , size_type pos ,

size_type n);
basic_string& assign(const charT* s, size_type n);
basic_string& assign(const charT* s);
basic_string& assign(size_type n, charT c);
template<class InputIterator>

basic_string& assign(InputIterator first , InputIterator last);

basic_string& insert(size_type pos1 , const basic_string& str);
basic_string& insert(size_type pos1 , const basic_string& str ,

size_type pos2 , size_type n);
basic_string& insert(size_type pos , const charT* s, size_type n);
basic_string& insert(size_type pos , const charT* s);
basic_string& insert(size_type pos , size_type n, charT c);
iterator insert(iterator p, charT c);
void insert(iterator p, size_type n, charT c);
template<class InputIterator>

void insert(iterator p, InputIterator first , InputIterator last);

basic_string& erase(size_type pos = 0, size_type n = npos);
iterator erase(iterator position);
iterator erase(iterator first , iterator last);

basic_string& replace(size_type pos1 , size_type n1,
const basic_string& str);

basic_string& replace(size_type pos1 , size_type n1,
const basic_string& str ,
size_type pos2 , size_type n2);

basic_string& replace(size_type pos , size_type n1, const charT* s,
size_type n2);

basic_string& replace(size_type pos , size_type n1, const charT* s);
basic_string& replace(size_type pos , size_type n1, size_type n2,

charT c);

basic_string& replace(iterator i1 , iterator i2 ,
const basic_string& str);

basic_string& replace(iterator i1 , iterator i2 , const charT* s,
size_type n);

basic_string& replace(iterator i1 , iterator i2 , const charT* s);
basic_string& replace(iterator i1 , iterator i2 ,

size_type n, charT c);
template<class InputIterator>

basic_string& replace(iterator i1 , iterator i2 ,
InputIterator j1 , InputIterator j2);

size_type copy(charT* s, size_type n, size_type pos = 0) const;
void swap(basic_string<charT,traits,Allocator>&);

// 21.3.6 string operations:
const charT* c_str() const; // explicit
const charT* data() const;
allocator_type get_allocator() const;

386

© ISO/IEC ISO/IEC 14882:1998(E)

21 Strings library 21.3 Template classbasic_string

size_type find (const basic_string& str , size_type pos = 0) const;
size_type find (const charT* s, size_type pos , size_type n) const;
size_type find (const charT* s, size_type pos = 0) const;
size_type find (charT c, size_type pos = 0) const;
size_type rfind(const basic_string& str , size_type pos = npos) const;
size_type rfind(const charT* s, size_type pos , size_type n) const;
size_type rfind(const charT* s, size_type pos = npos) const;
size_type rfind(charT c, size_type pos = npos) const;

size_type find_first_of(const basic_string& str ,
size_type pos = 0) const;

size_type find_first_of(const charT* s,
size_type pos , size_type n) const;

size_type find_first_of(const charT* s, size_type pos = 0) const;
size_type find_first_of(charT c, size_type pos = 0) const;
size_type find_last_of (const basic_string& str ,

size_type pos = npos) const;
size_type find_last_of (const charT* s,

size_type pos , size_type n) const;
size_type find_last_of (const charT* s, size_type pos = npos) const;
size_type find_last_of (charT c, size_type pos = npos) const;

size_type find_first_not_of(const basic_string& str ,
size_type pos = 0) const;

size_type find_first_not_of(const charT* s, size_type pos ,
size_type n) const;

size_type find_first_not_of(const charT* s, size_type pos = 0) const;
size_type find_first_not_of(charT c, size_type pos = 0) const;
size_type find_last_not_of (const basic_string& str ,

size_type pos = npos) const;
size_type find_last_not_of (const charT* s, size_type pos ,

size_type n) const;
size_type find_last_not_of (const charT* s,

size_type pos = npos) const;
size_type find_last_not_of (charT c, size_type pos = npos) const;

basic_string substr(size_type pos = 0, size_type n = npos) const;
int compare(const basic_string& str) const;
int compare(size_type pos1 , size_type n1,

const basic_string& str) const;
int compare(size_type pos1 , size_type n1,

const basic_string& str ,
size_type pos2 , size_type n2) const;

int compare(const charT* s) const;
int compare(size_type pos1 , size_type n1,

const charT* s, size_type n2 = npos) const;
};

}

[lib.string.cons] 21.3.1 basic_string constructors

1 In all basic_string constructors, a copy of theAllocator argument is used for any memory alloca-
tion performed by the constructor or member functions during the lifetime of the object.

387

ISO/IEC 14882:1998(E) © ISO/IEC

21.3.1basic_string constructors 21 Strings library

explicit basic_string(const Allocator& a = Allocator());

2 Effects: Constructs an object of classbasic_string . The postconditions of this function are indicated
in Table 38:

Table 38—basic_string(const Allocator&) effects
_ ___

Element Value_ __ ___
data() a non-null pointer that is copyable and can have 0 added to it
size() 0
capacity() an unspecified value_ ___

basic_string(const basic_string<charT,traits,Allocator>& str ,
size_type pos = 0, size_type n = npos,
const Allocator& a = Allocator());

3 Requires: pos <= str .size()
4 Throws: out_of_range if pos > str .size() .
5 Effects: Constructs an object of classbasic_string and determines the effective lengthrlen of the

initial string value as the smaller ofn andstr .size() - pos , as indicated in Table 39:

Table 39—basic_string(basic_string, size_type,
size_type, const Allocator&) effects
_ ___

Element Value_ __ ___
data() points at the first element of an

allocated copy ofrlen consecu-
tive elements of the string con-
trolled by str beginning at posi-
tion pos

size() rlen
capacity() a value at least as large assize()_ ___

basic_string(const charT* s, size_type n,
const Allocator& a = Allocator());

6 Requires: s shall not be a null pointer andn < npos .
7 Throws: length_error if n == npos .
8 Effects: Constructs an object of classbasic_string and determines its initial string value from the

array ofcharT of lengthn whose first element is designated bys , as indicated in Table 40:

Table 40—basic_string(const charT*, size_type,
const Allocator&) effects

_ ___
Element Value_ __ ___

data() points at the first element of an
allocated copy of the array whose
first element is pointed at bys

size() n
capacity() a value at least as large assize()_ ___

388

© ISO/IEC ISO/IEC 14882:1998(E)

21 Strings library 21.3.1basic_string constructors

basic_string(const charT* s, const Allocator& a = Allocator());

9 Requires: s shall not be a null pointer.
10 Effects: Constructs an object of classbasic_string and determines its initial string value from the

array ofcharT of lengthtraits::length(s) whose first element is designated bys , as indicated
in Table 41:

Table 41—basic_string(const charT*, const Allocator&) effects
_ ___

Element Value_ __ ___
data() points at the first element of an

allocated copy of the array whose
first element is pointed at bys

size() traits::length(s)
capacity() a value at least as large assize()_ ___

11 Notes: Usestraits::length() .

basic_string(size_type n, charT c, const Allocator& a = Allocator());

12 Requires: n < npos
13 Throws: length_error if n == npos .
14 Effects: Constructs an object of classbasic_string and determines its initial string value by repeating

the char-like objectc for all n elements, as indicated in Table 42:

Table 42—basic_string(size_type, charT, const Allocator&) effects
_ ___

Element Value_ __ ___
data() points at the first element of an

allocated array ofn elements, each
storing the initial valuec

size() n
capacity() a value at least as large assize()_ ___

template<class InputIterator>
basic_string(InputIterator begin , InputIterator end ,

const Allocator& a = Allocator());

15 Effects: If InputIterator is an integral type, equivalent to

basic_string(static_cast<size_type>(begin), static_cast<value_type>(end))

Otherwise constructs a string from the values in the range [begin , end), as indicated in the Sequence
Requirements table (see 23.1.1):

basic_string<charT,traits,Allocator>&
operator=(const basic_string<charT,traits,Allocator>& str);

16 Effects: If *this andstr are not the same object, modifies*this as shown in Table 43:

389

ISO/IEC 14882:1998(E) © ISO/IEC

21.3.1basic_string constructors 21 Strings library

Table 43—operator=(const basic_string<charT, traits, Allocator>&)
effects

_ ___
Element Value_ __ ___

data() points at the first element of an
allocated copy of the array whose
first element is pointed at by
str .data()

size() str .size()
capacity() a value at least as large assize()_ ___

If *this andstr are the same object, the member has no effect.
17 Returns: *this

basic_string<charT,traits,Allocator>&
operator=(const charT* s);

18 Returns: *this = basic_string<charT,traits,Allocator>(s) .
19 Notes: Usestraits::length() .

basic_string<charT,traits,Allocator>& operator=(charT c);

20 Returns: *this = basic_string<charT,traits,Allocator>(1, c) .

[lib.string.iterators] 21.3.2 basic_string iterator support

iterator begin();
const_iterator begin() const;

1 Returns: an iterator referring to the first character in the string.

iterator end();
const_iterator end() const;

2 Returns: an iterator which is the past-the-end value.

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

3 Returns: an iterator which is semantically equivalent toreverse_iterator(end()) .

reverse_iterator rend();
const_reverse_iterator rend() const;

4 Returns: an iterator which is semantically equivalent toreverse_iterator(begin()) .

[lib.string.capacity] 21.3.3 basic_string capacity

size_type size() const;

1 Returns: a count of the number of char-like objects currently in the string.

size_type length() const;

2 Returns: size() .

390

© ISO/IEC ISO/IEC 14882:1998(E)

21 Strings library 21.3.3basic_string capacity

size_type max_size() const;

3 Returns: The maximum size of the string.
4 Note: See Container requirements table (23.1).

void resize(size_type n, charT c);

5 Requires: n <= max_size()
6 Throws: length_error if n > max_size() .
7 Effects: Alters the length of the string designated by*this as follows:

— If n <= size() , the function replaces the string designated by*this with a string of lengthn
whose elements are a copy of the initial elements of the original string designated by*this .

— If n > size() , the function replaces the string designated by*this with a string of lengthn whose
first size() elements are a copy of the original string designated by*this , and whose remaining
elements are all initialized toc .

void resize(size_type n);

8 Effects: resize(n,charT()) .

size_type capacity() const;

9 Returns: the size of the allocated storage in the string.

void reserve(size_type res_arg =0);

10 The member functionreserve() is a directive that informs abasic_string object of a planned
change in size, so that it can manage the storage allocation accordingly.

11 Effects: After reserve() , capacity() is greater or equal to the argument ofreserve . [Note:Call-
ing reserve() with a res_arg argument less thancapacity() is in effect a non-binding shrink
request. A call withres_arg <= size() is in effect a non-binding shrink-to-fit request.
—end note]

12 Throws: length_error if res_arg > max_size() .218)

void clear();

13 Effects: Behaves as if the function calls:

erase(begin(), end());

bool empty() const;

14 Returns: size() == 0 .

[lib.string.access] 21.3.4 basic_string element access

const_reference operator[](size_type pos) const;
reference operator[](size_type pos);

1 Returns: If pos < size() , returnsdata()[pos] . Otherwise, ifpos == size() , the const
version returnscharT() . Otherwise, the behavior is undefined.

218)reserve() usesAllocator::allocate() which may throw an appropriate exception.

391

ISO/IEC 14882:1998(E) © ISO/IEC

21.3.4basic_string element access 21 Strings library

const_reference at(size_type pos) const;
reference at(size_type pos);

2 Requires: pos < size()
3 Throws: out_of_range if pos >= size() .
4 Returns: operator[](pos) .

[lib.string.modifiers] 21.3.5 basic_string modifiers

[lib.string::op+=] 21.3.5.1basic_string::operator+=

basic_string<charT,traits,Allocator>&
operator+=(const basic_string<charT,traits,Allocator>& str);

1 Returns: append(str) .

basic_string<charT,traits,Allocator>& operator+=(const charT* s);

2 Returns: *this += basic_string<charT,traits,Allocator>(s) .
3 Notes: Usestraits::length() .

basic_string<charT,traits,Allocator>& operator+=(charT c);

4 Returns: *this += basic_string<charT,traits,Allocator>(1, c) .

[lib.string::append] 21.3.5.2basic_string::append

basic_string<charT,traits,Allocator>&
append(const basic_string<charT,traits>& str);

1 Returns: append(str , 0, npos) .

basic_string<charT,traits,Allocator>&
append(const basic_string<charT,traits>& str , size_type pos , size_type n);

2 Requires: pos <= str .size()
3 Throws: out_of_range if pos > str .size() .
4 Effects: Determines the effective lengthrlen of the string to append as the smaller ofn and

str .size() - pos . The function then throwslength_error if size() >= npos -
rlen .
Otherwise, the function replaces the string controlled by*this with a string of lengthsize() +
rlen whose firstsize() elements are a copy of the original string controlled by*this and whose
remaining elements are a copy of the initial elements of the string controlled bystr beginning at posi-
tion pos .

5 Returns: *this .

basic_string<charT,traits,Allocator>&
append(const charT* s, size_type n);

6 Returns: append(basic_string<charT,traits,Allocator>(s, n)) .

basic_string<charT,traits,Allocator>& append(const charT* s);

7 Returns: append(basic_string<charT,traits,Allocator>(s)) .
8 Notes: Usestraits::length() .

392

© ISO/IEC ISO/IEC 14882:1998(E)

21 Strings library 21.3.5.2basic_string::append

basic_string<charT,traits,Allocator>&
append(size_type n, charT c);

9 Returns: append(basic_string<charT,traits,Allocator>(n, c)) .

template<class InputIterator>
basic_string& append(InputIterator first , InputIterator last);

10 Returns: append(basic_string<charT,traits,Allocator>(first , last)) .

[lib.string::assign] 21.3.5.3basic_string::assign

basic_string<charT,traits,Allocator>&
assign(const basic_string<charT,traits>& str);

1 Returns: assign(str , 0, npos) .

basic_string<charT,traits,Allocator>&
assign(const basic_string<charT,traits>& str , size_type pos ,

size_type n);

2 Requires: pos <= str .size()
3 Throws: out_of_range if pos > str .size() .
4 Effects: Determines the effective lengthrlen of the string to assign as the smaller ofn and

str .size() - pos .
The function then replaces the string controlled by*this with a string of lengthrlen whose elements
are a copy of the string controlled bystr beginning at positionpos .

5 Returns: *this .

basic_string<charT,traits,Allocator>&
assign(const charT* s, size_type n);

6 Returns: assign(basic_string<charT,traits,Allocator>(s, n)) .

basic_string<charT,traits,Allocator>& assign(const charT* s);

7 Returns: assign(basic_string<charT, traits, Allocator>(s)) .
8 Notes: Usestraits::length() .

basic_string<charT,traits,Allocator>&
assign(size_type n, charT c);

9 Returns: assign(basic_string<charT,traits,Allocator>(n, c)) .

template<class InputIterator>
basic_string& assign(InputIterator first , InputIterator last);

10 Returns: assign(basic_string<charT,traits,Allocator>(first , last)) .

[lib.string::insert] 21.3.5.4basic_string::insert

basic_string<charT,traits,Allocator>&
insert(size_type pos1 ,

const basic_string<charT,traits,Allocator>& str);

1 Returns: insert(pos1 , str ,0, npos) .

393

ISO/IEC 14882:1998(E) © ISO/IEC

21.3.5.4basic_string::insert 21 Strings library

basic_string<charT,traits,Allocator>&
insert(size_type pos1 ,

const basic_string<charT,traits,Allocator>& str ,
size_type pos2 , size_type n);

2 Requires pos1 <= size() andpos2 <= str .size()
3 Throws: out_of_range if pos1 > size() or pos2 > str .size() .
4 Effects: Determines the effective lengthrlen of the string to insert as the smaller ofn andstr .size()

- pos2 . Then throwslength_error if size() >= npos - rlen .
Otherwise, the function replaces the string controlled by*this with a string of lengthsize() +
rlen whose firstpos1 elements are a copy of the initial elements of the original string controlled by
*this , whose nextrlen elements are a copy of the elements of the string controlled bystr begin-
ning at positionpos2 , and whose remaining elements are a copy of the remaining elements of the origi-
nal string controlled by*this .

5 Returns: *this .

basic_string<charT,traits,Allocator>&
insert(size_type pos , const charT* s, size_type n);

6 Returns: insert(pos ,basic_string<charT,traits,Allocator>(s, n)) .

basic_string<charT,traits,Allocator>&
insert(size_type pos , const charT* s);

7 Returns: insert(pos ,basic_string<charT,traits,Allocator>(s)) .
8 Notes: Usestraits::length() .

basic_string<charT,traits,Allocator>&
insert(size_type pos , size_type n, charT c);

9 Returns: insert(pos ,basic_string<charT,traits,Allocator>(n, c)) .

iterator insert(iterator p, charT c);

10 Requires: p is a valid iterator on*this .
11 Effects: inserts a copy ofc before the character referred to byp.
12 Returns: an iterator which refers to the copy of the inserted character.

void insert(iterator p, size_type n, charT c);

13 Requires: p is a valid iterator on*this .
14 Effects: insertsn copies ofc before the character referred to byp.

template<class InputIterator>
void insert(iterator p, InputIterator first , InputIterator last);

15 Requires: p is a valid iterator on*this . [first , last) is a valid range.
16 Returns: insert(p,basic_string< charT,traits,Allocator>(first , last)) .

[lib.string::erase] 21.3.5.5basic_string::erase

basic_string<charT,traits,Allocator>&
erase(size_type pos = 0, size_type n = npos);

1 Requires: pos <= size()
2 Throws: out_of_range if pos > size() .
3 Effects: Determines the effective lengthxlen of the string to be removed as the smaller ofn and

size() - pos .
The function then replaces the string controlled by*this with a string of lengthsize() - xlen
whose firstpos elements are a copy of the initial elements of the original string controlled by*this ,

394

© ISO/IEC ISO/IEC 14882:1998(E)

21 Strings library 21.3.5.5basic_string::erase

and whose remaining elements are a copy of the elements of the original string controlled by*this
beginning at positionpos + xlen .

4 Returns: *this .

iterator erase(iterator p);

5 Requires: p is a valid iterator on*this .
6 Effects: removes the character referred to byp.
7 Returns: an iterator which points to the element immediately followingp prior to the element being

erased. If no such element exists,end() is returned.

iterator erase(iterator first , iterator last);

8 Requires: first andlast are valid iterators on*this , defining a range[first , last) .
9 Effects: removes the characters in the range[first , last) .
10 Returns: an iterator which points to the element immediately followinglast prior to the element being

erased. If no such element exists,end() is returned.

[lib.string::replace] 21.3.5.6basic_string::replace

basic_string<charT,traits,Allocator>&
replace(size_type pos1 , size_type n1,

const basic_string<charT,traits,Allocator>& str);

1 Returns: replace(pos1 , n1, str , 0, npos) .

basic_string<charT,traits,Allocator>&
replace(size_type pos1 , size_type n1,

const basic_string<charT,traits,Allocator>& str ,
size_type pos2 , size_type n2);

2 Requires: pos1 <= size() && pos2 <= str .size() .
3 Throws: out_of_range if pos1 > size() or pos2 > str .size() .
4 Effects: Determines the effective lengthxlen of the string to be removed as the smaller ofn1 and

size() - pos1 . It also determines the effective lengthrlen of the string to be inserted as the
smaller ofn2 andstr .size() - pos2 .

5 Throws: length_error if size() - xlen >= npos - rlen .
Otherwise, the function replaces the string controlled by*this with a string of lengthsize() -
xlen + rlen whose firstpos1 elements are a copy of the initial elements of the original string con-
trolled by*this , whose nextrlen elements are a copy of the initial elements of the string controlled
by str beginning at positionpos2 , and whose remaining elements are a copy of the elements of the
original string controlled by*this beginning at positionpos1 + xlen .

6 Returns: *this .

basic_string<charT,traits,Allocator>&
replace(size_type pos , size_type n1, const charT* s, size_type n2);

7 Returns: replace(pos , n1,basic_string<charT,traits,Allocator>(s, n2)) .

basic_string<charT,traits,Allocator>&
replace(size_type pos, size_type n1, const charT* s);

8 Returns: replace(pos , n1,basic_string<charT,traits,Allocator>(s)) .
9 Notes: Usestraits::length() .

395

ISO/IEC 14882:1998(E) © ISO/IEC

21.3.5.6basic_string::replace 21 Strings library

basic_string<charT,traits,Allocator>&
replace(size_type pos , size_type n1,

size_type n2, charT c);

10 Returns: replace(pos , n1,basic_string<charT,traits,Allocator>(n2, c)) .

basic_string& replace(iterator i1 , iterator i2 , const basic_string& str);

11 Requires: The iteratorsi1 andi2 are valid iterators on*this , defining a range[i1 , i2) .
12 Effects: Replaces the string controlled by*this with a string of lengthsize() - (i2 - i1) +

str .size() whose firstbegin() - i1 elements are a copy of the initial elements of the original
string controlled by*this , whose nextstr .size() elements are a copy of the string controlled by
str , and whose remaining elements are a copy of the elements of the original string controlled by
*this beginning at positioni2 .

13 Returns: *this .
14 Notes: After the call, the length of the string will be changed by:str .size() - (i2 - i1) .

basic_string&
replace(iterator i1 , iterator i2 , const charT* s, size_type n);

15 Returns: replace(i1 , i2 ,basic_string(s, n)) .
16 Notes: Length change:n - (i2 - i1) .

basic_string& replace(iterator i1 , iterator i2 , const charT* s);

17 Returns: replace(i1 , i2 ,basic_string(s)) .
18 Notes: Length change:traits::length(s) - (i2 - i1) .

Usestraits::length() .

basic_string& replace(iterator i1 , iterator i2 , size_type n,
charT c);

19 Returns: replace(i1 , i2 ,basic_string(n, c)) .
20 Notes: Length change:n - (i2 - i1) .

template<class InputIterator>
basic_string& replace(iterator i1 , iterator i2 ,

InputIterator j1 , InputIterator j2);

21 Returns: replace(i1 , i2 ,basic_string(j1 , j2)) .
22 Notes: Length change:j2 - j1 - (i2 - i1) .

[lib.string::copy] 21.3.5.7basic_string::copy

size_type copy(charT* s, size_type n, size_type pos = 0) const;

1 Requires: pos <= size()
2 Throws: out_of_range if pos > size() .
3 Effects: Determines the effective lengthrlen of the string to copy as the smaller ofn andsize() -

pos . s shall designate an array of at leastrlen elements.
The function then replaces the string designated bys with a string of lengthrlen whose elements are a
copy of the string controlled by*this beginning at positionpos .
The function does not append a null object to the string designated bys .

4 Returns: rlen .

396

© ISO/IEC ISO/IEC 14882:1998(E)

21 Strings library 21.3.5.8basic_string::swap

[lib.string::swap] 21.3.5.8basic_string::swap

void swap(basic_string<charT,traits,Allocator>& s);

1 Effects: Swaps the contents of the two strings.
2 Postcondition: *this contains the characters that were ins , s contains the characters that were in

*this .
3 Complexity: constant time.

[lib.string.ops] 21.3.6 basic_string string operations

const charT* c_str() const;

1 Returns: A pointer to the initial element of an array of lengthsize() + 1 whose firstsize() ele-
ments equal the corresponding elements of the string controlled by*this and whose last element is a
null character specified bycharT() .

2 Requires: The program shall not alter any of the values stored in the array. Nor shall the program treat the
returned value as a valid pointer value after any subsequent call to a non-const member function of the
classbasic_string that designates the same object asthis .

const charT* data() const;

3 Returns: If size() is nonzero, the member returns a pointer to the initial element of an array whose first
size() elements equal the corresponding elements of the string controlled by*this . If size() is
zero, the member returns a non-null pointer that is copyable and can have zero added to it.

4 Requires: The program shall not alter any of the values stored in the character array. Nor shall the pro-
gram treat the returned value as a valid pointer value after any subsequent call to a non-const member
function ofbasic_string that designates the same object asthis .

allocator_type get_allocator() const;

5 Returns: a copy of theAllocator object used to construct the string.

[lib.string::find] 21.3.6.1basic_string::find

size_type find(const basic_string<charT,traits,Allocator>& str ,
size_type pos = 0) const;

1 Effects: Determines the lowest positionxpos , if possible, such that both of the following conditions
obtain:

— pos <= xpos andxpos + str .size() <= size() ;

— at(xpos +I) == str .at(I) for all elementsI of the string controlled bystr .
2 Returns: xpos if the function can determine such a value forxpos . Otherwise, returnsnpos .
3 Notes: Usestraits::eq() .

size_type find(const charT* s, size_type pos , size_type n) const;

4 Returns: find(basic_string<charT,traits,Allocator>(s, n), pos) .

size_type find(const charT* s, size_type pos = 0) const;

5 Returns: find(basic_string<charT,traits,Allocator>(s), pos) .
6 Notes: Usestraits::length() .

397

ISO/IEC 14882:1998(E) © ISO/IEC

21.3.6.1basic_string::find 21 Strings library

size_type find(charT c, size_type pos = 0) const;

7 Returns: find(basic_string<charT,traits,Allocator>(1, c), pos) .

[lib.string::rfind] 21.3.6.2basic_string::rfind

size_type rfind(const basic_string<charT,traits,Allocator>& str ,
size_type pos = npos) const;

1 Effects: Determines the highest positionxpos , if possible, such that both of the following conditions
obtain:

— xpos <= pos andxpos + str .size() <= size() ;

— at(xpos +I) == str .at(I) for all elementsI of the string controlled bystr .
2 Returns: xpos if the function can determine such a value forxpos . Otherwise, returnsnpos .
3 Notes: Usestraits::eq() .

size_type rfind(const charT* s, size_type pos , size_type n) const;

4 Returns: rfind(basic_string<charT,traits,Allocator>(s, n), pos) .

size_type rfind(const charT* s, size_type pos = npos) const;

5 Returns: rfind(basic_string<charT,traits,Allocator>(s), pos) .
6 Notes: Usestraits::length() .

size_type rfind(charT c, size_type pos = npos) const;

7 Returns: rfind(basic_string<charT,traits,Allocator>(1, c), pos) .

[lib.string::find.first.of] 21.3.6.3basic_string::find_first_of

size_type
find_first_of(const basic_string<charT,traits,Allocator>& str ,

size_type pos = 0) const;

1 Effects: Determines the lowest positionxpos , if possible, such that both of the following conditions
obtain:

— pos <= xpos andxpos < size() ;

— at(xpos) == str .at(I) for some elementI of the string controlled bystr .
2 Returns: xpos if the function can determine such a value forxpos . Otherwise, returnsnpos .
3 Notes: Usestraits::eq() .

size_type
find_first_of(const charT* s, size_type pos , size_type n) const;

4 Returns: find_first_of(basic_string<charT,traits,Allocator>(s, n), pos) .

size_type find_first_of(const charT* s, size_type pos = 0) const;

5 Returns: find_first_of(basic_string<charT,traits,Allocator>(s), pos) .
6 Notes: Usestraits::length() .

398

© ISO/IEC ISO/IEC 14882:1998(E)

21 Strings library 21.3.6.3basic_string::find_first_of

size_type find_first_of(charT c, size_type pos = 0) const;

7 Returns: find_first_of(basic_string<charT,traits,Allocator>(1, c), pos) .

[lib.string::find.last.of] 21.3.6.4basic_string::find_last_of

size_type
find_last_of(const basic_string<charT,traits,Allocator>& str ,

size_type pos = npos) const;

1 Effects: Determines the highest positionxpos , if possible, such that both of the following conditions
obtain:

— xpos <= pos andpos < size() ;

— at(xpos) == str .at(I) for some elementI of the string controlled bystr .
2 Returns: xpos if the function can determine such a value forxpos . Otherwise, returnsnpos .
3 Notes: Usestraits::eq() .

size_type find_last_of(const charT* s, size_type pos , size_type n) const;

4 Returns: find_last_of(basic_string<charT,traits,Allocator>(s, n), pos) .

size_type find_last_of(const charT* s, size_type pos = npos) const;

5 Returns: find_last_of(basic_string<charT,traits,Allocator>(s), pos) .
6 Notes: Usestraits::length() .

size_type find_last_of(charT c, size_type pos = npos) const;

7 Returns: find_last_of(basic_string<charT,traits,Allocator>(1, c), pos) .

[lib.string::find.first.not.of] 21.3.6.5basic_string::find_first_not_of

size_type
find_first_not_of(const basic_string<charT,traits,Allocator>& str ,

size_type pos = 0) const;

1 Effects: Determines the lowest positionxpos , if possible, such that both of the following conditions
obtain:

— pos <= xpos andxpos < size() ;

— at(xpos) == str .at(I) for no elementI of the string controlled bystr .
2 Returns: xpos if the function can determine such a value forxpos . Otherwise, returnsnpos .
3 Notes: Usestraits::eq() .

size_type
find_first_not_of(const charT* s, size_type pos , size_type n) const;

4 Returns: find_first_not_of(basic_string<charT,traits,Allocator>(s, n), pos) .

size_type find_first_not_of(const charT* s, size_type pos = 0) const;

5 Returns: find_first_not_of(basic_string<charT,traits,Allocator>(s), pos) .
6 Notes: Usestraits::length() .

399

ISO/IEC 14882:1998(E) © ISO/IEC

21.3.6.5basic_string::find_first_not_of 21 Strings library

size_type find_first_not_of(charT c, size_type pos = 0) const;

7 Returns: find_first_not_of(basic_string<charT,traits,Allocator>(1, c), pos) .

[lib.string::find.last.not.of] 21.3.6.6basic_string::find_last_not_of

size_type
find_last_not_of(const basic_string<charT,traits,Allocator>& str ,

size_type pos = npos) const;

1 Effects: Determines the highest positionxpos , if possible, such that both of the following conditions
obtain:

— xpos <= pos andpos < size() ;

— at(xpos) == str .at(I)) for no elementI of the string controlled bystr .
2 Returns: xpos if the function can determine such a value forxpos . Otherwise, returnsnpos .
3 Notes: Usestraits::eq() .

size_type find_last_not_of(const charT* s, size_type pos ,
size_type n) const;

4 Returns: find_last_not_of(basic_string<charT,traits,Allocator>(s, n), pos) .

size_type find_last_not_of(const charT* s, size_type pos = npos) const;

5 Returns: find_last_not_of(basic_string<charT,traits,Allocator>(s), pos) .
6 Notes: Usestraits::length() .

size_type find_last_not_of(charT c, size_type pos = npos) const;

7 Returns: find_last_not_of(basic_string<charT,traits,Allocator>(1, c), pos) .

[lib.string::substr] 21.3.6.7basic_string::substr

basic_string<charT,traits,Allocator>
substr(size_type pos = 0, size_type n = npos) const;

1 Requires: pos <= size()
2 Throws: out_of_range if pos > size() .
3 Effects: Determines the effective lengthrlen of the string to copy as the smaller ofn andsize() -

pos .
4 Returns: basic_string<charT,traits,Allocator>(data()+ pos , rlen) .

[lib.string::compare] 21.3.6.8basic_string::compare

int compare(const basic_string<charT,traits,Allocator>& str) const

1 Effects: Determines the effective lengthrlen of the strings to compare as the smallest ofsize() and
str.size() . The function then compares the two strings by calling
traits::compare(data(), str.data(), rlen) .

2 Returns: the nonzero result if the result of the comparison is nonzero. Otherwise, returns a value as indi-
cated in Table 44:

400

© ISO/IEC ISO/IEC 14882:1998(E)

21 Strings library 21.3.6.8basic_string::compare

Table 44—compare() results
_ __

Condition Return Value_ ___ __
size() < str .size() < 0
size() == str .size() 0
size() > str.size() > 0_ __

int compare(size_type pos1 , size_type n1,
const basic_string<charT,traits,Allocator>& str) const;

3 Returns:

basic_string<charT,traits,Allocator>(*this, pos1 , n1).compare(
str) .

int compare(size_type pos1 , size_type n1,
const basic_string<charT,traits,Allocator>& str ,
size_type pos2 , size_type n2) const;

4 Returns:

basic_string<charT,traits,Allocator>(*this, pos1 , n1).compare(
basic_string<charT,traits,Allocator>(str , pos2 , n2)) .

int compare(const charT * s) const;

5 Returns: this->compare(basic_string<charT,traits,Allocator>(s)) .

int compare(size_type pos , size_type n1,
charT * s, size_type n2 = npos) const;

6 Returns:

basic_string<charT,traits,Allocator>(*this, pos , n1).compare(
basic_string<charT,traits,Allocator>(s, n2))

[lib.string.nonmembers] 21.3.7 basic_string non-member functions

[lib.string::op+] 21.3.7.1operator+

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const basic_string<charT,traits,Allocator>& lhs ,
const basic_string<charT,traits,Allocator>& rhs);

1 Returns: basic_string<charT,traits,Allocator>(lhs).append(rhs)

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const charT* lhs ,
const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) + rhs .
3 Notes: Usestraits::length() .

401

ISO/IEC 14882:1998(E) © ISO/IEC

21.3.7.1operator+ 21 Strings library

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(charT lhs ,
const basic_string<charT,traits,Allocator>& rhs);

4 Returns: basic_string<charT,traits,Allocator>(1, lhs) + rhs .

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const basic_string<charT,traits,Allocator>& lhs ,
const charT* rhs);

5 Returns: lhs + basic_string<charT,traits,Allocator>(rhs) .
6 Notes: Usestraits::length() .

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const basic_string<charT,traits,Allocator>& lhs ,
charT rhs);

7 Returns: lhs + basic_string<charT,traits,Allocator>(1, rhs) .

[lib.string::operator==] 21.3.7.2operator==

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: lhs .compare(rhs) == 0 .

template<class charT, class traits, class Allocator>
bool operator==(const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) == rhs .

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);

3 Returns: lhs == basic_string<charT,traits,Allocator>(rhs) .
4 Notes: Usestraits::length() .

[lib.string::op!=] 21.3.7.3operator!=

template<class charT, class traits, class Allocator>
bool operator!=(const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: !(lhs == rhs) .

template<class charT, class traits, class Allocator>
bool operator!=(const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) != rhs .

402

© ISO/IEC ISO/IEC 14882:1998(E)

21 Strings library 21.3.7.3operator!=

template<class charT, class traits, class Allocator>
bool operator!=(const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);

3 Returns: lhs != basic_string<charT,traits,Allocator>(rhs) .
4 Notes: Usestraits::length() .

[lib.string::op <] 21.3.7.4operator<

template<class charT, class traits, class Allocator>
bool operator< (const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: lhs .compare(rhs) < 0 .

template<class charT, class traits, class Allocator>
bool operator< (const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) < rhs .

template<class charT, class traits, class Allocator>
bool operator< (const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);

3 Returns: lhs < basic_string<charT,traits,Allocator>(rhs) .

[lib.string::op >] 21.3.7.5operator>

template<class charT, class traits, class Allocator>
bool operator> (const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: lhs .compare(rhs) > 0 .

template<class charT, class traits, class Allocator>
bool operator> (const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) > rhs .

template<class charT, class traits, class Allocator>
bool operator> (const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);

3 Returns: lhs > basic_string<charT,traits,Allocator>(rhs) .

[lib.string::op <=] 21.3.7.6operator<=

template<class charT, class traits, class Allocator>
bool operator<=(const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: lhs .compare(rhs) <= 0 .

template<class charT, class traits, class Allocator>
bool operator<=(const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) <= rhs .

403

ISO/IEC 14882:1998(E) © ISO/IEC

21.3.7.6operator<= 21 Strings library

template<class charT, class traits, class Allocator>
bool operator<=(const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);

3 Returns: lhs <= basic_string<charT,traits,Allocator>(rhs) .

[lib.string::op >=] 21.3.7.7operator>=

template<class charT, class traits, class Allocator>
bool operator>=(const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: lhs .compare(rhs) >= 0 .

template<class charT, class traits, class Allocator>
bool operator>=(const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) >= rhs .

template<class charT, class traits, class Allocator>
bool operator>=(const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);

3 Returns: lhs >= basic_string<charT,traits,Allocator>(rhs) .

[lib.string.special] 21.3.7.8swap

template<class charT, class traits, class Allocator>
void swap(basic_string<charT,traits,Allocator>& lhs ,

basic_string<charT,traits,Allocator>& rhs);

1 Effects: lhs .swap(rhs);

[lib.string.io] 21.3.7.9 Inserters and extractors

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&

operator>>(basic_istream<charT,traits>& is ,
basic_string<charT,traits,Allocator>& str);

1 Effects: Begins by constructing asentry object k as if k were constructed bytypename
basic_istream<charT,traits>::sentry k(is) . If bool(k) is true, it calls
str .erase() and then extracts characters fromis and appends them tostr as if by calling
str .append(1, c) . If is .width() is greater than zero, the maximum numbern of characters
appended isis .width() ; otherwise n is str .max_size() . Characters are extracted and
appended until any of the following occurs:

— n characters are stored;

— end-of-file occurs on the input sequence;

— isspace(c,getloc()) is true for the next available input characterc.

2 After the last character (if any) is extracted,is .width(0) is called and thesentry object k is
destroyed.

3 Returns: is

404

© ISO/IEC ISO/IEC 14882:1998(E)

21 Strings library 21.3.7.9 Inserters and extractors

template<class charT, class traits, class Allocator>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os ,
const basic_string<charT,traits,Allocator>& str);

4 Effects: Begins by constructing asentry object k as if k were constructed bytypename
basic_ostream<charT,traits>::sentry k(os) . If bool(k) is true, inserts characters as
if by calling os .rdbuf()->sputn(str .data(), n) , padding as described in stage 3 of
22.2.2.2.2, wheren is the smaller ofos .width() andstr .size() ; then callsos .width(0) . If
the call tosputn fails, callsos .setstate(ios_base::failbit) .

5 Returns: os

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&

getline(basic_istream<charT,traits>& is ,
basic_string<charT,traits,Allocator>& str ,
charT delim);

6 Effects: Begins by constructing a sentry object k as if by typename
basic_istream<charT,traits>::sentry k(is , true) . If bool(k) is true, it calls
str .erase() and then extracts characters fromis and appends them tostr as if by calling
str .append(1, c) until any of the following occurs:

— end-of-file occurs on the input sequence (in which case, thegetline function calls
is .setstate(ios_base::eofbit)).

— c == delim for the next available input characterc (in which case,c is extracted but not appended)
(27.4.4.3)

— str .max_size() characters are stored (in which case, the function calls
is .setstate(ios_base::failbit) (27.4.4.3)

7 The conditions are tested in the order shown. In any case, after the last character is extracted, thesentry
objectk is destroyed.

8 If the function extracts no characters, it callsis .setstate(ios_base::failbit) which may
throw ios_base::failure (27.4.4.3).

9 Returns: is .

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&

getline(basic_istream<charT,traits>& is ,
basic_string<charT,traits,Allocator>& str)

10 Returns: getline(is , str , is .widen(’\n’))

[lib.c.strings] 21.4 Null-terminated sequence utilities

1 Tables 45, 46, 47, 48, and 49 describe headers<cctype> , <cwctype> , <cstring> , <cwchar> , and
<cstdlib> (multibyte conversions), respectively.

Table 45—Header<cctype> synopsis
_ __

Type Name(s)_ __
Functions:
isalnum isdigit isprint isupper tolower

isalpha isgraph ispunct isxdigit toupper

iscntrl islower isspace_ __

405

ISO/IEC 14882:1998(E) © ISO/IEC

21.4 Null-terminated sequence utilities 21 Strings library

Table 46—Header<cwctype> synopsis

Type Name(s)___
Macro: WEOF <cwctype>___
Types: wctrans_t wctype_t wint_t <cwctype>___
Functions:
iswalnum iswctype iswlower iswspace towctrans wctrans

iswalpha iswdigit iswprint iswupper towlower wctype

iswcntrl iswgraph iswpunct iswxdigit towupper___

Table 47—Header<cstring> synopsis
_ __

Type Name(s)_ __
Macro: NULL <cstring>_ __
Type: size_t <cstring>_ __
Functions:
memchr strcat strcspn strncpy strtok

memcmp strchr strerror strpbrk strxfrm

memcpy strcmp strlen strrchr

memmove strcoll strncat strspn

memset strcpy strncmp strstr_ __

Table 48—Header<cwchar> synopsis
__

Type Name(s)__
Macros: NULL <cwchar> WCHAR_MAX WCHAR_MIN WEOF <cwchar>__
Types: mbstate_t wint_t <cwchar> size_t__
Functions:
btowc getwchar ungetwc wcscpy wcsrtombs wmemchr

fgetwc mbrlen vfwprintf wcscspn wcsspn wmemcmp

fgetws mbrtowc vswprintf wcsftime wcsstr wmemcpy

fputwc mbsinit vwprintf wcslen wcstod wmemmove

fputws mbsrtowcs wcrtomb wcsncat wcstok wmemset

fwide putwc wcscat wcsncmp wcstol wprintf

fwprintf putwchar wcschr wcsncpy wcstoul wscanf

fwscanf swprintf wcscmp wcspbrk wcsxfrm

getwc swscanf wcscoll wcsrchr wctob__

406

© ISO/IEC ISO/IEC 14882:1998(E)

21 Strings library 21.4 Null-terminated sequence utilities

Table 49—Header<cstdlib> synopsis
_ ___

Type Name(s)_ ___
Macros: MB_CUR_MAX_ ___
Functions:
atol mblen strtod wctomb

atof mbstowcs strtol wcstombs

atoi mbtowc strtoul_ ___

2 The contents of these headers are the same as the Standard C library headers<ctype.h> , <wctype.h> ,
<string.h> , <wchar.h> and<stdlib.h> respectively, with the following modifications:

3 None of the headers shall define the typewchar_t (2.11).

4 The function signaturestrchr(const char*, int) is replaced by the two declarations:

const char* strchr(const char* s, int c);
char* strchr(char* s, int c);

5 both of which have the same behavior as the original declaration.

6 The function signaturestrpbrk(const char*, const char*) is replaced by the two declara-
tions:

const char* strpbrk(const char* s1 , const char* s2);
char* strpbrk(char* s1 , const char* s2);

7 both of which have the same behavior as the original declaration.

8 The function signaturestrrchr(const char*, int) is replaced by the two declarations:

const char* strrchr(const char* s, int c);
char* strrchr(char* s, int c);

9 both of which have the same behavior as the original declaration.

10 The function signaturestrstr(const char*, const char*) is replaced by the two declarations:

const char* strstr(const char* s1 , const char* s2);
char* strstr(char* s1 , const char* s2);

11 both of which have the same behavior as the original declaration.

12 The function signaturememchr(const void*, int, size_t) is replaced by the two declarations:

const void* memchr(const void* s, int c, size_t n);
void* memchr(void* s, int c, size_t n);

13 both of which have the same behavior as the original declaration.

14 The function signaturewcschr(const wchar_t*, wchar_t) is replaced by the two declarations:

407

ISO/IEC 14882:1998(E) © ISO/IEC

21.4 Null-terminated sequence utilities 21 Strings library

const wchar_t* wcschr(const wchar_t* s, wchar_t c);
wchar_t* wcschr(wchar_t* s, wchar_t c);

15 both of which have the same behavior as the original declaration.

16 The function signaturewcspbrk(const wchar_t*, const wchar_t*) is replaced by the two
declarations:

const wchar_t* wcspbrk(const wchar_t* s1 , const wchar_t* s2);
wchar_t* wcspbrk(wchar_t* s1 , const wchar_t* s2);

17 both of which have the same behavior as the original declaration.

18 The function signaturewcsrchr(const wchar_t*, wchar_t) is replaced by the two declarations:

const wchar_t* wcsrchr(const wchar_t* s, wchar_t c);
wchar_t* wcsrchr(wchar_t* s, wchar_t c);

19 both of which have the same behavior as the original declaration.

20 The function signaturewcsstr(const wchar_t*, const wchar_t*) is replaced by the two dec-
larations:

const wchar_t* wcsstr(const wchar_t* s1 , const wchar_t* s2);
wchar_t* wcsstr(wchar_t* s1 , const wchar_t* s2);

21 both of which have the same behavior as the original declaration.

22 The function signaturewmemchr(const wwchar_t*, int, size_t) is replaced by the two decla-
rations:

const wchar_t* wmemchr(const wchar_t* s, wchar_t c, size_t n);
wchar_t* wmemchr(wchar_t* s, wchar_t c, size_t n);

23 both of which have the same behavior as the original declaration.

SEE ALSO: ISO C subclauses 7.3, 7.10.7, 7.10.8, and 7.11. Amendment 1 subclauses 4.4, 4.5, and 4.6.

408

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library [lib.localization]

1 This clause describes components that C++ programs may use to encapsulate (and therefore be more port-
able when confronting) cultural differences. The locale facility includes internationalization support for
character classification and string collation, numeric, monetary, and date/time formatting and parsing, and
message retrieval.

2 The following subclauses describe components for locales themselves, the standard facets, and facilities
from the ISO C library, as summarized in Table 50:

Table 50—Localization library summary
_ ___

Subclause Header(s)_ __ ___
22.1 Locales
22.2 Standardlocale Categories

<locale>
_ ___
22.3 C library locales <clocale>_ ___

[lib.locales] 22.1 Locales

Header<locale> synopsis

namespace std {
// 22.1.1, locale:
class locale;
template <class Facet> const Facet& use_facet(const locale&);
template <class Facet> bool has_facet(const locale&) throw();

// 22.1.3, convenience interfaces:
template <class charT> bool isspace (charT c, const locale& loc);
template <class charT> bool isprint (charT c, const locale& loc);
template <class charT> bool iscntrl (charT c, const locale& loc);
template <class charT> bool isupper (charT c, const locale& loc);
template <class charT> bool islower (charT c, const locale& loc);
template <class charT> bool isalpha (charT c, const locale& loc);
template <class charT> bool isdigit (charT c, const locale& loc);
template <class charT> bool ispunct (charT c, const locale& loc);
template <class charT> bool isxdigit(charT c, const locale& loc);
template <class charT> bool isalnum (charT c, const locale& loc);
template <class charT> bool isgraph (charT c, const locale& loc);
template <class charT> charT toupper(charT c, const locale& loc);
template <class charT> charT tolower(charT c, const locale& loc);

// 22.2.1 and 22.2.1.3, ctype:
class ctype_base;
template <class charT> class ctype;
template <> class ctype<char>; // specialization
template <class charT> class ctype_byname;
template <> class ctype_byname<char>; // specialization
class codecvt_base;
template <class internT, class externT, class stateT>

class codecvt;
template <class internT, class externT, class stateT>

class codecvt_byname;

409

ISO/IEC 14882:1998(E) © ISO/IEC

22.1 Locales 22 Localization library

// 22.2.2 and 22.2.3, numeric:
template <class charT, class InputIterator> class num_get;
template <class charT, class OutputIterator> class num_put;
template <class charT> class numpunct;
template <class charT> class numpunct_byname;

// 22.2.4, collation:
template <class charT> class collate;
template <class charT> class collate_byname;

// 22.2.5, date and time:
class time_base;
template <class charT, class InputIterator> class time_get;
template <class charT, class InputIterator> class time_get_byname;
template <class charT, class OutputIterator> class time_put;
template <class charT, class OutputIterator> class time_put_byname;

// 22.2.6, money:
class money_base;
template <class charT, class InputIterator> class money_get;
template <class charT, class OutputIterator> class money_put;
template <class charT, bool Intl> class moneypunct;
template <class charT, bool Intl> class moneypunct_byname;

// 22.2.7, message retrieval:
class messages_base;
template <class charT> class messages;
template <class charT> class messages_byname;

}

1 The header<locale> defines classes and declares functions that encapsulate and manipulate the informa-
tion peculiar to a locale.219)

[lib.locale] 22.1.1 Classlocale

namespace std {
class locale {
public:

// types:
class facet;
class id;
typedef int category;
static const category // values assigned here are for exposition only

none = 0,
collate = 0x010, ctype = 0x020,
monetary = 0x040, numeric = 0x080,
time = 0x100, messages = 0x200,
all = collate | ctype | monetary | numeric | time | messages;

219)In this subclause, the type namestruct tm is an incomplete type that is defined in<ctime> .

410

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.1.1 Classlocale

// construct/copy/destroy:
locale() throw()
locale(const locale& other) throw()
explicit locale(const char* std_name);
locale(const locale& other , const char* std_name , category);
template <class Facet> locale(const locale& other , Facet* f);
locale(const locale& other , const locale& one , category);

~locale() throw(); // non-virtual
const locale& operator=(const locale& other) throw();
template <class Facet> locale combine(const locale& other);

// locale operations:
basic_string<char> name() const;

bool operator==(const locale& other) const;
bool operator!=(const locale& other) const;

template <class charT, class Traits, class Allocator>
bool operator()(const basic_string<charT,Traits,Allocator>& s1,

const basic_string<charT,Traits,Allocator>& s2) const;

// global locale objects:
static locale global(const locale&);
static const locale& classic();

};
}

1 Classlocale implements a type-safe polymorphic set of facets, indexed by facettype. In other words, a
facet has a dual role: in one sense, it’s just a class interface; at the same time, it’s an index into a locale’s set
of facets.

2 Access to the facets of alocale is via two function templates,use_facet<> andhas_facet<> .

3 [Example:An iostreamoperator<< might be implemented as:220)

template <class charT, class traits>
basic_ostream<charT,traits>&
operator<< (basic_ostream<charT,traits>& s, Date d)

{
typename basic_ostream<charT,traits>::sentry cerberos(s);
if (cerberos) {

ios_base::iostate err = 0;
tm tmbuf; d.extract(tmbuf);
use_facet< time_put<charT,ostreambuf_iterator<charT,traits> > >(

s.getloc()).put(s, s, s.fill(), err, &tmbuf, ’x’);
s.setstate(err); // might throw

}
return s;

}

—end example]

4 In the call touse_facet<Facet>(loc) , the type argument chooses a facet, making available all mem-
bers of the named type. IfFacet is not present in a locale (or, failing that, in theglobal locale), it
throws the standard exceptionbad_cast . A C++ program can check if a locale implements a particular
facet with the template functionhas_facet<Facet>() . User-defined facets may be installed in a
locale, and used identically as may standard facets (22.2.8).

220)Notice that, in the call toput , the stream is implicitly converted to anostreambuf_iterator<charT,traits> .

411

ISO/IEC 14882:1998(E) © ISO/IEC

22.1.1 Classlocale 22 Localization library

5 [Note:All locale semantics are accessed viause_facet<> andhas_facet<> , except that:

— A member operator template operator()(basic_string<C,T,A>&,
basic_string<C,T,A>&) is provided so that a locale may be used as a predicate argument to the
standard collections, to collate strings.

— Convenient global interfaces are provided for traditionalctype functions such asisdigit() and
isspace() , so that given a locale objectloc a C++ program can callisspace(c, loc) . (This
eases upgrading existing extractors (27.6.1.2).)—end note]

6 An instance oflocale is immutable; once a facet reference is obtained from it, that reference remains
usable as long as the locale value itself exists.

7 In successive calls to a locale facet member function during a call to an iostream inserter or extractor or a
streambuf member function, the returned result shall be identical. [Note:This implies that such results may
safely be reused without calling the locale facet member function again, and that member functions of ios-
tream classes cannot safely callimbue() themselves, except as specified elsewhere.—end note]

8 A locale constructed from a name string (such as"POSIX"), or from parts of two named locales, has a
name; all others do not. Named locales may be compared for equality; an unnamed locale is equal only to
(copies of) itself. For an unnamed locale,locale::name() returns the string“* ”.

[lib.locale.types] 22.1.1.1 locale types

[lib.locale.category] 22.1.1.1.1 Typelocale::category

typedef int category;

1 Valid category values include thelocale member bitmask elementsnone , collate , ctype ,
monetary , numeric , time , andmessages . In addition,locale memberall is defined such that
the expression

(collate | ctype | monetary | numeric | time | messages | all) == all

is true . Further, the result of applying operators| and& to any two valid values is valid, and results in
the setwise union and intersection, respectively, of the argument categories.

2 locale member functions expecting acategory argument require either a validcategory value or
one of the constantsLC_CTYPEetc., defined in<cctype> . Such acategory value identifies a set of
locale categories. Each locale category, in turn, identifies a set of locale facets, including at least those
shown in Table 51:

412

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.1.1.1.1 Typelocale::category

Table 51—Locale Category Facets
_ __

Category Includes Facets_ ___ __
collate collate<char>, collate<wchar_t>_ __
ctype ctype<char>, ctype<wchar_t>

codecvt<char,char,mbstate_t>,
codecvt<wchar_t,char,mbstate_t>_ __

monetary moneypunct<char>, moneypunct<wchar_t>
moneypunct<char,true>, moneypunct<wchar_t,true>,
money_get<char>, money_get<wchar_t>
money_put<char>, money_put<wchar_t>_ __

numeric numpunct<char>, numpunct<wchar_t>,
num_get<char>, num_get<wchar_t>
num_put<char>, num_put<wchar_t>_ __

time time_get<char>, time_get<wchar_t>,
time_put<char>, time_put<wchar_t>_ __

messages messages<char>, messages<wchar_t>_ __

3 For any localeloc either constructed, or returned bylocale::classic() , and any facetFacet that
is a member of a standard category,has_facet< Facet >(loc) is true. Eachlocale member func-
tion which takes alocale::category argument operates on the corresponding set of facets.

4 An implementation is required to provide those instantiations for facet templates identified as members of a
category, and for those shown in Table 52:

Table 52—Required Instantiations
_ ___

Category Includes Facets_ __ ___
collate collate_byname<char>, collate_byname<wchar_t>_ ___
ctype ctype_byname<char>, ctype_byname<wchar_t>_ ___
monetary moneypunct_byname<char,International>,

moneypunct_byname<wchar_t,International>,
money_get<C,InputIterator>,
money_put<C,OutputIterator>_ ___

numeric numpunct_byname<char>, numpunct_byname<wchar_t>
num_get<C,InputIterator>, num_put<C,OutputIterator>_ ___

time time_get<char,InputIterator>,
time_get_byname<char,InputIterator>,
time_get<wchar_t,OutputIterator>,
time_get_byname<wchar_t,OutputIterator>,
time_put<char,OutputIterator>,
time_put_byname<char,OutputIterator>,
time_put<wchar_t,OutputIterator>
time_put_byname<wchar_t,OutputIterator>_ ___

messages messages_byname<char>, messages_byname<wchar_t>_ ___

5 The provided implementation of members of facetsnum_get<charT> and num_put<charT> calls
use_facet<F>(l) only for facet F of types numpunct<charT> and ctype<charT> , and for
locale l the value obtained by calling membergetloc() on theios_base& argument to these func-
tions.

413

ISO/IEC 14882:1998(E) © ISO/IEC

22.1.1.1.1 Typelocale::category 22 Localization library

6 In declarations of facets, a template formal parameter with nameInputIterator or
OutputIterator indicates the set of all possible instantiations on parameters that satisfy the require-
ments of an Input Iterator or an Output Iterator, respectively (24.1). A template formal parameter with
nameC represents the set of all possible instantiations on a parameter that satisfies the requirements for a
character on which any of the iostream components can be instantiated. A template formal parameter with
nameInternational represents the set of all possible instantiations on a bool parameter.

[lib.locale.facet] 22.1.1.1.2 Classlocale::facet

namespace std {
class locale::facet {
protected:

explicit facet(size_t refs = 0);
virtual ~facet();

private:
facet(const facet&); // not defined
void operator=(const facet&); // not defined

};
}

1 Classfacet is the base class for locale feature sets. A class is afacetif it is publicly derived from another
facet, or if it is a class derived fromlocale::facet and containing a publicly-accessible declaration as
follows:221)

static ::std::locale::id id;

Template parameters in this clause which are required to be facets are those namedFacet in declarations.
A program that passes a type that isnot a facet, as an (explicit or deduced) template parameter to a locale
function expecting a facet, is ill-formed.

2 Therefs argument to the constructor is used for lifetime management.

— For refs == 0 , the implementation performsdelete static_cast<locale::facet*>(f)
(wheref is a pointer to the facet) when the lastlocale object containing the facet is destroyed; for
refs == 1 , the implementation never destroys the facet.

3 Constructors of all facets defined in this clause take such an argument and pass it along to theirfacet
base class constructor. All one-argument constructors defined in this clause areexplicit, preventing their
participation in automatic conversions.

4 For some standard facets a standard“..._byname” class, derived from it, implements the virtual function
semantics equivalent to that facet of the locale constructed bylocale(const char*) with the same
name. Each such facet provides a constructor that takes aconst char* argument, which names the
locale, and arefs argument, which is passed to the base class constructor. If there is no“..._byname”
version of a facet, the base class implements named locale semantics itself by reference to other facets.

[lib.locale.id] 22.1.1.1.3 Classlocale::id

namespace std {
class locale::id {
public:

id();
private:

void operator=(const id&); // not defined
id(const id&); // not defined

};
}

221)This is a complete list of requirements; there are no other requirements. Thus, a facet class need not have a public copy construc-
tor, assignment, default constructor, destructor, etc.

414

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.1.1.1.3 Classlocale::id

1 The class locale::id provides identification of a locale facet interfaces, used as an index for lookup and to
encapsulate initialization.

2 [Note:Because facets are used by iostreams, potentially while static constructors are running, their initial-
ization cannot depend on programmed static initialization. One initialization strategy is forlocale to ini-
tialize each facet’sid member the first time an instance of the facet is installed into a locale. This depends
only on static storage being zero before constructors run (3.6.2).—end note]

[lib.locale.cons] 22.1.1.2 locale constructors and destructor

locale() throw();

1 Default constructor: a snapshot of the current global locale.
2 Effects: Constructs a copy of the argument last passed tolocale::global(locale&) , if it has been

called; else, the resulting facets have virtual function semantics identical to those of
locale::classic() . [Note:This constructor is commonly used as the default value for arguments
of functions that take aconst locale& argument. —end note]

locale(const locale& other) throw();

3 Effects: Constructs a locale which is a copy ofother .

const locale& operator=(const locale& other) throw();

4 Effects: Creates a copy ofother , replacing the current value.
5 Returns: *this

explicit locale(const char* std_name);

6 Effects: Constructs a locale using standard C locale names, e.g."POSIX" . The resulting locale imple-
ments semantics defined to be associated with that name.

7 Throws: runtime_error if the argument is not valid, or is null.
8 Notes: The set of valid string argument values is"C" , "" , and any implementation-defined values.

locale(const locale& other , const char* std_name , category);

9 Effects: Constructs a locale as a copy ofother except for the facets identified by thecategory argu-
ment, which instead implement the same semantics aslocale(std_name) .

10 Throws: runtime_error if the argument is not valid, or is null.
11 Notes: The locale has a name if and only ifother has a name.

template <class Facet> locale(const locale& other , Facet* f);

12 Effects: Constructs a locale incorporating all facets from the first argument except that of typeFacet , and
installs the second argument as the remaining facet. Iff is null, the resulting object is a copy of
other .

13 Notes: The resulting locale has no name.

locale(const locale& other , const locale& one , category cats);

14 Effects: Constructs a locale incorporating all facets from the first argument except those that implement
cats , which are instead incorporated from the second argument.

15 Notes: The resulting locale has a name if and only if the first two arguments have names.

415

ISO/IEC 14882:1998(E) © ISO/IEC

22.1.1.2locale constructors and destructor 22 Localization library

~locale() throw();

16 A non-virtual destructor that throws no exceptions.

[lib.locale.members] 22.1.1.3 locale members

template <class Facet> locale combine(const locale& other);

1 Effects: Constructs a locale incorporating all facets from*this except for that one facet ofother that is
identified byFacet .

2 Returns: The newly created locale.
3 Throws: runtime_error if has_facet<Facet>(other) is false.
4 Notes: The resulting locale has no name.

basic_string<char> name() const;

5 Returns: The name of*this , if it has one; otherwise, the string"*" . If *this has a name, then
locale(name()) is equivalent to*this . Details of the contents of the resulting string are other-
wise implementation-defined.

[lib.locale.operators] 22.1.1.4 locale operators

bool operator==(const locale& other) const;

1 Returns: true if both arguments are the same locale, or one is a copy of the other, or each has a name
and the names are identical;false otherwise.

bool operator!=(const locale& other) const;

2 Returns: The result of the expression:!(*this == other)

template <class charT, class Traits, class Allocator>
bool operator()(const basic_string<charT,Traits,Allocator>& s1 ,

const basic_string<charT,Traits,Allocator>& s2) const;

3 Effects: Compares two strings according to thecollate<charT> facet.
4 Notes: This member operator template (and thereforelocale itself) satisfies requirements for a compara-

tor predicate template argument (clause 25) applied to strings.
5 Returns: The result of the following expression:

use_facet< collate<charT> >(*this).compare
(s1 .data(), s1 .data()+ s1 .size(), s2 .data(), s2 .data()+ s2 .size()) < 0;

6 [Example:A vector of stringsv can be collated according to collation rules in localeloc simply by
(25.3.1, 23.2.4):

std::sort(v.begin(), v.end(), loc);

—end example]

[lib.locale.statics] 22.1.1.5 locale static members

static locale global(const locale& loc);

1 Sets the global locale to its argument.
2 Effects: Causes future calls to the constructorlocale() to return a copy of the argument. If the argu-

ment has a name, does

std::setlocale(LC_ALL, loc.name().c_str());

otherwise, the effect on the C locale, if any, is implementation-defined.

416

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.1.1.5locale static members

3 Returns: The previous value oflocale() .

static const locale& classic();

4 The"C" locale.
5 Returns: A locale that implements the classic"C" locale semantics, equivalent to the value

locale("C") .
6 Notes: This locale, its facets, and their member functions, do not change with time.

[lib.locale.global.templates] 22.1.2 locale globals

template <class Facet > const Facet & use_facet(const locale& loc);

1 Get a reference to a facet of a locale.
2 Returns: a reference to the corresponding facet ofloc , if present.
3 Throws: bad_cast if has_facet<Facet>(loc) is false .
4 Notes: The reference returned remains valid at least as long as any copy ofloc exists.

template <class Facet > bool has_facet(const locale& loc) throw();

5 Returns: true if the facet requested is present inloc ; otherwise false

[lib.locale.convenience] 22.1.3 Convenience interfaces

[lib.classification] 22.1.3.1 Character classification

template <class charT> bool isspace (charT c, const locale& loc);
template <class charT> bool isprint (charT c, const locale& loc);
template <class charT> bool iscntrl (charT c, const locale& loc);
template <class charT> bool isupper (charT c, const locale& loc);
template <class charT> bool islower (charT c, const locale& loc);
template <class charT> bool isalpha (charT c, const locale& loc);
template <class charT> bool isdigit (charT c, const locale& loc);
template <class charT> bool ispunct (charT c, const locale& loc);
template <class charT> bool isxdigit(charT c, const locale& loc);
template <class charT> bool isalnum (charT c, const locale& loc);
template <class charT> bool isgraph (charT c, const locale& loc);

1 Each of these functionsis F returns the result of the expression:

use_facet< ctype<charT> >(loc).is(ctype_base:: F, c)

whereF is thectype_base::mask value corresponding to that function (22.2.1).222)

[lib.conversions] 22.1.3.2 Character conversions

template <class charT> charT toupper(charT c, const locale& loc) const;

1 Returns: use_facet<ctype<charT> >(loc).toupper(c) .

222)When used in a loop, it is faster to cache thectype<> facet and use it directly, or use the vector form ofctype<>::is .

417

ISO/IEC 14882:1998(E) © ISO/IEC

22.1.3.2 Character conversions 22 Localization library

template <class charT> charT tolower(charT c, const locale& loc) const;

2 Returns: use_facet<ctype<charT> >(loc).tolower(c) .

[lib.locale.categories] 22.2 Standardlocale categories

1 Each of the standard categories includes a family of facets. Some of these implement formatting or parsing
of a datum, for use by standard or users’ iostream operators<< and>>, as membersput() andget() ,
respectively. Each such member function takes anios_base& argument whose membersflags() ,
precision() , andwidth() , specify the format of the corresponding datum. (27.4.2). Those functions
which need to use other facets call its membergetloc() to retrieve the locale imbued there. Formatting
facets use the character argumentfill to fill out the specified width where necessary.

2 Theput() members make no provision for error reporting. (Any failures of the OutputIterator argument
must be extracted from the returned iterator.) Theget() members take anios_base::iostate&
argument whose value they ignore, but set toios_base::failbit in case of a parse error.

[lib.category.ctype] 22.2.1 Thectype category

namespace std {
class ctype_base {
public:

enum mask { // numeric values are for exposition only.
space=1<<0, print=1<<1, cntrl=1<<2, upper=1<<3, lower=1<<4,
alpha=1<<5, digit=1<<6, punct=1<<7, xdigit=1<<8,
alnum=alpha|digit, graph=alnum|punct

};
};

}

1 The typemask is a bitmask type.

[lib.locale.ctype] 22.2.1.1 Template classctype

template <class charT>
class ctype : public locale::facet, public ctype_base {
public:

typedef charT char_type;
explicit ctype(size_t refs = 0);

bool is(mask m, charT c) const;
const charT* is(const charT* low , const charT* high , mask* vec) const;
const charT* scan_is(mask m,

const charT* low , const charT* high) const;
const charT* scan_not(mask m,

const charT* low , const charT* high) const;
charT toupper(charT c) const;
const charT* toupper(charT* low , const charT* high) const;
charT tolower(charT c) const;
const charT* tolower(charT* low , const charT* high) const;

charT widen(char c) const;
const char* widen(const char* low , const char* high , charT* to) const;
char narrow(charT c, char dfault) const;
const charT* narrow(const charT* low , const charT*, char dfault ,

char* to) const;

static locale::id id;

418

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.1.1 Template classctype

protected:
~ctype(); // virtual

virtual bool do_is(mask m, charT c) const;
virtual const charT* do_is(const charT* low , const charT* high ,

mask* vec) const;
virtual const charT* do_scan_is(mask m,

const charT* low , const charT* high) const;
virtual const charT* do_scan_not(mask m,

const charT* low , const charT* high) const;
virtual charT do_toupper(charT) const;
virtual const charT* do_toupper(charT* low , const charT* high) const;
virtual charT do_tolower(charT) const;
virtual const charT* do_tolower(charT* low , const charT* high) const;
virtual charT do_widen(char) const;
virtual const char* do_widen(const char* low , const char* high ,

charT* dest) const;
virtual char do_narrow(charT, char dfault) const;
virtual const charT* do_narrow(const charT* low , const charT* high ,

char dfault , char* dest) const;
};

1 Classctype encapsulates the C library<cctype> features. istream members are required to use
ctype<> for character classing during input parsing.

2 The instantiations required in Table 51 (22.1.1.1.1), namelyctype<char> and ctype<wchar_t> ,
implement character classing appropriate to the implementation’s native character set.

[lib.locale.ctype.members] 22.2.1.1.1ctype members

bool is(mask m, charT c) const;
const charT* is(const charT* low , const charT* high ,

mask* vec) const;

1 Returns: do_is(m, c) or do_is(low , high , vec)

const charT* scan_is(mask m,
const charT* low , const charT* high) const;

2 Returns: do_scan_is(m, low , high)

const charT* scan_not(mask m,
const charT* low , const charT* high) const;

3 Returns: do_scan_not(m, low , high)

charT toupper(charT) const;
const charT* toupper(charT* low , const charT* high) const;

4 Returns: do_toupper(c) or do_toupper(low , high)

charT tolower(charT c) const;
const charT* tolower(charT* low , const charT* high) const;

5 Returns: do_tolower(c) or do_tolower(low , high)

419

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.1.1.1ctype members 22 Localization library

charT widen(char c) const;
const char* widen(const char* low , const char* high , charT* to) const;

6 Returns: do_widen(c) or do_widen(low , high , to)

char narrow(charT c, char dfault) const;
const charT* narrow(const charT* low , const charT*, char dfault ,

char* to) const;

7 Returns: do_narrow(c, dfault) or do_narrow(low , high , dfault , to)

[lib.locale.ctype.virtuals] 22.2.1.1.2ctype virtual functions

bool do_is(mask m, charT c) const;
const charT* do_is(const charT* low , const charT* high ,

mask* vec) const;

1 Effects: Classifies a character or sequence of characters. For each argument character, identifies a value
M of type ctype_base::mask . The second form identifies a valueM of type
ctype_base::mask for each* p where (low <=p && p<high) , and places it intovec [p-
low] .

2 Returns: The first form returns the result of the expression(M & m) != 0 ; i.e., true if the character
has the characteristics specified. The second form returnshigh .

const charT* do_scan_is(mask m,
const charT* low , const charT* high) const;

3 Effects: Locates a character in a buffer that conforms to a classificationm.
4 Returns: The smallest pointerp in the range[low , high) such thatis(* p) would returntrue ; oth-

erwise, returnshigh .

const charT* do_scan_not(mask m,
const charT* low , const charT* high) const;

5 Effects: Locates a character in a buffer that fails to conform to a classificationm.
6 Returns: The smallest pointerp, if any, in the range[low , high) such thatis(* p) would return

false ; otherwise, returnshigh .

charT do_toupper(charT c) const;
const charT* do_toupper(charT* low , const charT* high) const;

7 Effects: Converts a character or characters to upper case. The second form replaces each character* p in
the range[low , high) for which a corresponding upper-case character exists, with that character.

8 Returns: The first form returns the corresponding upper-case character if it is known to exist, or its argu-
ment if not. The second form returnshigh .

charT do_tolower(charT c) const;
const charT* do_tolower(charT* low , const charT* high) const;

9 Effects: Converts a character or characters to lower case. The second form replaces each character* p in
the range[low , high) and for which a corresponding lower-case character exists, with that charac-
ter.

10 Returns: The first form returns the corresponding lower-case character if it is known to exist, or its argu-
ment if not. The second form returnshigh .

420

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.1.1.2ctype virtual functions

charT do_widen(char c) const;
const char* do_widen(const char* low , const char* high ,

charT* dest) const;

11 Effects: Applies the simplest reasonable transformation from achar value or sequence ofchar values to
the correspondingcharT value or values.223)The only characters for which unique transformations are
required are those in the basic source character set (2.2).
For any namedctype category with actype<charT> facetctw and validctype_base::mask
valueM(is(M, c) || ! ctw .is(M, do_widen(c))) is true .224)

The second form transforms each character* p in the range[low , high) , placing the result in
dest [p- low] .

12 Returns: The first form returns the transformed value. The second form returnshigh .

char do_narrow(charT c, char dfault) const;
const charT* do_narrow(const charT* low , const charT* high ,

char dfault , char* dest) const;

13 Effects: Applies the simplest reasonable transformation from acharT value or sequence ofcharT val-
ues to the correspondingchar value or values.
For any characterc in the basic source character set(2.2) the transformation is such that

do_widen(do_narrow(c),0) == c

For any named ctype category with a ctype<char> facet ctc however, and
ctype_base::mask valueM,

(is(M, c) || ! ctc .is(M, do_narrow(c), dfault))"

is true (unlessdo_narrow returnsdfault). In addition, for any digit characterc , the expression
(do_narrow(c, dfault)-’0’) evaluates to the digit value of the character. The second form
transforms each character* p in the range[low , high) , placing the result (ordfault if no simple
transformation is readly available) indest [p- low] .

14 Returns: The first form returns the transformed value; ordfault if no mapping is readily available. The
second form returnshigh .

[lib.locale.ctype.byname] 22.2.1.2 Template classctype_byname

namespace std {
template <class charT>
class ctype_byname : public ctype<charT> {
public:

typedef ctype<charT>::mask mask;
explicit ctype_byname(const char*, size_t refs = 0);

protected:
~ctype_byname(); // virtual

223)The char argument ofdo_widen is intended to accept values derived from character literals for conversion the locale’s encod-
ing.
224)In other words, the transformed character is not a member of any character classification thatc is not also a member of.

421

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.1.2 Template classctype_byname 22 Localization library

virtual bool do_is(mask m, charT c) const;
virtual const charT* do_is(const charT* low , const charT* high ,

mask* vec) const;
virtual const char* do_scan_is(mask m,

const charT* low , const charT* high) const;
virtual const char* do_scan_not(mask m,

const charT* low , const charT* high) const;
virtual charT do_toupper(charT) const;
virtual const charT* do_toupper(charT* low , const charT* high) const;
virtual charT do_tolower(charT) const;
virtual const charT* do_tolower(charT* low , const charT* high) const;
virtual charT do_widen(char) const;
virtual const char* do_widen(const char* low , const char* high ,

charT* dest) const;
virtual char do_narrow(charT, char dfault) const;
virtual const charT* do_narrow(const charT* low , const charT* high ,

char dfault , char* dest) const;
};

}

[lib.facet.ctype.special] 22.2.1.3ctype specializations

namespace std {
template <> class ctype<char>

: public locale::facet, public ctype_base {
public:

typedef char char_type;

explicit ctype(const mask* tab = 0, bool del = false,
size_t refs = 0);

bool is(mask m, char c) const;
const char* is(const char* low , const char* high , mask* vec) const;
const char* scan_is (mask m,

const char* low , const char* high) const;
const char* scan_not(mask m,

const char* low , const char* high) const;

char toupper(char c) const;
const char* toupper(char* low , const char* high) const;
char tolower(char c) const;
const char* tolower(char* low , const char* high) const;

char widen(char c) const;
const char* widen(const char* low , const char* high , char* to) const;
char narrow(char c, char dfault) const;
const char* narrow(const char* low , const char* high , char dfault ,

char* to) const;

static locale::id id;
static const size_t table_size = IMPLEMENTATION_DEFINED;

protected:
const mask* table() const throw();
static const mask* classic_table() throw();

422

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.1.3ctype specializations

~ctype(); // virtual
virtual char do_toupper(char c) const;
virtual const char* do_toupper(char* low , const char* high) const;
virtual char do_tolower(char c) const;
virtual const char* do_tolower(char* low , const char* high) const;

virtual char do_widen(char c) const;
virtual const char* do_widen(const char* low ,

const char* high ,
char* to) const;

virtual char do_narrow(char c, char dfault) const;
virtual const char* do_narrow(const char* low ,

const char* high ,
char dfault , char* to) const;

};
}

1 A specializationctype<char> is provided so that the member functions on typechar can be imple-
mentedinline .225)The implementation-defined value of membertable_size is at least 256.

[lib.facet.ctype.char.dtor] 22.2.1.3.1ctype<char> destructor

~ctype();

1 Effects: If the constructor’s first argument was nonzero, and its second argument was true, doesdelete
[] table() .

[lib.facet.ctype.char.members] 22.2.1.3.2ctype<char> members

1 In the following member descriptions, forunsigned char valuesv where(v >= table_size) ,
table()[v] is assumed to have an implementation-defined value (possibly different for each such value
v) without performing the array lookup.

explicit ctype(const mask* tbl = 0, bool del = false,
size_t refs = 0);

2 Precondition: tbl either 0 or an array of at leasttable_size elements.
3 Effects: Passes itsrefs argument to its base class constructor.

bool is(mask m, char c) const;
const char* is(const char* low , const char* high ,

mask* vec) const;

4 Effects: The second form, for all* p in the range [low , high) , assignsvec [p- low] to
table()[(unsigned char)* p] .

5 Returns: The first form returnstable()[(unsigned char)c] & m ; the second form returns
high .

const char* scan_is(mask m,
const char* low , const char* high) const;

6 Returns: The smallestp in the range[low , high) such that

table()[(unsigned char) * p] & m

is true .

225)Only thechar (not unsigned char andsigned char) form is provided. The specialization is specified in the standard,
and not left as an implementation detail, because it affects the derivation interface forctype<char> .

423

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.1.3.2ctype<char> members 22 Localization library

const char* scan_not(mask m,
const char* low , const char* high) const;

7 Returns: The smallestp in the range[low , high) such that

table()[(unsigned char) * p] & m

is false .

char toupper(char c) const;
const char* toupper(char* low , const char* high) const;

8 Returns: do_toupper(c) or do_toupper(low , high)

char tolower(char c) const;
const char* tolower(char* low , const char* high) const;

9 Returns: do_tolower(c) or do_tolower(low , high)

char widen(char c) const;
const char* widen(const char* low , const char* high ,

char* to) const;

10 Returns: do_widen(low , high , to) .

char narrow(char c, char /*dfault*/) const;
const char* narrow(const char* low , const char* high ,

char /*dfault*/, char* to) const;

11 Returns: do_narrow(low , high , to) .

const mask* table() const throw();

12 Returns: The first constructor argument, if it was non-zero, otherwiseclassic_table() .

[lib.facet.ctype.char.statics] 22.2.1.3.3ctype<char> static members

static const mask* classic_table() throw();

1 Returns: A pointer to the initial element of an array of sizetable_size which represents the classifica-
tions of characters in the "C" locale.

[lib.facet.ctype.char.virtuals] 22.2.1.3.4ctype<char> virtual functions

char do_toupper(char) const;
const char* do_toupper(char* low, const char* high) const;
char do_tolower(char) const;
const char* do_tolower(char* low, const char* high) const;

virtual char do_widen(char c) const;
virtual const char* do_widen(const char* low ,

const char* high ,
char* to) const;

virtual char do_narrow(char c, char dfault) const;
virtual const char* do_narrow(const char* low ,

const char* high ,
char dfault , char* to) const;

These functions are described identically as those members of the same name in thectype class template
(22.2.1.1.1).

424

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.1.4 Class ctype_byname<char>

[lib.locale.ctype.byname.special] 22.2.1.4 Class ctype_byname<char>

namespace std {
template <> class ctype_byname<char> : public ctype<char> {
public:

explicit ctype_byname(const char*, size_t refs = 0);
protected:

~ctype_byname(); // virtual
virtual char do_toupper(char c) const;
virtual const char* do_toupper(char* low , const char* high) const;
virtual char do_tolower(char c) const;
virtual const char* do_tolower(char* low , const char* high) const;

virtual char do_widen(char c) const;
virtual const char* do_widen(char* low ,

const char* high ,
char* to) const;

virtual char do_widen(char c) const;
virtual const char* do_widen(char* low , const char* high) const;

};
}

1
[lib.locale.codecvt] 22.2.1.5 Template classcodecvt

namespace std {
class codecvt_base {
public:

enum result { ok, partial, error, noconv };
};
template <class internT, class externT, class stateT>
class codecvt : public locale::facet, public codecvt_base {
public:

typedef internT intern_type;
typedef externT extern_type;
typedef stateT state_type;

explicit codecvt(size_t refs = 0)

result out(stateT& state ,
const internT* from , const internT* from_end , const internT*& from_next ,

externT* to , externT* to_limit , externT*& to_next) const;
result unshift(stateT& state ,

externT* to , externT* to_limit , externT*& to_next) const;
result in(stateT& state ,

const externT* from , const externT* from_end , const externT*& from_next ,
internT* to , internT* to_limit , internT*& to_next) const;

int encoding() const throw();
bool always_noconv() const throw();
int length(const stateT&, const externT* from , const externT* end ,

size_t max) const;
int max_length() const throw();

static locale::id id;

425

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.1.5 Template classcodecvt 22 Localization library

protected:
~codecvt(); // virtual
virtual result do_out(stateT& state ,

const internT* from , const internT* from_end , const internT*& from_next ,
externT* to , externT* to_limit , externT*& to_next) const;

virtual result do_in(stateT& state ,
const externT* from , const externT* from_end , const externT*& from_next ,

internT* to , internT* to_limit , internT*& to_next) const;
virtual result do_unshift(stateT& state ,

externT* to , externT* to_limit , externT*& to_next) const;
virtual int do_encoding() const throw();
virtual bool do_always_noconv() const throw();
virtual int do_length(const stateT&, const externT* from ,

const externT* end , size_t max) const;
virtual int do_max_length() const throw();

};
}

1 The classcodecvt<internT,externT,stateT> is for use when converting from one codeset to
another, such as from wide characters to multibyte characters, between wide character encodings such as
Unicode and EUC.

2 ThestateT argument selects the pair of codesets being mapped between.

3 The instantiations required in the Table 51 (22.1.1.1.1), namely
codecvt<wchar_t,char,mbstate_t> and codecvt<char,char,mbstate_t> , convert the
implementation-defined native character set.codecvt<char,char,mbstate_t> implements a
degenerate conversion; it does not convert at all.codecvt<wchar_t,char,mbstate_t> converts
between the native character sets for tiny and wide characters. Instantiations onmbstate_t perform con-
version between encodings known to the library implementor. Other encodings can be converted by spe-
cializing on a user-definedstateT type. ThestateT object can contain any state that is useful to com-
municate to or from the specializeddo_convert member.

[lib.locale.codecvt.members] 22.2.1.5.1codecvt members

result out(stateT& state ,
const internT* from , const internT* from_end , const internT*& from_next ,

externT* to , externT* to_limit , externT*& to_next) const;

1 Returns: do_out(state , from , from_end , from_next , to , to_limit , to_next)

result unshift(stateT& state ,
externT* to , externT* to_limit , externT*& to_next) const;

2 Returns: do_unshift(state , to , to_limit , to_next)

result in(stateT& state ,
const externT* from , const externT* from_end , const externT*& from_next ,

internT* to , internT* to_limit , internT*& to_next) const;

3 Returns: do_in(state , from , from_end , from_next , to , to_limit , to_next)

int encoding() const throw();

4 Returns: do_encoding()

426

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.1.5.1codecvt members

bool always_noconv() const throw();

5 Returns: do_always_noconv()

int length(stateT& state , const externT* from , const externT* from_end ,
size_t max) const;

6 Returns: do_length(state , from , from_end , max)

int max_length() const throw();

7 Returns: do_max_length()

[lib.locale.codecvt.virtuals] 22.2.1.5.2codecvt virtual functions

result do_out(stateT& state ,
const internT* from , const internT* from_end , const internT*& from_next ,
externT* to , externT* to_limit , externT*& to_next) const;

result do_in(stateT& state ,
const externT* from , const externT* from_end , const externT*& from_next ,

internT* to , internT* to_limit , internT*& to_next) const;

1 Preconditions: (from <=from_end && to <=to_end) well-defined andtrue ; state initialized,
if at the beginning of a sequence, or else equal to the result of converting the preceding characters in the
sequence.

2 Effects: Translates characters in the source range[from , from_end) , placing the results in sequential
positions starting at destinationto . Converts no more than(from_end - from) source elements, and
stores no more than(to_limit - to) destination elements.
Stops if it encounters a character it cannot convert. It always leaves thefrom_next and to_next
pointers pointing one beyond the last element successfully converted. [Note: If no translation is needed
(returnsnoconv), setsto_next equal to argumentto , andfrom_next equal to argumentfrom .
—end note]

3 Notes: Its operations onstate are unspecified.
[Note: This argument can be used, for example, to maintain shift state, to specify conversion options
(such as count only), or to identify a cache of seek offsets.—end note]

4 Returns: An enumeration value, as summarized in Table 53:

Table 53—convert result values
_ ___

Value Meaning_ __ ___
ok completed the conversion
partial not all source characters converted
error encountered afrom_type character it could not convert
noconv no conversion was needed_ ___

A return value ofpartial , if (from_next ==from_end) , indicates that either the destination
sequence has not absorbed all the available destination elements, or that additional source elements are
needed before another destination element can be produced.

result do_unshift(stateT& state ,
externT* to , externT* to_limit , externT*& to_next) const;

5 Effects Places characters starting atto that should be appended to terminate a sequence when the current
stateT is given by state .226) The instantiations required in Table 51 (22.1.1.1.1), namely

226)Typically these will be characters to return the state tostateT()

427

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.1.5.2codecvt virtual functions 22 Localization library

codecvt<wchar_t,char,mbstate_t> and codecvt<char,char,mbstate_t> , store no
characters. Stores no more than(to_limit - to) destination elements. It always leaves the
to_next pointer pointing one beyond the last element successfully stored.

6 Returns An enumeration value, as summarized in Table 54:

Table 54—convert result values
_ ___

Value Meaning_ __ ___
ok completed the sequence
partial more characters need to be supplied to complete termination
error state has invalid value.
noconv no termination is needed for thisstate_type_ ___

codecvt<char,char,mbstate_t> , returnsnoconv .

int do_encoding() const throw();

7 Returns: -1 if the encoding of the externT sequence is state-dependent; else the constant number of
externT characters needed to produce an internal character; or 0 if this number is not a constant227).

bool do_always_noconv() const throw();

8 Returns: true if do_convert() returns noconv for all valid argument values.
codecvt<char,char,mbstate_t> returnstrue .

int do_length(stateT& state , const externT* from , const externT* from_end ,
size_t max) const;

9 Preconditions: (from <=from_end) well-defined andtrue ; state initialized, if at the beginning of
a sequence, or else equal to the result of converting the preceding characters in the sequence.

10 Returns: (from_next - from) where from_next is the largest value in the range
[from , from_end] such that the sequence of values in the range[from , from_next) represents
max or fewer valid complete characters of typeinternT . The instantiations required in Table 51
(22.1.1.1.1), namelycodecvt<wchar_t, char, mbstate_t> andcodecvt<char, char,
mbstate_t> , return the lesser ofmax and(from_end - from) .

int do_max_length() const throw();

11 Returns: The maximum value that 1)do_length(state , from ,nfrom_end , can return for any valid
range[from , from_end) andstateT valuestate . codecvt<char, char, mbstate_t>
returns 1.

227)If encoding() yields -1, then more than max_length() externT elements may be consumed when producing a single internT charac-
ter, and additional externT elements may appear at the end of a sequence after those that yield the final internT character.

428

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.1.5.2codecvt virtual functions

[lib.locale.codecvt.byname] 22.2.1.6 Template classcodecvt_byname

namespace std {
template <class internT, class externT, class stateT>
class codecvt_byname : public codecvt<internT, externT, stateT> {
public:

explicit codecvt_byname(const char*, size_t refs = 0);
protected:
~codecvt_byname(); // virtual

virtual result do_out(stateT& state ,
const internT* from , const internT* from_end , const internT*& from_next ,

externT* to , externT* to_limit , externT*& to_next) const;
virtual result do_in(stateT& state ,

const externT* from , const externT* from_end , const externT*& from_next ,
internT* to , internT* to_limit , internT*& to_next) const;

virtual result do_unshift(stateT& state ,
externT* to , externT* to_limit , externT*& to_next) const;

virtual int do_encoding() const throw();
virtual bool do_always_noconv() const throw();
virtual int do_length(const stateT&, const externT* from ,

const externT* end , size_t max) const;
virtual result do_unshift(stateT& state ,

externT* to , externT* to_limit , externT*& to_next) const;
virtual int do_max_length() const throw();
};

}

[lib.category.numeric] 22.2.2 The numeric category

1 The classesnum_get<> andnum_put<> handle numeric formatting and parsing. Virtual functions are
provided for several numeric types. Implementations may (but are not required to) delegate extraction of
smaller types to extractors for larger types.228)

2 All specifications of member functions for num_put and num_get in the subclauses of 22.2.2 only apply to
the instantiations required in Tables 51 and 52 (22.1.1.1.1), namelynum_get<char> ,
num_get<wchar_t> , num_get<C,InputIterator> , num_put<char> , num_put<wchar_t> ,
andnum_put<C,OutputIterator> . These instantiations refer to theios_base& argument for for-
matting specifications (22.2), and to its imbued locale for thenumpunct<> facet to identify all numeric
punctuation preferences, and also for thectype<> facet to perform character classification.

3 Extractor and inserter members of the standard iostreams usenum_get<> and num_put<> member
functions for formatting and parsing numeric values (27.6.1.2.1, 27.6.2.5.1).

[lib.locale.num.get] 22.2.2.1 Template classnum_get

namespace std {
template <class charT, class InputIterator = istreambuf_iterator<charT> >
class num_get : public locale::facet {
public:

typedef charT char_type;
typedef InputIterator iter_type;

explicit num_get(size_t refs = 0);

228) Parsing"-1" correctly into (e.g.) anunsigned short requires that the corresponding memberget() at least extract the
sign before delegating.

429

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.2.1 Template classnum_get 22 Localization library

iter_type get(iter_type in , iter_type end , ios_base&,
ios_base::iostate& err , bool& v) const;

iter_type get(iter_type in , iter_type end , ios_base& ,
ios_base::iostate& err , long& v) const;

iter_type get(iter_type in , iter_type end , ios_base&,
ios_base::iostate& err , unsigned short& v) const;

iter_type get(iter_type in , iter_type end , ios_base&,
ios_base::iostate& err , unsigned int& v) const;

iter_type get(iter_type in , iter_type end , ios_base&,
ios_base::iostate& err , unsigned long& v) const;

iter_type get(iter_type in , iter_type end , ios_base&,
ios_base::iostate& err , float& v) const;

iter_type get(iter_type in , iter_type end , ios_base&,
ios_base::iostate& err , double& v) const;

iter_type get(iter_type in , iter_type end , ios_base&,
ios_base::iostate& err , long double& v) const;

iter_type get(iter_type in , iter_type end , ios_base&,
ios_base::iostate& err , void*& v) const;

static locale::id id;

protected:
~num_get(); // virtual

virtual iter_type do_get(iter_type, iter_type, ios_base&,
ios_base::iostate& err , bool& v) const;

virtual iter_type do_get(iter_type, iter_type, ios_base&,
ios_base::iostate& err , long& v) const;

virtual iter_type do_get(iter_type, iter_type, ios_base&,
ios_base::iostate& err , unsigned short& v) const;

virtual iter_type do_get(iter_type, iter_type, ios_base&,
ios_base::iostate& err , unsigned int& v) const;

virtual iter_type do_get(iter_type, iter_type, ios_base&,
ios_base::iostate& err , unsigned long& v) const;

virtual iter_type do_get(iter_type, iter_type, ios_base&,
ios_base::iostate& err , float& v) const;

virtual iter_type do_get(iter_type, iter_type, ios_base&,
ios_base::iostate& err , double& v) const;

virtual iter_type do_get(iter_type, iter_type, ios_base&,
ios_base::iostate& err , long double& v) const;

virtual iter_type do_get(iter_type, iter_type, ios_base&,
ios_base::iostate& err , void*& v) const;

};
}

1 The facetnum_get is used to parse numeric values from an input sequence such as an istream.

430

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.2.1 Template classnum_get

[lib.facet.num.get.members] 22.2.2.1.1num_get members

iter_type get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , long& val) const;

iter_type get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , unsigned short& val) const;

iter_type get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , unsigned int& val) const;

iter_type get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , unsigned long& val) const;

iter_type get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , short& val) const;

iter_type get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , double& val) const;

iter_type get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , long double& val) const;

iter_type get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , void*& val) const;

1 Returns: do_get(in , end , str , err , val) .

[lib.facet.num.get.virtuals] 22.2.2.1.2num_get virtual functions

iter_type do_get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , long& val) const;

iter_type do_get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , unsigned short& val) const;

iter_type do_get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , unsigned int& val) const;

iter_type do_get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , unsigned long& val) const;

iter_type do_get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , float& val) const;

iter_type do_get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , double& val) const;

iter_type do_get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , long double& val) const;

iter_type do_get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , void*& val) const;

1 Effects: Reads characters fromin , interpreting them according tostr .flags() , use_facet<
ctype<charT> >(loc) , and use_facet< numpunct<charT> >(loc) , where loc is
str .getloc() . If an error occurs,val is unchanged; otherwise it is set to the resulting value.

2 The details of this operation occur in three stages

— Stage 1: Determine a conversion specifier

— Stage 2: Extract characters fromin and determine a correspondingchar value for the format expected
by the conversion specification determined in stage 1.

— Stage 3: Store results
The details of the stages are presented below.in.

3 Stage 1: The function initializes local variables via

fmtflags flags = str .flags();
fmtflags basefield = (flags & ios_base::basefield);
fmtflags uppercase = (flags & ios_base::uppercase);
fmtflags boolalpha = (flags & ios_base::boolalpha);

4 For conversion to an integral type, the function determines the integral conversion specifier as indicated
in Table 55. The table is ordered. That is, the first line whose condition is true applies.

431

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.2.1.2num_get virtual functions 22 Localization library

Table 55—Integer conversions
_ ___

State stdio equivalent_ __ ___
basefield == oct %o_ ___
basefield == hex %X_ ___
basefield == 0 %i_ __ ___
signed integral type %d_ ___
unsigned integral type %u_ ___

5 For conversions to a floating type the specifier is%g.
6 For conversions tovoid* the specifier is%p.
7 A length specifier is added to the conversion specification, if needed, as indicated in Table 56.

Table 56—Length Modifier

type length modifier__
short h___________________________________
unsigned short h___________________________________
long l___________________________________
unsigned long l___________________________________
long double L___________________________________

8 Stage 2: If in ==end then stage 2 terminates. Otherwise acharT is taken fromin and local variables
are initialized as if by

char_type ct = *in ;
char c = src[find(atoms, atoms + sizeof(src) - 1, ct) - atoms];
if (ct == use_facet<numpunct<charT> >(loc).decimal_point())

c = ’.’;
bool discard =

(ct == use_facet<numpunct<charT> >(loc).thousands_sep()
&&

use_facet<numpunct<charT> >(loc).grouping().length() != 0);

where the valuessrc andatoms are defined as if by:

static const char src[] = "0123456789abcdefABCDEF+-";
char_type atoms[sizeof(src)];
use_facet<ctype<charT> >(loc).widen(src, src + sizeof(src), atoms);

for this value ofloc .
9 If discard is true then the position of the character is remembered, but the character is otherwise

ignored. If it is not discarded, then a check is made to determine ifc is allowed as the next character of
an input field of the conversion specifier returned by stage 1. If so it is accumulated.

10 If the character is either discarded or accumulated thenin is advanced by++in and processing returns
to the beginning of stage 2.

11 Stage 3: The result of stage 2 processing can be one of

— A sequence ofchar s has been accumulated in stage 2 that is converted (according to the rules of
scanf) to a value of the type ofval . This value is stored inval and ios_base::goodbit is
stored inerr .

— The sequence ofchar s accumulated in stage 2 would have caused scanf to report an input failure.
ios_base::failbit is assigned toerr.

432

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.2.1.2num_get virtual functions

12 Digit grouping is checked. That is, the positions of discarded separators is examined for consistency with
use_facet<numpunct<charT> >(loc).grouping() . If they are not consistent then
ios_base::failbit is assigned toerr .

13 In any case, if stage 2 processing was terminated by the test forin ==end then
err |=ios_base::eofbit is performed.

iter_type do_get(iter_type in , iter_type end , ios_base& str ,
ios_base::iostate& err , bool& val) const;

14 Effects: If (str .flags()&&ios_base::boolalpha)==0 then input proceeds as it would for a
long except that if a value is being stored intoval , the value is determined according to the follow-
ing: If the value to be stored is 0 thenfalse is stored. If the value is 1 thentrue is stored. Other-
wiseerr |=ios_base::failbit is performed and no value is stored.

15 Otherwise a target string to be matched is determined by calling eitheruse_facet<ctype<charT>
>(loc).truename() or use_facet<ctype<charT> >(loc).falsename() depending on
whetherval is true or false (respectively).

16 As long asin != end and characters continue to match the target stringcharT ’s are obtained by doing
*in++ . A value is assigned toerr as follows

— If the target string was matched completely, thengoodbit .

— If input was terminated becausein ==end , theneofbit

— Otherwise,failbit .
17 Returns: in .

[lib.locale.nm.put] 22.2.2.2 Template classnum_put

namespace std {
template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
class num_put : public locale::facet {
public:

typedef charT char_type;
typedef OutputIterator iter_type;

explicit num_put(size_t refs = 0);

iter_type put(iter_type s, ios_base& f , char_type fill , bool v) const;
iter_type put(iter_type s, ios_base& f , char_type fill , long v) const;
iter_type put(iter_type s, ios_base& f , char_type fill ,

unsigned long v) const;
iter_type put(iter_type s, ios_base& f , char_type fill ,

double v) const;
iter_type put(iter_type s, ios_base& f , char_type fill ,

long double v) const;
iter_type put(iter_type s, ios_base& f , char_type fill ,

const void* v) const;

static locale::id id;

433

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.2.2 Template classnum_put 22 Localization library

protected:
~num_put(); // virtual

virtual iter_type do_put(iter_type, ios_base&, char_type fill ,
bool v) const;

virtual iter_type do_put(iter_type, ios_base&, char_type fill ,
long v) const;

virtual iter_type do_put(iter_type, ios_base&, char_type fill ,
unsigned long) const;

virtual iter_type do_put(iter_type, ios_base&, char_type fill ,
double v) const;

virtual iter_type do_put(iter_type, ios_base&, char_type fill ,
long double v) const;

virtual iter_type do_put(iter_type, ios_base&, char_type fill ,
const void* v) const;

};
}

1 The facetnum_put is used to format numeric values to a character sequence such as an ostream.

[lib.facet.num.put.members] 22.2.2.2.1num_put members

iter_type put(iter_type out , ios_base& str , char_type fill ,
bool val) const;

iter_type put(iter_type out , ios_base& str , char_type fill ,
long val) const;

iter_type put(iter_type out , ios_base& str , char_type fill ,
unsigned long val) const;

iter_type put(iter_type out , ios_base& str , char_type fill ,
double val) const;

iter_type put(iter_type out , ios_base& str , char_type fill ,
long double val) const;

iter_type put(iter_type out , ios_base& str , char_type fill ,
const void* val) const;

1 Returns: do_put(out , str , fill , val) .

[lib.facet.num.put.virtuals] 22.2.2.2.2num_put virtual functions

iter_type do_put(iter_type out , ios_base& str , char_type fill ,
bool val) const;

iter_type do_put(iter_type out , ios_base& str , char_type fill ,
long val) const;

iter_type do_put(iter_type out , ios_base& str , char_type fill ,
unsigned long val) const;

iter_type do_put(iter_type out , ios_base& str , char_type fill ,
double val) const;

iter_type do_put(iter_type out , ios_base& str , char_type fill ,
long double val) const;

iter_type do_put(iter_type out , ios_base& str , char_type fill ,
const void* val) const;

1 Effects: Writes characters to the sequenceout , formattingval as desired. In the following description, a
local variable initialized with

locale loc = str .getloc();

2 The details of this operation occur in several stages:

— Stage 1: Determine a printf conversion specifierspec and determining the characters that would be
printed byprintf (27.8.2) given this conversion specifier for

434

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.2.2.2num_put virtual functions

printf(spec , val)

assuming that the current locale is the "C" locale.

— Stage 2: Adjust the representation by converting eachchar determined by stage 1 to acharT using a
conversion and values returned by members ofuse_facet< numpunct<charT>
>(str.getloc())

— Stage 3: Determine where padding is required.

— Stage 4: Insert the sequence into theout .
3 Detailed descriptions of each stage follow.
4 Returns: out .

5 Stage 1: The first action of stage 1 is to determine a conversion specifier. The tables that describe this
determination use the following local variables

fmtflags flags = str.flags() ;
fmtflags basefield = (flags & (ios_base::basefield));
fmtflags uppercase = (flags & (ios_base::uppercase));
fmtflags floatfield = (flags & (ios_base::floatfield));
fmtflags showpos = (flags & (ios_base::showpos));
fmtflags showbase = (flags & (ios_base::showbase));

6 All tables used in describing stage 1 are ordered. That is, the first line whose condition is true applies.
A line without a condition is the default behavior when none of the earlier lines apply.

7 For conversion from an integral type other than a character type, the function determines the integral
conversion specifier as indicated in Table 57.

Table 57—Integer conversions
__

State stdio equivalent__
basefield == ios_base::oct %o__
(basefield == ios_base::hex) && !uppercase %x__
(basefield == ios_base::hex) %X__
for a signed integral type %d__
for an unsigned integral type %u__

8 For conversion from a floating-point type, the function determines the floating-point conversion speci-
fier as indicated in Table 58:

Table 58—Floating-point conversions
__

State stdio equivalent__
floatfield == ios_base::fixed %f__
floatfield == ios_base::scientific && !uppercase %e__
floatfield == ios_base::scientific %E__
!uppercase %g__
otherwise %G__

9 For conversions from an integral or floating type a length modifier is added to the conversion specifier
as indicated in Table 59.

435

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.2.2.2num_put virtual functions 22 Localization library

Table 59—Length modifier
_ _________________________________

type length modifier_ __________________________________ _________________________________
long l_ _________________________________
unsigned long l_ _________________________________
long double L_ _________________________________
otherwise none_ _________________________________

10 The conversion specifier has the following optional additional qualifiers prepended as indicated in
Table 60:

Table 60—Numeric conversions
_ ___

Type(s) State stdio equivalent_ __ ___
flags & showpos +
flags & showbase #

an integral type
_ ___

flags & showpos +
a floating-point type

flags & showpoint #_ ___

11 For conversion from a floating-point type, if(flags & fixed) != 0 or if str .precision()
> 0 , thenstr .precision() is specified in the conversion specification.

12 For conversion fromvoid* the specifier is%p.
13 The representations at the end of stage 1 consists of thechar’s that would be printed by a call of

printf(s, val) wheres is the conversion specifier determined above.

14 Stage 2: Any character c other than a decimal point(.) is converted to acharT via
use_facet<ctype<charT> >(loc).widen(c)

15 A local variablepunct is initialized via

numpunct<charT> punct = use_facet< numpunct<charT> >(str.getloc())

16 For integral types,punct .thousands_sep() characters are inserted into the sequence as deter-
mined by the value returned bypunct .do_grouping() using the method described in 22.2.3.1.2

17 Decimal point characters(.) are replaced bypunct .decimal_point()

18 Stage 3: A local variable is initialized as

fmtflags adjustfield= (flags & (ios_base::adjustfield));

19 The location of any padding229) is determined according to Table 61:

229)The conversion specification#o generates a leading0 which isnota padding character.

436

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.2.2.2num_put virtual functions

Table 61—Fill padding
_ __

State Location_ ___ __
adjustfield == ios_base::left pad after_ __
adjustfield == ios_base::right pad before_ __

pad after the signadjustfield == internal and a
sign occurs in the representation_ __

pad after x or Xadjustfield == internal and rep-
resentation after stage 1 began with 0x 1or
0X_ __
otherwise pad before_ __

20 If str .width() is nonzero and the number ofcharT ’s in the sequence after stage 2 is less than
str .width() , then enoughfill characters are added to the sequence at the position indicated for
padding to bring the length of the sequence tostr .width() .

21 str .width(0) is called.

22 Stage 4: The sequence ofcharT’s at the end of stage 3 are output via

* out ++ = c

iter_type put(iter_type out , ios_base& str , char_type fill ,
bool val) const;

23 Effects: If (str .flags()&ios_base::boolalpha)==0 then do

out = do_put(out , str , fill , (int) val)

Otherwise do

string_type s =
val ? use_facet<ctype<charT> >(loc).truename()

: use_facet<ctype<charT> >(loc).falsename() ;

and then insert the characters ofs into out . out.

[lib.facet.numpunct] 22.2.3 The numeric punctuation facet

[lib.locale.numpunct] 22.2.3.1 Template classnumpunct

namespace std {
template <class charT>
class numpunct : public locale::facet {
public:

typedef charT char_type;
typedef basic_string<charT> string_type;

explicit numpunct(size_t refs = 0);

char_type decimal_point() const;
char_type thousands_sep() const;
string grouping() const;
string_type truename() const;
string_type falsename() const;

static locale::id id;

437

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.3.1 Template classnumpunct 22 Localization library

protected:
~numpunct(); // virtual

virtual char_type do_decimal_point() const;
virtual char_type do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_truename() const; // for bool
virtual string_type do_falsename() const; // for bool

};
}

1 numpunct<> specifies numeric punctuation. The instantiations required in Table 51 (22.1.1.1.1), namely
numpunct<wchar_t> andnumpunct<char> , provide classic“C” numeric formats, i.e. they contain
information equivalent to that contained in the“C” locale or their wide character counterparts as if obtained
by a call towiden .

2 The syntax for number formats is as follows, wheredigit represents the radix set specified by the
fmtflags argument value,whitespace is as determined by the facetctype<charT> (22.2.1.1), and
thousands-sep anddecimal-point are the results of correspondingnumpunct<charT> mem-
bers. Integer values have the format:

integer ::= [sign] units
sign ::= plusminus [whitespace]
plusminus ::= ’+’ | ’-’
units ::= digits [thousands-sep units]
digits ::= digit [digits]

and floating-point values have:

floatval ::= [sign] units [decimal-point [digits]] [e [sign] digits] |
[sign] decimal-point digits [e [sign] digits]

e ::= ’e’ | ’E’

where the number of digits betweenthousands-sep s is as specified bydo_grouping() . For pars-
ing, if thedigits portion contains no thousands-separators, no grouping constraint is applied.

[lib.facet.numpunct.members] 22.2.3.1.1numpunct members

char_type decimal_point() const;

1 Returns: do_decimal_point()

char_type thousands_sep() const;

2 Returns: do_thousands_sep()

string grouping() const;

3 Returns: do_grouping()

string_type truename() const;
string_type falsename() const;

4 Returns: do_truename() or do_falsename() , respectively.

438

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.3.1.1numpunct members

[lib.facet.numpunct.virtuals] 22.2.3.1.2numpunct virtual functions

char_type do_decimal_point() const;

1 Returns: A character for use as the decimal radix separator. The required instantiations return’.’ or
L’.’ .

string_type do_thousands_sep() const;

2 Returns: A character for use as the digit group separator. The required instantiations return’,’ or L’,’ .

string do_grouping() const;

3 Returns: A basic_string<char> vec used as a vector of integer values, in which each elementvec [i]
represents the number of digits230) in the group at positioni , starting with position 0 as the rightmost
group. Ifvec .size() <= i , the number is the same as group(i -1) ; if (i <0 || vec [i]<=0
|| vec [i]==CHAR_MAX), the size of the digit group is unlimited.
The required instantiations return the empty string, indicating no grouping.

string_type do_truename() const;
string_type do_falsename() const;

4 Returns: A string representing the name of the boolean valuetrue or false , respectively.
In the base class implementation these names are"true" and "false" , or L"true" and
L"false" .

[lib.locale.numpunct.byname] 22.2.3.2 Template classnumpunct_byname

namespace std {
template <class charT>
class numpunct_byname : public numpunct<charT> {

// this class is specialized forchar andwchar_t .
public:

typedef charT char_type;
typedef basic_string<charT> string_type;
explicit numpunct_byname(const char*, size_t refs = 0);

protected:
~numpunct_byname(); // virtual

virtual char_type do_decimal_point() const;
virtual char_type do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_truename() const; // for bool
virtual string_type do_falsename() const; // for bool

};
}

[lib.category.collate] 22.2.4 The collate category

[lib.locale.collate] 22.2.4.1 Template classcollate

namespace std {
template <class charT>
class collate : public locale::facet {
public:

typedef charT char_type;
typedef basic_string<charT> string_type;

230)Thus, the string"\003" specifies groups of 3 digits each, and"3" probably indicates groups of 51 (!) digits each, because 51 is
the ASCII value of"3" .

439

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.4.1 Template classcollate 22 Localization library

explicit collate(size_t refs = 0);

int compare(const charT* low1 , const charT* high1 ,
const charT* low2 , const charT* high2) const;

string_type transform(const charT* low , const charT* high) const;
long hash(const charT* low , const charT* high) const;

static locale::id id;

protected:
~collate(); // virtual

virtual int do_compare(const charT* low1 , const charT* high1 ,
const charT* low2 , const charT* high2) const;

virtual string_type do_transform
(const charT* low , const charT* high) const;

virtual long do_hash (const charT* low , const charT* high) const;
};

}

1 The classcollate<charT> provides features for use in the collation (comparison) and hashing of
strings. A locale member function template,operator() , uses the collate facet to allow a locale to act
directly as the predicate argument for standard algorithms (clause 25) and containers operating on strings.
The instantiations required in Table 51 (22.1.1.1.1), namelycollate<char> and
collate<wchar_t> , apply lexicographic ordering (25.3.8).

2 Each function compares a string of characters* p in the range[low , high) .

[lib.locale.collate.members] 22.2.4.1.1collate members

int compare(const charT* low1 , const charT* high1 ,
const charT* low2 , const charT* high2) const;

1 Returns: do_compare(low 1, high1 , low2 , high2)

string_type transform(const charT* low , const charT* high) const;

2 Returns: do_transform(low , high)

long hash(const charT* low , const charT* high) const;

3 Returns: do_hash(low , high)

[lib.locale.collate.virtuals] 22.2.4.1.2collate virtual functions

int do_compare(const charT* low1 , const charT* high1 ,
const charT* low2 , const charT* high2) const;

1 Returns: 1 if the first string is greater than the second,-1 if less, zero otherwise. The instantiations
required in the Table 51 (22.1.1.1.1), namelycollate<char> andcollate<wchar_t> , imple-
ment a lexicographical comparison (25.3.8).

string_type do_transform(const charT* low , const charT* high) const;

2 Returns: A basic_string<charT> value that, compared lexicographically with the result of calling
transform() on another string, yields the same result as callingdo_compare() on the same two
strings.231)

231)This function is useful when one string is being compared to many other strings.

440

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.4.1.2collate virtual functions

long do_hash(const charT* low , const charT* high) const;

3 Returns: An integer value equal to the result of callinghash() on any other string for which
do_compare() returns 0 (equal) when passed the two strings. [Note: The probability that the result
equals that for another string which does not compare equal should be very small, approaching
(1.0/numeric_limits<unsigned long>::max()) . —end note]

[lib.locale.collate.byname] 22.2.4.2 Template classcollate_byname

namespace std {
template <class charT>
class collate_byname : public collate<charT> {
public:

typedef basic_string<charT> string_type;
explicit collate_byname(const char*, size_t refs = 0);

protected:
~collate_byname(); // virtual

virtual int do_compare(const charT* low1 , const charT* high1 ,
const charT* low2 , const charT* high2) const;

virtual string_type do_transform
(const charT* low , const charT* high) const;

virtual long do_hash (const charT* low , const charT* high) const;
};

}

[lib.category.time] 22.2.5 The time category

1 Templates time_get<charT,InputIterator> and time_put<charT,OutputIterator>
provide date and time formatting and parsing. All specifications of member functions for time_put and
time_get in the subclauses of 22.2.5 only apply to the instantiations required in Tables 51 and 52
(22.1.1.1.1). Their members use theirios_base& , ios_base::iostate& , andfill arguments as
described in (22.2), and thectype<> facet, to determine formatting details.

[lib.locale.time.get] 22.2.5.1 Template classtime_get

namespace std {
class time_base {
public:

enum dateorder { no_order, dmy, mdy, ymd, ydm };
};

template <class charT, class InputIterator = istreambuf_iterator<charT> >
class time_get : public locale::facet, public time_base {
public:

typedef charT char_type;
typedef InputIterator iter_type;

explicit time_get(size_t refs = 0);

441

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.5.1 Template classtime_get 22 Localization library

dateorder date_order() const { return do_date_order(); }
iter_type get_time(iter_type s, iter_type end , ios_base& f ,

ios_base::iostate& err , tm* t) const;
iter_type get_date(iter_type s, iter_type end , ios_base& f ,

ios_base::iostate& err , tm* t) const;
iter_type get_weekday(iter_type s, iter_type end , ios_base& f ,

ios_base::iostate& err , tm* t) const;
iter_type get_monthname(iter_type s, iter_type end , ios_base& f ,

ios_base::iostate& err , tm* t) const;
iter_type get_year(iter_type s, iter_type end , ios_base& f ,

ios_base::iostate& err , tm* t) const;

static locale::id id;

protected:
~time_get(); // virtual

virtual dateorder do_date_order() const;
virtual iter_type do_get_time(iter_type s, iter_type end , ios_base&,

ios_base::iostate& err , tm* t) const;
virtual iter_type do_get_date(iter_type s, iter_type end , ios_base&,

ios_base::iostate& err , tm* t) const;
virtual iter_type do_get_weekday(iter_type s, iter_type end , ios_base&,

ios_base::iostate& err , tm* t) const;
virtual iter_type do_get_monthname(iter_type s, ios_base&,

ios_base::iostate& err , tm* t) const;
virtual iter_type do_get_year(iter_type s, iter_type end , ios_base&,

ios_base::iostate& err , tm* t) const;
};

}

1 time_get is used to parse a character sequence, extracting components of a time or date into astruct
tm record. Eachget member parses a format as produced by a corresponding format specifier to
time_put<>::put . If the sequence being parsed matches the correct format, the corresponding mem-
bers of thestruct tm argument are set to the values used to produce the sequence; otherwise either an
error is reported or unspecified values are assigned.232)

[lib.locale.time.get.members] 22.2.5.1.1time_get members

dateorder date_order() const;

1 Returns: do_date_order()

iter_type get_time(iter_type s, iter_type end , ios_base& str ,
ios_base::iostate& err , tm* t) const;

2 Returns: do_get_time(s, end , str , err , t)

iter_type get_date(iter_type s, iter_type end , ios_base& str ,
ios_base::iostate& err , tm* t) const;

3 Returns: do_get_date(s, end , str , err , t)

232) In other words, user confirmation is required for reliable parsing of user-entered dates and times, but machine-generated formats
can be parsed reliably. This allows parsers to be aggressive about interpreting user variations on standard formats.

442

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.5.1.1time_get members

iter_type get_weekday(iter_type s, iter_type end , ios_base& str ,
ios_base::iostate& err , tm* t) const;

iter_type get_monthname(iter_type s, iter_type end , ios_base& str ,
ios_base::iostate& err , tm* t) const;

4 Returns: do_get_weekday(s, end , str , err , t) or do_get_monthname(s, end ,
str , err , t)

iter_type get_year(iter_type s, iter_type end , ios_base& str ,
ios_base::iostate& err , tm* t) const;

5 Returns: do_get_year(s, end , str , err , t)

[lib.locale.time.get.virtuals] 22.2.5.1.2time_get virtual functions

dateorder do_date_order() const;

1 Returns: An enumeration value indicating the preferred order of components for those date formats that
are composed of day, month, and year.233)Returnsno_order if the date format specified by’x’ con-
tains other variable components (e.g. Julian day, week number, week day).

iter_type do_get_time(iter_type s, iter_type end , ios_base& str ,
ios_base::iostate& err , tm* t) const;

2 Effects: Reads characters starting ats until it has extracted thosestruct tm members, and remaining
format characters, used bytime_put<>::put to produce the format specified by’X’ , or until it
encounters an error or end of sequence.

3 Returns: An iterator pointing immediately beyond the last character recognized as possibly part of a valid
time.

iter_type do_get_date(iter_type s, iter_type end , ios_base& str ,
ios_base::iostate& err , tm* t) const;

4 Effects: Reads characters starting ats until it has extracted thosestruct tm members, and remaining
format characters, used bytime_put<>::put to produce the format specified by’x’ , or until it
encounters an error.

5 Returns: An iterator pointing immediately beyond the last character recognized as possibly part of a valid
date.

iter_type do_get_weekday(iter_type s, iter_type end , ios_base& str ,
ios_base::iostate& err , tm* t) const;

iter_type do_get_monthname(iter_type s, iter_type end , ios_base& str ,
ios_base::iostate& err , tm* t) const;

6 Effects: Reads characters starting ats until it has extracted the (perhaps abbreviated) name of a weekday
or month. If it finds an abbreviation that is followed by characters that could match a full name, it con-
tinues reading until it matches the full name or fails. It sets the appropriatestruct tm member
accordingly.

7 Returns: An iterator pointing immediately beyond the last character recognized as part of a valid name.

iter_type do_get_year(iter_type s, iter_type end , ios_base& str ,
ios_base::iostate& err , tm* t) const;

8 Effects: Reads characters starting ats until it has extracted an unambiguous year identifier. It is
implementation-defined whether two-digit year numbers are accepted, and (if so) what century they are
assumed to lie in. Sets thet ->tm_year member accordingly.

233)This function is intended as a convenience only, for common formats, and may returnno_order in valid locales.

443

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.5.1.2time_get virtual functions 22 Localization library

9 Returns: An iterator pointing immediately beyond the last character recognized as part of a valid year
identifier.

[lib.locale.time.get.byname] 22.2.5.2 Template classtime_get_byname

namespace std {
template <class charT, class InputIterator = istreambuf_iterator<charT> >
class time_get_byname : public time_get<charT, InputIterator> {
public:

typedef time_base::dateorder dateorder;
typedef InputIterator iter_type

explicit time_get_byname(const char*, size_t refs = 0);
protected:

~time_get_byname(); // virtual
virtual dateorder do_date_order() const;
virtual iter_type do_get_time(iter_type s, iter_type end , ios_base&,

ios_base::iostate& err , tm* t) const;

virtual iter_type do_get_date(iter_type s, iter_type end , ios_base&,
ios_base::iostate& err , tm* t) const;

virtual iter_type do_get_weekday(iter_type s, iter_type end , ios_base&,
ios_base::iostate& err , tm* t) const;

virtual iter_type do_get_monthname(iter_type s, iter_type end , ios_base&,
ios_base::iostate& err , tm* t) const;

virtual iter_type do_get_year(iter_type s, iter_type end , ios_base&,
ios_base::iostate& err , tm* t) const;

};
}

[lib.locale.time.put] 22.2.5.3 Template classtime_put

namespace std {
template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
class time_put : public locale::facet {
public:

typedef charT char_type;
typedef OutputIterator iter_type;

explicit time_put(size_t refs = 0);

// the following is implemented in terms of other member functions.
iter_type put(iter_type s, ios_base& f , char_type fill , const tm* tmb ,

const charT* pattern , const charT* pat_end) const;
iter_type put(iter_type s, ios_base& f , char_type fill ,

const tm* tmb , char format , char modifier = 0) const;

static locale::id id;

protected:
~time_put(); // virtual

virtual iter_type do_put(iter_type s, ios_base&, char_type, const tm* t ,
char format , char modifier) const;

};
}

444

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.5.3.1time_put members

[lib.locale.time.put.members] 22.2.5.3.1time_put members

iter_type put(iter_type s, ios_base& str, char_type fill , const tm* t ,
const charT* pattern , const charT* pat_end) const;

iter_type put(iter_type s, ios_base& str, char_type fill , const tm* t ,
char format , char modifier = 0) const;

1 Effects: The first form steps through the sequence frompattern to end , identifying characters that are
part of a format sequence. Each character that is not part of a format sequence is written tos immedi-
ately, and each format sequence, as it is identified, results in a call todo_put ; thus, format elements
and other characters are interleaved in the output in the order in which they appear in the pattern. For-
mat sequences are identified by converting each characterc to a char value as if by
ct.narrow(c, 0) , wherect is a reference toctype<charT> obtained fromstr.getloc() .
The first character of each sequence is equal to’%’ , followed by an optional modifier character
mod234) and a format specifier characterspec as defined for the functionstrftime . If no modifier
character is present,mod is zero. For each valid format sequence identified, callsdo_put(s, str,
fill, t, spec, mod) .

2 The second form callsdo_put(s, str, fill, t, format, modifier) .
3 Returns: An iterator pointing immediately after the last character produced.

[lib.locale.time.put.virtuals] 22.2.5.3.2time_put virtual functions

iter_type do_put(iter_type s, ios_base&, char_type fill , const tm* t ,
char format , char modifier) const;

1 Effects: Formats the contents of the parametert into characters placed on the output sequences . Format-
ting is controlled by the parametersformat and modifier , interpreted identically as the format
specifiers in the string argument to the standard library functionstrftime() .235) except that the
sequence of characters produced for those specifiers that are described as depending on the C locale are
instead implementation-defined.236)

2 Returns: An iterator pointing immediately after the last character produced.

[lib.locale.time.put.byname] 22.2.5.4 Template classtime_put_byname

namespace std {
template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
class time_put_byname : public time_put<charT, OutputIterator>
{
public:

typedef charT char_type;
typedef OutputIterator iter_type;

explicit time_put_byname(const char*, size_t refs = 0);
protected:

~time_put_byname(); // virtual
virtual iter_type do_put(iter_type s, ios_base&, char_type, const tm* t ,

char format , char modifier) const;
};

}

234)Although the C programming language defines no modifiers, most vendors do.
235)Interpretation of themodifier argument is implementation-defined, but should follow POSIX conventions.
236)Implementations are encouraged to refer to other standards (such as POSIX) for these definitions.

445

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.6 The monetary category 22 Localization library

[lib.category.monetary] 22.2.6 The monetary category

1 These templates handle monetary formats. A template parameter indicates whether local or international
monetary formats are to be used.

2 All specifications of member functions formoney_put andmoney_get in the subclauses of 22.2.6 only
apply to the instantiations required in Tables 51 and 52 (22.1.1.1.1). Their members use their
ios_base& , ios_base::iostate& , and fill arguments as described in (22.2), and the
moneypunct<> andctype<> facets, to determine formatting details.

[lib.locale.money.get] 22.2.6.1 Template classmoney_get

namespace std {
template <class charT,

class InputIterator = istreambuf_iterator<charT> >
class money_get : public locale::facet {
public:

typedef charT char_type;
typedef InputIterator iter_type;
typedef basic_string<charT> string_type;

explicit money_get(size_t refs = 0);

iter_type get(iter_type s, iter_type end , bool intl ,
ios_base& f , ios_base::iostate& err ,
long double& units) const;

iter_type get(iter_type s, iter_type end , bool intl ,
ios_base& f , ios_base::iostate& err ,
string_type& digits) const;

static locale::id id;

protected:
~money_get(); // virtual

virtual iter_type do_get(iter_type, iter_type, bool, ios_base&,
ios_base::iostate& err , long double& units) const;

virtual iter_type do_get(iter_type, iter_type, bool, ios_base&,
ios_base::iostate& err , string_type& digits) const;

};
}

[lib.locale.money.get.members] 22.2.6.1.1money_get members

iter_type get(iter_type s, iter_type end , bool intl ,
ios_base& f , ios_base::iostate& err ,
long double& quant) const;

iter_type get(s, iter_type end , bool intl , ios_base& f ,
ios_base::iostate& err , string_type& quant) const;

1 Returns: do_get(s, end , intl , f , err , quant)

[lib.locale.money.get.virtuals] 22.2.6.1.2money_get virtual functions

iter_type do_get(iter_type s, iter_type end , bool intl ,
ios_base& str , ios_base::iostate& err ,
long double& units) const;

iter_type do_get(iter_type s, iter_type end , bool intl ,
ios_base& str , ios_base::iostate& err ,
string_type& digits) const;

446

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.6.1.2money_get virtual functions

1 Effects: Reads characters froms to parse and construct a monetary value according to the format specified
by a moneypunct<charT, Intl> facet referencemp and the character mapping specified by a
ctype<charT> facet referencect obtained from the locale returned bystr.getloc() , and
str.flags() . If a valid sequence is recognized, does not changeerr ; otherwise, setserr to
(err | str .failbit) , or (err | str .failbit| str .eofbit) if no more characters are avail-
able, and does not changeunits or digits . Uses the pattern returned bymp.neg_format() to
parse all values. The result is returned as an integral value stored inunits or as a sequence of digits
possibly preceded by a minus sign (as produced byct.widen(c) wherec is ’-’ or in the range
from ’0’ through’9’ , inclusive) stored indigits . [Example:The sequence$1,056.23 in a com-
mon United States locale would yield, forunits , 105623 , or, for digits , "105623" .
—end example] If mp.grouping() indicates that no thousands separators are permitted, any such
characters are not read, and parsing is terminated at the point where they first appear. Otherwise, thou-
sands separators are optional; if present, they are checked for correct placement only after all format
components have been read.

2 Wherespace or none appears in the format pattern, except at the end, optional white space (as recog-
nized byct.is) is consumed after any required space. If(str.flags() & str.showbase) is
false, the currency symbol is optional and is consumed only if other characters are needed to complete the
format; otherwise, the currency symbol is required.

3 If the first character (if any) in the stringpos returned bymp.positive_sign() or the stringneg
returned bymp.negative_sign() is recognized in the position indicated bysign in the format pat-
tern, it is consumed and any remaining characters in the string are required after all the other format compo-
nents. [Example:If showbase is off, then for aneg value of"()" and a currency symbol of"L" , in
"(100 L)" the "L" is consumed; but ifneg is "-" , the"L" in "-100 L" is not consumed.] Ifpos
or neg is empty, the sign component is optional, and if no sign is detected, the result is given the sign that
corresponds to the source of the empty string. Otherwise, the character in the indicated position must
match the first character ofpos or net , and the result is given the corresponding sign. If the first character
of pos is equal to the first character ofneg , or if both strings are empty, the result is given a positive sign.

4 Digits in the numeric monetary component are extracted and placed indigits , or into a character buffer
buf1 for conversion to produce a value forunits , in the order in which they appear, preceded by a minus
sign if and only if the result is negative. The valueunits is produced as if by237)

for (int i = 0; i < n; ++i)
buf2[i] = src[find(atoms, atoms+sizeof(src), buf1[i]) - atoms];

buf2[n] = 0;
sscanf(buf2, "%Lf", &units);

wheren is the number of characters placed inbuf1 , buf2 is a character buffer, and the valuessrc and
atoms are defined as if by

static const char src[] = "0123456789-";
charT atoms[sizeof(src)];
ct.widen(src, src + sizeof(src) - 1, atoms);

5 Returns: An iterator pointing immediately beyond the last character recognized as part of a valid monetary
quantity.

237)The semantics here are different fromct.narrow .

447

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.6.1.2money_get virtual functions 22 Localization library

[lib.locale.money.put] 22.2.6.2 Template classmoney_put

namespace std {
template <class charT,

class OutputIterator = ostreambuf_iterator<charT> >
class money_put : public locale::facet {
public:

typedef charT char_type;
typedef OutputIterator iter_type;
typedef basic_string<charT> string_type;

explicit money_put(size_t refs = 0);

iter_type put(iter_type s, bool intl , ios_base& f ,
char_type fill , long double units) const;

iter_type put(iter_type s, bool intl , ios_base& f ,
char_type fill , const string_type& digits) const;

static locale::id id;

protected:
~money_put(); // virtual

virtual iter_type
do_put(iter_type, bool, ios_base&, char_type fill ,

long double units) const;
virtual iter_type

do_put(iter_type, bool, ios_base&, char_type fill ,
const string_type& digits) const;

};
}

[lib.locale.money.put.members] 22.2.6.2.1money_put members

iter_type put(iter_type s, bool intl , ios_base& f , char_type fill ,
long double quant) const;

iter_type put(iter_type s, bool intl , ios_base& f , char_type fill ,
const string_type& quant) const;

1 Returns: do_put(s, intl , f , loc , quant)

[lib.locale.money.put.virtuals] 22.2.6.2.2money_put virtual functions

iter_type do_put(iter_type s, bool intl , ios_base& str ,
char_type fill , long double units) const;

iter_type do_put(iter_type s, bool intl , ios_base& str ,
char_type fill , const string_type& digits) const;

1 Effects: Writes characters tos according to the format specified by amoneypunct<charT, Intl>
facet referencemp and the character mapping specified by actype<charT> facet referencect
obtained from the locale returned bystr.getloc() , andstr.flags() . The argumentunits is
transformed into a sequence of wide characters as if by

ct.widen(buf1, buf1 + sprintf(buf1, "%.01f", units), buf2)

for character buffersbuf1 and buf2 . If the first character indigits or buf2 is equal to
ct.widen(’-’) , then the pattern used for formatting is the result ofmp.neg_format() ; other-
wise the pattern is the result ofmp.pos_format() . Digit characters are written, interspersed with
any thousands separators and decimal point specified by the format, in the order they appear (after the
optional leading minus sign) indigits or buf2 . In digits , only the optional leading minus sign
and the immediately subsequent digit characters (as classified according toct) are used; any trailing
characters (including digits appearing after a non-digit character) are ignored. Callsstr.width(0) .

448

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.6.2.2money_put virtual functions

2 Notes: The currency symbol is generated if and only if(str.flags() & str.showbase) is
nonzero. If the number of characters generated for the specified format is less than the value returned
by str.width() on entry to the function, then copies offill are inserted as necessary to pad to the
specified width. For the valueaf equal to(str.flags() & str.adjustfield) , if (af ==
str.internal) is true, the fill characters are placed wherenone or space appears in the format-
ting pattern; otherwise if(af == str.left) is true, they are placed after the other characters; oth-
erwise, they are placed before the other characters. [Note: It is possible, with some combinations of for-
mat patterns and flag values, to produce output that cannot be parsed usingnum_get<>::get .
—end note]

3 Returns: An iterator pointing immediately after the last character produced.

[lib.locale.moneypunct] 22.2.6.3 Template classmoneypunct

namespace std {
class money_base {
public:

enum part { none, space, symbol, sign, value };
struct pattern { char field[4]; };

};

template <class charT, bool International = false>
class moneypunct : public locale::facet, public money_base {
public:

typedef charT char_type;
typedef basic_string<charT> string_type;

explicit moneypunct(size_t refs = 0);

charT decimal_point() const;
charT thousands_sep() const;
string grouping() const;
string_type curr_symbol() const;
string_type positive_sign() const;
string_type negative_sign() const;
int frac_digits() const;
pattern pos_format() const;
pattern neg_format() const;

static locale::id id;
static const bool intl = International;

protected:
~moneypunct(); // virtual

virtual charT do_decimal_point() const;
virtual charT do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_curr_symbol() const;
virtual string_type do_positive_sign() const;
virtual string_type do_negative_sign() const;
virtual int do_frac_digits() const;
virtual pattern do_pos_format() const;
virtual pattern do_neg_format() const;

};
}

1 The moneypunct<> facet defines monetary formatting parameters used bymoney_get<> and
money_put<> . A monetary format is a sequence of four components, specified by apattern valuep,
such that thepart valuestatic_cast<part>(p.field[i]) determines thei th component of the
format238) In the field member of apattern object, each valuesymbol , sign , value , and either

238)An array ofchar , rather than an array ofpart , is specified forpattern::field purely for efficiency.

449

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.6.3 Template classmoneypunct 22 Localization library

space or none appears exactly once. The valuenone , if present, is not first; the valuespace , if pre-
sent, is neither first nor last.

2 Wherenone or space appears, white space is permitted in the format, except wherenone appears at the
end, in which case no white space is permitted. The valuespace indicates that at least one space is
required at that position. Wheresymbol appears, the sequence of characters returned by
curr_symbol() is permitted, and can be required. Wheresign appears, the first (if any) of the
sequence of characters returned bypositive_sign() or negative_sign() (respectively as the
monetary value is non-negative or negative) is required. Any remaining characters of the sign sequence are
required after all other format components. Wherevalue appears, the absolute numeric monetary value is
required.

3 The format of the numeric monetary value is a decimal number:

value ::= units [decimal-point [digits]] |
decimal-point digits

If frac_digits() returns a positive value, or

value ::= units

otherwise. The symboldecimal-point indicates the character returned bydecimal_point() . The
other symbols are defined as follows:

units ::= digits [thousands-sep units]
digits ::= adigit [digits]

In the syntax specification, the symboladigit is any of the valuesct.widen(c) for c in the range
’0’ through ’9’ , inclusive, andct is a reference of typeconst ctype<charT>& obtained as
described in the definitions ofmoney_get<> and money_put<> . The symbolthousands-sep is
the character returned bythousands_sep() . The space character used is the valuect.widen(’ ’) .
White space characters are those charactersc for which ci.is(space, c) returnstrue . The number
of digits required after the decimal point (if any) is exactly the value returned byfrac_digits() .

4 The placement of thousands-separator characters (if any) is determined by the value returned by
grouping() , defined identically as the membernumpunct<>::do_grouping() .

[lib.locale.moneypunct.members] 22.2.6.3.1moneypunct members

charT decimal_point() const;
charT thousands_sep() const;
string grouping() const;
string_type curr_symbol() const;
string_type positive_sign() const;
string_type negative_sign() const;
int frac_digits() const;
pattern pos_format() const;
pattern neg_format() const;

1 Each of these functionsF returns the result of calling the corresponding virtual member functiondo_F() .

[lib.locale.moneypunct.virtuals] 22.2.6.3.2moneypunct virtual functions

charT do_decimal_point() const;

1 Returns: The radix separator to use in casedo_frac_digits() is greater than zero.239)

239)In common U.S. locales this is’.’ .

450

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.6.3.2moneypunct virtual functions

charT do_thousands_sep() const;

2 Returns: The digit group separator to use in casedo_grouping() specifies a digit grouping pattern.240)

string do_grouping() const;

3 Returns: A pattern defined identically as the result ofnumpunct<charT>::do_grouping() .241)

string_type do_curr_symbol() const;

4 Returns: A string to use as the currency identifier symbol.242)

string_type do_positive_sign() const;
string_type do_negative_sign() const;

5 Returns: do_positive_sign() returns the string to use to indicate a positive monetary value;243)

do_negative_sign() returns the string to use to indicate a negative value.

int do_frac_digits() const;

6 Returns: The number of digits after the decimal radix separator, if any.244)

pattern do_pos_format() const;
pattern do_neg_format() const;

7 Returns: The instantiations required in Table 51 (22.1.1.1.1), namelymoneypunct<char> ,
moneypunct<wchar_t> , moneypunct<char,true> , andmoneypunct<wchar_t,true> ,
return an object of typepattern initialized to{ symbol, sign, none, value } .245)

[lib.locale.moneypunct.byname] 22.2.6.4 Template classmoneypunct_byname

namespace std {
template <class charT, bool Intl = false>
class moneypunct_byname : public moneypunct<charT, Intl> {
public:

typedef money_base::pattern pattern;
typedef basic_string<charT> string_type;

explicit moneypunct_byname(const char*, size_t refs = 0);
protected:

~moneypunct_byname(); // virtual
virtual charT do_decimal_point() const;
virtual charT do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_curr_symbol() const;
virtual string_type do_positive_sign() const;
virtual string_type do_negative_sign() const;
virtual int do_frac_digits() const;
virtual pattern do_pos_format() const;
virtual pattern do_neg_format() const;

};
}

240)In common U.S. locales this is’,’ .
241)This is most commonly the value"\003" (not "3").
242)For international instantiations (second template parametertrue) this is always four characters long, usually three letters and a
space.
243)This is usually the empty string.
244)In common U.S. locales, this is 2.
245)Note that the international symbol returned bydo_curr_sym() usually contains a space, itself; for example,"USD " .

451

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.7 The message retrieval category 22 Localization library

[lib.category.messages] 22.2.7 The message retrieval category

1 Classmessages<charT> implements retrieval of strings from message catalogs.

[lib.locale.messages] 22.2.7.1 Template classmessages

namespace std {
class messages_base {
public:

typedef int catalog;
};

template <class charT>
class messages : public locale::facet, public messages_base {
public:

typedef charT char_type;
typedef basic_string<charT> string_type;

explicit messages(size_t refs = 0);

catalog open(const basic_string<char>& fn , const locale&) const;
string_type get(catalog c, int set , int msgid ,

const string_type& dfault) const;
void close(catalog c) const;

static locale::id id;

protected:
~messages(); // virtual

virtual catalog do_open(const basic_string<char>&, const locale&) const;
virtual string_type do_get(catalog, int set , int msgid ,

const string_type& dfault) const;
virtual void do_close(catalog) const;

};
}

1 Values of typemessages_base::catalog usable as arguments to membersget andclose can be
obtained only by calling memberopen .

[lib.locale.messages.members] 22.2.7.1.1messages members

catalog open(const basic_string<char>& name, const locale& loc) const;

1 Returns: do_open(name, loc) .

string_type get(catalog cat , int set , int msgid ,
const string_type& dfault) const;

2 Returns: do_get(cat , set , msgid , dfault) .

void close(catalog cat) const;

3 Effects: Callsdo_close(cat) .

452

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.7.1.1messages members

[lib.locale.messages.virtuals] 22.2.7.1.2messages virtual functions

catalog do_open(const basic_string<char>& name,
const locale& loc) const;

1 Returns: A value that may be passed toget() to retrieve a message, from the message catalog identified
by the string name according to an implementation-defined mapping. The result can be used until it is
passed toclose() .
Returns a value less than 0 if no such catalog can be opened.

2 Notes: The locale argumentloc is used for character set code conversion when retrieving messages, if
needed.

string_type do_get(catalog cat , int set , int msgid ,
const string_type& dfault) const;

3 Requires: A catalogcat obtained fromopen() and not yet closed.
4 Returns: A message identified by argumentsset , msgid , and dfault , according to an

implementation-defined mapping. If no such message can be found, returnsdfault .

void do_close(catalog cat) const;

5 Requires: A catalogcat obtained fromopen() and not yet closed.
6 Effects: Releases unspecified resources associated withcat .
7 Notes: The limit on such resources, if any, is implementation-defined.

[lib.locale.messages.byname] 22.2.7.2 Template classmessages_byname

namespace std {
template <class charT>
class messages_byname : public messages<charT> {
public:

typedef messages_base::catalog catalog;
typedef basic_string<charT> string_type;

explicit messages_byname(const char*, size_t refs = 0);
protected:

~messages_byname(); // virtual
virtual catalog do_open(const basic_string<char>&, const locale&) const;
virtual string_type do_get(catalog, int set , int msgid ,

const string_type& dfault) const;
virtual void do_close(catalog) const;

};
}

[lib.facets.examples] 22.2.8 Program-defined facets

1 A C++ program may define facets to be added to a locale and used identically as the built-in facets. To cre-
ate a new facet interface, C++ programs simply derive fromlocale::facet a class containing a static
member:static locale::id id .

2 [Note:The locale member function templates verify its type and storage class.—end note]

3 This initialization/identification system depends only on the initialization to 0 of static objects, before static
constructors are called. When an instance of a facet is installed in a locale, the locale checks whether an id
has been assigned, and if not, assigns one. Before this occurs, any attempteduse of its interface causes the
bad_cast exception to be thrown.

453

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.8 Program-defined facets 22 Localization library

4 [Example:Traditional global localization is still easy:

#include <iostream>
#include <locale>
int main(int argc, char** argv)
{

using namespace std;
locale::global(locale("")); // set the global locale

// imbue it on all the std streams
cin.imbue(locale());
cout.imbue(locale());
cerr.imbue(locale());
wcin.imbue(locale());
wcout.imbue(locale());
wcerr.imbue(locale());

return MyObject(argc, argv).doit();
}

—end example]

5 [Example:Greater flexibility is possible:

#include <iostream>
#include <locale>
int main()
{

using namespace std;
cin.imbue(locale("")); // the user’s preferred locale
cout.imbue(locale::classic());
double f;
while (cin >> f) cout << f << endl;
return (cin.fail() != 0);

}

In a European locale, with input3.456,78 , output is3456.78 . —end example]

6 This can be important even for simple programs, which may need to write a data file in a fixed format,
regardless of a user’s preference.

7 [Example:Here is an example of the use of locales in a library interface.

// file: Date.h
#include <iosfwd>
#include <string>
#include <locale>

...
class Date {

...
public:

Date(unsigned day, unsigned month, unsigned year);
std::string asString(const std::locale& = std::locale());

};
istream& operator>>(istream& s, Date& d);
ostream& operator<<(ostream& s, Date d);
...

This example illustrates two architectural uses of classlocale .

8 The first is as a default argument inDate::asString() , where the default is the global (presumably
user-preferred) locale.

9 The second is in the operators<< and >>, where a locale“hitchhikes” on another object, in this case a
stream, to the point where it is needed.

454

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.8 Program-defined facets

// file: Date.C
#include "Date" // includes<ctime>
#include <sstream>
std::string Date::asString(const std::locale& l)
{

using namespace std;
ostringstream s; s.imbue(l);
s << *this; return s.str();

}

std::istream& operator>>(std::istream& s, Date& d)
{

using namespace std;
istream::sentry cerberos(s);
if (cerberos) {

ios_base::iostate err = goodbit;
struct tm t;
use_facet< time_get<char> >(s.getloc()).get_date(s, 0, s, err, &t);
if (!err) d = Date(t.tm_day, t.tm_mon + 1, t.tm_year + 1900);
s.setstate(err);

}
return s;

}

—end example]

10 A locale object may be extended with a new facet simply by constructing it with an instance of a class
derived fromlocale::facet . The only member a C++ program must define is the static memberid ,
which identifies your class interface as a new facet.

11 [Example:Classifying Japanese characters:

// file: <jctype>
#include <locale>
namespace My {

using namespace std;
class JCtype : public locale::facet {
public:

static locale::id id; // required for use as a new locale facet
bool is_kanji(wchar_t c);
JCtype() {}

protected:
~JCtype() {}

};
}

455

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.8 Program-defined facets 22 Localization library

// file: filt.C
#include <iostream>
#include <locale>
#include "jctype" // above
std::locale::id JCtype::id; // the staticJCtype member declared above.
int main()
{

using namespace std;
typedef ctype<wchar_t> wctype;
locale loc(locale(""), // the user’s preferred locale ...

new My::JCType); // and a new feature ...
wchar_t c = use_facet<wctype>(loc).widen(’!’);
if (use_facet<My::JCType>(loc).is_kanji(c))

cout << "no it isn’t!" << endl;
return 0;

}

12 The new facet is used exactly like the built-in facets.—end example]

13 [Example:Replacing an existing facet is even easier. Here we do not define a memberid because we are
reusing thenumpunct<charT> facet interface:

// file: my_bool.C
#include <iostream>
#include <locale>
#include <string>
namespace My {

using namespace std;
typedef numpunct_byname<char> cnumpunct;
class BoolNames : public cnumpunct {

protected:
string do_truename() { return "Oui Oui!"; }
string do_falsename() { return "Mais Non!"; }

~BoolNames() {}
public:

BoolNames(const char* name) : cnumpunct(name) {}
};

}

int main(int argc, char** argv)
{

using namespace std;
// make the user’s preferred locale, except for...
locale loc(locale(""), new My::BoolNames(""));
cout.imbue(loc);
cout << boolalpha << "Any arguments today? " << (argc > 1) << endl;
return 0;

}

—end example]

456

© ISO/IEC ISO/IEC 14882:1998(E)

22 Localization library 22.2.8 Program-defined facets

[lib.c.locales] 22.3 C Library Locales

1 Header<clocale> (Table 62):

Table 62—Header<clocale> synopsis
_ ___

Type Name(s)_ ___
Macros:

LC_ALL LC_COLLATE LC_CTYPE

LC_MONETARY LC_NUMERIC LC_TIME

NULL_ ___
Struct: lconv_ ___
Functions: localeconv setlocale_ ___

2 The contents are the same as the Standard C library header<locale.h> .

SEE ALSO: ISO C clause 7.4.

457

ISO/IEC 14882:1998(E) © ISO/IEC

458

(Blank page)

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23 Containers library

23 Containers library [lib.containers]

1 This clause describes components that C++ programs may use to organize collections of information.

2 The following subclauses describe container requirements, and components for sequences and associative
containers, as summarized in Table 63:

Table 63—Containers library summary
_ ____________________________________

Subclause Header(s)_ _____________________________________ ____________________________________
23.1 Requirements_ ____________________________________

<deque>
<list>
<queue>
<stack>

23.2 Sequences

<vector>_ ____________________________________
<map>

23.3 Associative containers
<set>

23.3.5bitset <bitset>_ ____________________________________

[lib.container.requirements] 23.1 Container requirements

1 Containers are objects that store other objects. They control allocation and deallocation of these objects
through constructors, destructors, insert and erase operations.

2 All of the complexity requirements in this clause are stated solely in terms of the number of operations on
the contained objects. [Example:the copy constructor of typevector <vector<int> > has linear
complexity, even though the complexity of copying each containedvector<int> is itself linear.]

3 The type of objects stored in these components must meet the requirements ofCopyConstructible
types (20.1.3), and the additional requirements ofAssignable types.

4 In Table 64,T is the type used to instantiate the container,t is a value ofT, andu is a value of (possibly
const) T.

Table 64—Assignable requirements
_ __
expression return type post-condition_ ___ __
t = u T& t is equivalent tou_ __

5 In Tables 65 and 66,X denotes a container class containing objects of typeT, a andb denote values of type
X, u denotes an identifier andr denotes a value ofX&.

459

ISO/IEC 14882:1998(E) © ISO/IEC

23.1 Container requirements 23 Containers library

Table 65—Container requirements
_ ___

assertion/note
expression return type

pre/post-condition
complexity

_ __ ___
X::value_type T T is Assignable compile time_ ___
X::reference lvalue ofT compile time_ ___
X::const_reference const lvalue ofT compile time_ ___
X::iterator iterator type pointing toT compile time any iterator category except

output iterator.
convertible to
X::const_iterator ._ ___

X::const_iterator compile time iterator type pointing to
const T

any iterator category except
output iterator._ ___

X::difference_type signed integral type compile time is identical to the difference
type ofX::iterator and
X::const_iterator_ ___

X::size_type unsigned integral type compile timesize_type can represent
any non-negative value of
difference_type_ ___

X u; post:u.size() == 0 . constant_ ___
X(); X().size() == 0 . constant_ ___
X(a); a == X(a) . linear_ ___
X u(a); post:u == a . linear
X u = a; Equivalent to:X u; u = a;_ ___
(&a)->~X(); void linear note: the destructor is applied

to every element ofa; all the
memory is deallocated._ ___

a.begin(); iterator ; constant
const_iterator

for constanta_ ___
a.end(); iterator ; constant

const_iterator

for constanta_ ___
a == b convertible tobool == is an equivalence relation. linear

a.size()==b.size()

&& equal(a.begin(),

a.end(), b.begin())_ ___
a != b convertible tobool Equivalent to:!(a == b) linear_ ___
a.swap(b); void swap(a,b) (Note A)_ ___

460

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.1 Container requirements

Table 65—Container requirements (continued)
_ ___

operational assertion/note
expression return type

semantics pre/post-condition
complexity

_ __ ___
r = a X& post:r == a . linear_ ___
a.size() size_type a.end()-a.begin() (Note A)_ ___
a.max_size() size_type (Note A)size() of the largest

possible container._ ___
a.empty() convertible tobool a.size() == 0 constant_ ___
a < b convertible tobool linearlexicographical_compare

(a.begin(),
a.end(),
b.begin(),
b.end())

pre:< is defined for
values ofT. < is a
total ordering rela-
tion.

_ ___
a > b convertible tobool b < a linear_ ___
a <= b convertible tobool !(a > b) linear_ ___
a >= b convertible tobool !(a < b) linear_ ___

Notes: the algorithmsswap() , equal() and lexicographical_compare() are defined in clause
25. Those entries marked ‘‘(Note A)’’ should have constant complexity.

6 The member functionsize() returns the number of elements in the container. Its semantics is defined by
the rules of constructors, inserts, and erases.

7 begin() returns an iterator referring to the first element in the container.end() returns an iterator
which is the past-the-end value for the container. If the container is empty, thenbegin() == end() ;

8 Copy constructors for all container types defined in this clause copy an allocator argument from their
respective first parameters. All other constructors for these container types take anAllocator& argu-
ment (20.1.5), an allocator whose value type is the same as the container’s value type. A copy of this argu-
ment is used for any memory allocation performed, by these constructors and by all member functions, dur-
ing the lifetime of each container object. In all container types defined in this clause, the member
get_allocator() returns a copy of the Allocator object used to construct the container.

9 If the iterator type of a container belongs to the bidirectional or random access iterator categories (24.1), the
container is calledreversibleand satisfies the additional requirements in Table 66:

Table 66—Reversible container requirements
_ ___

assertion/note
expression return type

pre/post-condition
complexity

_ __ ___
iterator type pointing toT compile timeX::reverse_

iterator
reverse_iterator <itera-
tor>_ ___

compile timeX::const_
reverse_
iterator

iterator type pointing to
const T

reverse_iterator
<const_iterator>

_ ___
a.rbegin() reverse_iterator(end()) constantreverse_iterator ;

const_reverse_iterator
for constanta_ ___

a.rend() reverse_iterator(begin()) constantreverse_iterator ;
const_reverse_iterator
for constanta_ ___

461

ISO/IEC 14882:1998(E) © ISO/IEC

23.1 Container requirements 23 Containers library

10 Unless otherwise specified (see 23.2.1.3 and 23.2.4.3) all container types defined in this clause meet the
following additional requirements:

— if an exception is thrown by aninsert() function while inserting a single element, that function has
no effects.

— if an exception is thrown by apush_back() or push_front() function, that function has no
effects.

— noerase() , pop_back() or pop_front() function throws an exception.

— no copy constructor or assignment operator of a returned iterator throws an exception.

— no swap() function throws an exception unless that exception is thrown by the copy constructor or
assignment operator of the container’s Compare object (if any; see 23.1.2).

— no swap() function invalidates any references, pointers, or iterators referring to the elements of the
containers being swapped.

[lib.sequence.reqmts] 23.1.1 Sequences

1 A sequence is a kind of container that organizes a finite set of objects, all of the same type, into a strictly
linear arrangement. The library provides three basic kinds of sequence containers:vector , list , and
deque . It also provides container adaptors that make it easy to construct abstract data types, such as
stack s orqueue s, out of the basic sequence kinds (or out of other kinds of sequences that the user might
define).

2 vector , list , and deque offer the programmer different complexity trade-offs and should be used
accordingly. vector is the type of sequence that should be used by default.list should be used when
there are frequent insertions and deletions from the middle of the sequence.deque is the data structure of
choice when most insertions and deletions take place at the beginning or at the end of the sequence.

3 In Tables 67 and 68,X denotes a sequence class,a denotes a value ofX, i andj denote iterators satisfying
input iterator requirements,[i, j) denotes a valid range,n denotes a value ofX::size_type , p and
q2 denote valid iterators toa, q andq1 denote valid dereferenceable iterators toa, [q1, q2) denotes a
valid range, andt denotes a value ofX::value_type .

4 The complexities of the expressions are sequence dependent.

Table 67—Sequence requirements (in addition to container)
_ ___

assertion/note
expression return type

pre/post-condition_ __ ___
X(n, t) post:size() == n .
X a(n, t); constructs a sequence withn copies oft ._ ___
X(i, j) post:size() == distance betweeni andj .
X a(i, j); constructs a sequence equal to the range[i,j) ._ ___
a.insert(p,t) iterator inserts a copy oft beforep._ ___
a.insert(p,n,t) void inserts n copies oft beforep._ ___
a.insert(p,i,j) void pre: i ,j are not iterators intoa.

inserts copies of elements in[i,j) beforep._ ___
a.erase(q) iterator erases the element pointed to byq._ ___
a.erase(q1,q2) iterator erases the elements in the range[q1,q2) ._ ___
a.clear() void erase(begin(), end())

post:size() == 0 ._ ___

462

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.1.1 Sequences

5 iterator andconst_iterator types for sequences must be at least of the forward iterator category.

6 The iterator returned froma.insert(p,t) points to the copy oft inserted intoa.

7 The iterator returned froma.erase(q) points to the element immediately followingq prior to the ele-
ment being erased. If no such element exists,a.end() is returned.

8 The iterator returned bya.erase(q1,q2) points to the element pointed to byq2 prior to any elements
being erased. If no such element exists,a.end() is returned.

9 For every sequence defined in this clause and in clause 21:

— the constructor

template <class InputIterator>
X(InputIterator f, InputIterator l, const Allocator& a = Allocator())

shall have the same effect as:

X(static_cast<typename X::size_type>(f),
static_cast<typename X::value_type>(l),
a)

if InputIterator is an integral type.

— the member functions in the forms:

template <class InputIterator> // such asinsert()
rt fx1 (iterator p, InputIterator f, InputIterator l);

template <class InputIterator> // such asappend() , assign()
rt fx2 (InputIterator f, InputIterator l);

template <class InputIterator> // such asreplace()
rt fx3 (iterator i1, iteraror i2, InputIterator f, InputIterator l);

shall have the same effect, respectively, as:

fx1 (p,
static_cast<typename X::size_type>(f),
static_cast<typename X::value_type>(l));

fx2 (static_cast<typename X::size_type>(f),
static_cast<typename X::value_type>(l));

fx3 (i1, i2,
static_cast<typename X::size_type>(f),
static_cast<typename X::value_type>(l));

if InputIterator is an integral type.

10 [Note:This follows directly from the requirements in the Iterator Requirements Table. Integral types can-
not be iterators, so, ifn1 andn2 are values of an integral typeN, the expressionX(n1, n2) cannot pos-
sibly be interpreted as construction from a range of iterators. It must be taken to mean the first constructor
in the Iterator Requirements Table, not the second one. If there is no conversion fromN to
X::value_type , then this is not a valid expression at all.

11 One way that sequence implementors can satisfy this requirement is to specialize the member template for
every integral type. Less cumbersome implementation techniques also exist.—end note] [Example:

463

ISO/IEC 14882:1998(E) © ISO/IEC

23.1.1 Sequences 23 Containers library

list<int> x;
...
vector<int> y(x.begin(), x.end()); // Construct a vector

// from a range of iterators.
vector<int> z(100, 1); // Construct a vector of 100

// elements, all initialized
// to 1. The arguments are
// not interpreted as iterators.

z.insert(z.begin(), x.begin(), x.end());// Insert a range of
// iterators.

z.insert(z.begin(), 20, 0); // Insert 20 copies of the
// number 0.

—end example]

12 The operations in Table 68 are provided only for the containers for which they take constant time:

Table 68—Optional sequence operations
_ ___

operational
expression return type

semantics
container

_ __ ___
a.front() *a.begin() vector, list, dequereference;

const_reference
for constanta_ ___

a.back() *--a.end() vector, list, dequereference;
const_reference
for constanta_ ___

a.push_front(x) void a.insert(a.begin(),x) list, deque_ ___
a.push_back(x) void a.insert(a.end(),x) vector, list, deque_ ___
a.pop_front() void a.erase(a.begin()) list, deque_ ___
a.pop_back() void a.erase(--a.end()) vector, list, deque_ ___
a[n] *(a.begin() + n) vector, dequereference;

const_reference
for constanta_ ___

a.at(n) *(a.begin() + n) vector, dequereference;
const_reference
for constanta_ ___

13 The member functionat() provides bounds-checked access to container elements.at() throws
out_of_range if n >= a.size() .

[lib.associative.reqmts] 23.1.2 Associative containers

1 Associative containers provide an ability for fast retrieval of data based on keys. The library provides four
basic kinds of associative containers:set , multiset , mapandmultimap .

2 Each associative container is parameterized onKey and an ordering relationCompare that induces a strict
weak ordering (25.3) on elements ofKey. In addition,map andmultimap associate an arbitrary typeT
with theKey. The object of typeCompare is called thecomparison objectof a container. This compari-
son object may be a pointer to function or an object of a type with an appropriate function call operator.

3 The phrase ‘‘equivalence of keys’’ means the equivalence relation imposed by the comparison andnot the
operator== on keys. That is, two keysk1 andk2 are considered to be equivalent if for the comparison
objectcomp, comp(k1, k2) == false && comp(k2, k1) == false .

464

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.1.2 Associative containers

4 An associative container supportsunique keysif it may contain at most one element for each key. Other-
wise, it supportsequivalent keys. set andmapsupport unique keys.multiset andmultimap support
equivalent keys.

5 For set andmultiset the value type is the same as the key type. Formapandmultimap it is equal to
pair<const Key, T> .

6 iterator of an associative container is of the bidirectional iterator category.

7 In Table 69,X is an associative container class,a is a value ofX, a_uniq is a value ofX whenX supports
unique keys, anda_eq is a value ofX when X supports multiple keys,i and j satisfy input iterator
requirements and refer to elements ofvalue_type , [i, j) is a valid range,p andq2 are valid iterators
to a, q and q1 are valid dereferenceable iterators toa, [q1, q2) is a valid range,t is a value of
X::value_type , k is a value ofX::key_type andc is a value of typeX::key_compare .

Table 69—Associative container requirements (in addition to container)
_ __

assertion/note
expression return type

pre/post-condition
complexity

_ ___ __
X::key_type Key Key is Assignable compile time_ __
X::key_compare Compare defaults toless<key_type> compile time_ __

compile timeX::
value_compare

a binary predi-
cate type

is the same askey_compare for set
andmultiset ; is an ordering relation
on pairs induced by the first component
(i.e. Key) for mapandmultimap ._ __

X(c) constructs an empty container; constant
X a(c); usesc as a comparison object_ __
X() constructs an empty container; constant
X a; usesCompare() as a comparison object_ __
X(i,j,c);
X a(i,j,c);

constructs an empty container and inserts
elements from the range[i, j) into it;
usesc as a comparison object

NlogN in general (N is
the distance fromi to
j);
linear if [i, j) is
sorted with
value_comp()_ __

X(i, j) same as above same as above, but usesCompare() as
a comparison object.

X a(i, j);_ __
a.key_comp() X::key_compare constant returns the comparison object out of

which a was constructed._ __
a.value_comp() constantX::

value_compare
returns an object ofvalue_compare
constructed out of the comparison object_ __

logarithmica_uniq.
insert(t)

pair<iterator,
bool>

insertst if and only if there is no element
in the container with key equivalent to
the key oft . Thebool component of
the returned pair indicates whether the
insertion takes place and theiterator
component of the pair points to the ele-
ment with key equivalent to the key oft ._ __

a_eq.insert(t) iterator logarithmic insertst and returns the iterator pointing
to the newly inserted element._ __

465

ISO/IEC 14882:1998(E) © ISO/IEC

23.1.2 Associative containers 23 Containers library

Table 69—Associative container requirements
_ __

assertion/note
expression return type

pre/post-condition
complexity

_ ___ __
a.insert(p,t) iterator insertst if and only if there is no

element with key equivalent to the
key of t in containers with unique
keys; always insertst in contain-
ers with equivalent keys. always
returns the iterator pointing to the
element with key equivalent to the
key of t . iteratorp is a hint point-
ing to where the insert should start
to search.

logarithmic in general,
but amortized constant
if t is inserted right
afterp.

_ __
a.insert(i,j) void pre: i ,j are not iterators intoa.

inserts each element from the
range[i, j) if and only if there
is no element with key equivalent
to the key of that element in con-
tainers with unique keys; always
inserts that element in containers
with equivalent keys.

Nlog(size()+N) (N
is the distance fromi
to j) in general;
linear if [i, j) is
sorted according to
value_comp()

_ __
a.erase(k) size_type erases all the elements in the con-

tainer with key equivalent tok .
returns the number of erased ele-
ments.

log(size()) +
count(k)

_ __
a.erase(q) void erases the element pointed to byq. amortized constant_ __
a.erase(q1,q2) void erases all the elements in the range

[q1, q2) .
log(size())+ N
whereN is the distance
from q1 to q2 ._ __

a.clear() void log(size()) + N erase(a.begin(),
a.end()))
post:size == 0_ __

a.find(k) logarithmiciterator ;
const_iterator
for constanta

returns an iterator pointing to an
element with the key equivalent to
k , or a.end() if such an element
is not found._ __

a.count(k) size_type returns the number of elements
with key equivalent tok

log(size()) +
count(k)_ __

a.lower_bound(k) logarithmiciterator ;
const_iterator
for constanta

returns an iterator pointing to the
first element with key not less
thank ._ __

a.upper_bound(k) logarithmiciterator ;
const_iterator
for constanta

returns an iterator pointing to the
first element with key greater than
k ._ __

a.equal_range(k) logarithmicpair<
iterator,iterator> ;
pair<
const_iterator,
const_iterator>
for constanta

equivalent tomake_pair(
a.lower_bound(k),
a.upper_bound(k)) .

_ __

466

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.1.2 Associative containers

8 The insert members shall not affect the validity of iterators and references to the container, and the erase
members shall invalidate only iterators and references to the erased elements.

9 The fundamental property of iterators of associative containers is that they iterate through the containers in
the non-descending order of keys where non-descending is defined by the comparison that was used to con-
struct them. For any two dereferenceable iteratorsi andj such that distance fromi to j is positive,

value_comp(*j, *i) == false

10 For associative containers with unique keys the stronger condition holds,

value_comp(*i, *j) != false.

11 When an associative container is constructed by passing a comparison object the container shall not store a
pointer or reference to the passed object, even if that object is passed by reference. When an associative
container is copied, either through a copy constructor or an assignment operator, the target container shall
then use the comparison object from the container being copied, as if that comparison object had been
passed to the target container in its constructor.

[lib.sequences] 23.2 Sequences

1 Headers<deque> , <list> , <queue> , <stack> , and<vector> .

Header<deque> synopsis

namespace std {
template <class T, class Allocator = allocator<T> > class deque;
template <class T, class Allocator>

bool operator==
(const deque<T,Allocator>& x, const deque<T,Allocator>& y);

template <class T, class Allocator>
bool operator<

(const deque<T,Allocator>& x, const deque<T,Allocator>& y);
template <class T, class Allocator>

bool operator!=
(const deque<T,Allocator>& x, const deque<T,Allocator>& y);

template <class T, class Allocator>
bool operator>

(const deque<T,Allocator>& x, const deque<T,Allocator>& y);
template <class T, class Allocator>

bool operator>=
(const deque<T,Allocator>& x, const deque<T,Allocator>& y);

template <class T, class Allocator>
bool operator<=

(const deque<T,Allocator>& x, const deque<T,Allocator>& y);
template <class T, class Allocator>

void swap(deque<T,Allocator>& x, deque<T,Allocator>& y);
}

467

ISO/IEC 14882:1998(E) © ISO/IEC

23.2 Sequences 23 Containers library

Header<list> synopsis

namespace std {
template <class T, class Allocator = allocator<T> > class list;
template <class T, class Allocator>

bool operator==(const list<T,Allocator>& x, const list<T,Allocator>& y);
template <class T, class Allocator>

bool operator< (const list<T,Allocator>& x, const list<T,Allocator>& y);
template <class T, class Allocator>

bool operator!=(const list<T,Allocator>& x, const list<T,Allocator>& y);
template <class T, class Allocator>

bool operator> (const list<T,Allocator>& x, const list<T,Allocator>& y);
template <class T, class Allocator>

bool operator>=(const list<T,Allocator>& x, const list<T,Allocator>& y);
template <class T, class Allocator>

bool operator<=(const list<T,Allocator>& x, const list<T,Allocator>& y);
template <class T, class Allocator>

void swap(list<T,Allocator>& x, list<T,Allocator>& y);
}

Header<queue> synopsis

namespace std {
template <class T, class Container = deque<T> > class queue;
template <class T, class Container>

bool operator==(const queue<T, Container>& x,
const queue<T, Container>& y);

template <class T, class Container>
bool operator< (const queue<T, Container>& x,

const queue<T, Container>& y);
template <class T, class Container>

bool operator!=(const queue<T, Container>& x,
const queue<T, Container>& y);

template <class T, class Container>
bool operator> (const queue<T, Container>& x,

const queue<T, Container>& y);
template <class T, class Container>

bool operator>=(const queue<T, Container>& x,
const queue<T, Container>& y);

template <class T, class Container>
bool operator<=(const queue<T, Container>& x,

const queue<T, Container>& y);

template <class T, class Container = vector<T>,
class Compare = less<typename Container::value_type> >

class priority_queue;
}

468

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.2 Sequences

Header<stack> synopsis

namespace std {
template <class T, class Container = deque<T> > class stack;
template <class T, class Container>

bool operator==(const stack<T, Container>& x,
const stack<T, Container>& y);

template <class T, class Container>
bool operator< (const stack<T, Container>& x,

const stack<T, Container>& y);
template <class T, class Container>

bool operator!=(const stack<T, Container>& x,
const stack<T, Container>& y);

template <class T, class Container>
bool operator> (const stack<T, Container>& x,

const stack<T, Container>& y);
template <class T, class Container>

bool operator>=(const stack<T, Container>& x,
const stack<T, Container>& y);

template <class T, class Container>
bool operator<=(const stack<T, Container>& x,

const stack<T, Container>& y);
}

Header<vector> synopsis

namespace std {
template <class T, class Allocator = allocator<T> > class vector;
template <class T, class Allocator>

bool operator==(const vector<T,Allocator>& x,
const vector<T,Allocator>& y);

template <class T, class Allocator>
bool operator< (const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>

bool operator!=(const vector<T,Allocator>& x,
const vector<T,Allocator>& y);

template <class T, class Allocator>
bool operator> (const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>

bool operator>=(const vector<T,Allocator>& x,
const vector<T,Allocator>& y);

template <class T, class Allocator>
bool operator<=(const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>

void swap(vector<T,Allocator>& x, vector<T,Allocator>& y);

469

ISO/IEC 14882:1998(E) © ISO/IEC

23.2 Sequences 23 Containers library

template <class Allocator> class vector<bool,Allocator>;
template <class Allocator>

bool operator==(const vector<bool,Allocator>& x,
const vector<bool,Allocator>& y);

template <class Allocator>
bool operator< (const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);
template <class Allocator>

bool operator!=(const vector<bool,Allocator>& x,
const vector<bool,Allocator>& y);

template <class Allocator>
bool operator> (const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);
template <class Allocator>

bool operator>=(const vector<bool,Allocator>& x,
const vector<bool,Allocator>& y);

template <class Allocator>
bool operator<=(const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);
template <class Allocator>

void swap(vector<bool,Allocator>& x, vector<bool,Allocator>& y);
}

[lib.deque] 23.2.1 Template classdeque

1 A deque is a kind of sequence that, like avector (23.2.4), supports random access iterators. In addition,
it supports constant time insert and erase operations at the beginning or the end; insert and erase in the mid-
dle take linear time. That is, a deque is especially optimized for pushing and popping elements at the
beginning and end. As with vectors, storage management is handled automatically.

2 A deque satisfies all of the requirements of a container and of a reversible container (given in tables in
23.1) and of a sequence, including the optional sequence requirements (23.1.1). Descriptions are provided
here only for operations ondeque that are not described in one of these tables or for operations where
there is additional semantic information.

namespace std {
template <class T, class Allocator = allocator<T> >
class deque {
public:

// types:
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef implementation defined size_type; // See 23.1
typedef implementation defined difference_type; // See 23.1
typedef T value_type;
typedef Allocator allocator_type;
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

470

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.2.1 Template classdeque

// 23.2.1.1 construct/copy/destroy:
explicit deque(const Allocator& = Allocator());
explicit deque(size_type n, const T& value = T(),

const Allocator& = Allocator());
template <class InputIterator>

deque(InputIterator first, InputIterator last,
const Allocator& = Allocator());

deque(const deque<T,Allocator>& x);
~deque();

deque<T,Allocator>& operator=(const deque<T,Allocator>& x);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
void assign(size_type n, const T& t);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// 23.2.1.2 capacity:
size_type size() const;
size_type max_size() const;
void resize(size_type sz, T c = T());
bool empty() const;

// element access:
reference operator[](size_type n);
const_reference operator[](size_type n) const;
reference at(size_type n);
const_reference at(size_type n) const;
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// 23.2.1.3 modifiers:
void push_front(const T& x);
void push_back(const T& x);

iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>

void insert (iterator position,
InputIterator first, InputIterator last);

void pop_front();
void pop_back();

iterator erase(iterator position);
iterator erase(iterator first, iterator last);
void swap(deque<T,Allocator>&);
void clear();

};

471

ISO/IEC 14882:1998(E) © ISO/IEC

23.2.1 Template classdeque 23 Containers library

template <class T, class Allocator>
bool operator==(const deque<T,Allocator>& x,

const deque<T,Allocator>& y);
template <class T, class Allocator>

bool operator< (const deque<T,Allocator>& x,
const deque<T,Allocator>& y);

template <class T, class Allocator>
bool operator!=(const deque<T,Allocator>& x,

const deque<T,Allocator>& y);
template <class T, class Allocator>

bool operator> (const deque<T,Allocator>& x,
const deque<T,Allocator>& y);

template <class T, class Allocator>
bool operator>=(const deque<T,Allocator>& x,

const deque<T,Allocator>& y);
template <class T, class Allocator>

bool operator<=(const deque<T,Allocator>& x,
const deque<T,Allocator>& y);

// specialized algorithms:
template <class T, class Allocator>

void swap(deque<T,Allocator>& x, deque<T,Allocator>& y);
}

[lib.deque.cons] 23.2.1.1deque constructors, copy, and assignment

explicit deque(const Allocator& = Allocator());

1 Effects: Constructs an emptydeque , using the specified allocator.
2 Complexity: Constant.

explicit deque(size_type n, const T& value = T(),
const Allocator& = Allocator());

3 Effects: Constructs adeque with n copies ofvalue , using the specified allocator.
4 Complexity: Linear inn.

template <class InputIterator>
deque(InputIterator first , InputIterator last ,

const Allocator& = Allocator());

5 Effects: Constructs adeque equal to the the range[first , last) , using the specified allocator.
6 Complexity: If the iteratorsfirst and last are forward iterators, bidirectional iterators, or random

access iterators the constructor makes onlyN calls to the copy constructor, and performs no realloca-
tions, whereN is last - first . It makes at most2N calls to the copy constructor ofT and log N
reallocations if they are input iterators.246)

template <class InputIterator>
void assign(InputIterator first, InputIterator last);

7 Effects:

erase(begin(), end());
insert(begin(), first, last);

246)The complexity is greater in the case of input iterators because each element must be added individually: it is impossible to deter-
mine the distance betweenfirst abdlast before doing the copying.

472

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.2.1.1deque constructors, copy, and assignment

void assign(size_type n, const T& t);

8 Effects:

erase(begin(), end());
insert(begin(), n, t);

[lib.deque.capacity] 23.2.1.2deque capacity

void resize(size_type sz, T c = T());

1 Effects:

if (sz > size())
insert(end(), sz-size(), c);

else if (sz < size())
erase(begin()+sz, end());

else
; // do nothing

[lib.deque.modifiers] 23.2.1.3deque modifiers

iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>

void insert(iterator position,
InputIterator first, InputIterator last);

1 Effects: An insert in the middle of the deque invalidates all the iterators and references to elements of the
deque. An insert at either end of the deque invalidates all the iterators to the deque, but has no effect on
the validity of references to elements of the deque.

2 Notes: If an exception is thrown other than by the copy constructor or assignment operator ofT there are
no effects.

3 Complexity: In the worst case, inserting a single element into a deque takes time linear in the minimum of
the distance from the insertion point to the beginning of the deque and the distance from the insertion
point to the end of the deque. Inserting a single element either at the beginning or end of a deque
always takes constant time and causes a single call to the copy constructor ofT.

iterator erase(iterator position);
iterator erase(iterator first, iterator last);

4 Effects: An erase in the middle of the deque invalidates all the iterators and references to elements of the
deque. An erase at either end of the deque invalidates only the iterators and the references to the erased
elements.

5 Complexity: The number of calls to the destructor is the same as the number of elements erased, but the
number of the calls to the assignment operator is at most equal to the minimum of the number of ele-
ments before the erased elements and the number of elements after the erased elements.

6 Throws: Nothing unless an exception is thrown by the copy constructor or assignment operator ofT.

[lib.deque.special] 23.2.1.4deque specialized algorithms

template <class T, class Allocator>
void swap(deque<T,Allocator>& x, deque<T,Allocator>& y);

1 Effects:

x.swap(y);

473

ISO/IEC 14882:1998(E) © ISO/IEC

23.2.2 Template classlist 23 Containers library

[lib.list] 23.2.2 Template classlist

1 A list is a kind of sequence that supports bidirectional iterators and allows constant time insert and erase
operations anywhere within the sequence, with storage management handled automatically. Unlike vectors
(23.2.4) and deques (23.2.1), fast random access to list elements is not supported, but many algorithms only
need sequential access anyway.

2 A list satisfies all of the requirements of a container and of a reversible container (given in two tables in
23.1) and of a sequence, including most of the the optional sequence requirements (23.1.1). The exceptions
are theoperator[] and at member functions, which are not provided.247) Descriptions are provided
here only for operations onlist that are not described in one of these tables or for operations where there
is additional semantic information.

namespace std {
template <class T, class Allocator = allocator<T> >
class list {
public:

// types:
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef implementation defined size_type; // See 23.1
typedef implementation defined difference_type;// See 23.1
typedef T value_type;
typedef Allocator allocator_type;
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

// 23.2.2.1 construct/copy/destroy:
explicit list(const Allocator& = Allocator());
explicit list(size_type n, const T& value = T(),

const Allocator& = Allocator());
template <class InputIterator>

list(InputIterator first , InputIterator last ,
const Allocator& = Allocator());

list(const list<T,Allocator>& x);
~list();

list<T,Allocator>& operator=(const list<T,Allocator>& x);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
void assign(size_type n, const T& t);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

247)These member functions are only provided by containers whose iterators are random access iterators.

474

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.2.2 Template classlist

// 23.2.2.2 capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;
void resize(size_type sz, T c = T());

// element access:
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// 23.2.2.3 modifiers:
void push_front(const T& x);
void pop_front();
void push_back(const T& x);
void pop_back();

iterator insert(iterator position , const T& x);
void insert(iterator position , size_type n, const T& x);
template <class InputIterator>

void insert(iterator position , InputIterator first ,
InputIterator last);

iterator erase(iterator position);
iterator erase(iterator position , iterator last);
void swap(list<T,Allocator>&);
void clear();

// 23.2.2.4 list operations:
void splice(iterator position , list<T,Allocator>& x);
void splice(iterator position , list<T,Allocator>& x, iterator i);
void splice(iterator position , list<T,Allocator>& x, iterator first ,

iterator last);

void remove(const T& value);
template <class Predicate> void remove_if(Predicate pred);

void unique();
template <class BinaryPredicate>

void unique(BinaryPredicate binary_pred);

void merge(list<T,Allocator>& x);
template <class Compare> void merge(list<T,Allocator>& x, Compare comp);

void sort();
template <class Compare> void sort(Compare comp);

void reverse();
};

475

ISO/IEC 14882:1998(E) © ISO/IEC

23.2.2 Template classlist 23 Containers library

template <class T, class Allocator>
bool operator==(const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator< (const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator!=(const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator> (const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator>=(const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator<=(const list<T,Allocator>& x, const list<T,Allocator>& y);

// specialized algorithms:
template <class T, class Allocator>

void swap(list<T,Allocator>& x, list<T,Allocator>& y);
}

[lib.list.cons] 23.2.2.1 list constructors, copy, and assignment

explicit list(const Allocator& = Allocator());

1 Effects: Constructs an empty list, using the specified allocator.
2 Complexity: Constant.

explicit list(size_type n, const T& value = T(),
const Allocator& = Allocator());

3 Effects: Constructs alist with n copies ofvalue , using the specified allocator.
4 Complexity: Linear inn.

template <class InputIterator>
list(InputIterator first , InputIterator last ,

const Allocator& = Allocator());

5 Effects: Constructs alist equal to the range[first , last) .
6 Complexity: Linear infirst - last .

template <class InputIterator>
void assign(InputIterator first, InputIterator last);

7 Effects:

erase(begin(), end());
insert(begin(), first, last);

void assign(size_type n, const T& t);

8 Effects:

erase(begin(), end());
insert(begin(), n, t);

476

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.2.2.1list constructors, copy, and assignment

[lib.list.capacity] 23.2.2.2 list capacity

void resize(size_type sz, T c = T());

1 Effects:

if (sz > size())
insert(end(), sz-size(), c);

else if (sz < size())
erase(begin()+sz, end());

else
; // do nothing

[lib.list.modifiers] 23.2.2.3 list modifiers

iterator insert(iterator position , const T& x);
void insert(iterator position , size_type n, const T& x);
template <class InputIterator>

void insert(iterator position , InputIterator first ,
InputIterator last);

void push_front(const T& x);
void push_back(const T& x);

1 Notes: Does not affect the validity of iterators and references. If an exception is thrown there are no
effects.

2 Complexity: Insertion of a single element into a list takes constant time and exactly one call to the copy
constructor ofT. Insertion of multiple elements into a list is linear in the number of elements inserted,
and the number of calls to the copy constructor ofT is exactly equal to the number of elements inserted.

iterator erase(iterator position);
iterator erase(iterator first, iterator last);

void pop_front();
void pop_back();
void clear();

3 Effects: Invalidates only the iterators and references to the erased elements.
4 Throws: Nothing.
5 Complexity: Erasing a single element is a constant time operation with a single call to the destructor ofT.

Erasing a range in a list is linear time in the size of the range and the number of calls to the destructor of
typeT is exactly equal to the size of the range.

[lib.list.ops] 23.2.2.4 list operations

1 Since lists allow fast insertion and erasing from the middle of a list, certain operations are provided specifi-
cally for them.

2 list provides three splice operations that destructively move elements from one list to another.

void splice(iterator position , list<T,Allocator>& x);

3 Requires: &x != this .
4 Effects: Inserts the contents ofx beforeposition andx becomes empty. Invalidates all iterators and

references to the listx .
5 Throws: Nothing
6 Complexity: Constant time.

477

ISO/IEC 14882:1998(E) © ISO/IEC

23.2.2.4list operations 23 Containers library

void splice(iterator position , list<T,Allocator>& x, iterator i);

7 Effects: Inserts an element pointed to byi from list x before position and removes the element fromx .
The result is unchanged ifposition == i or position == ++i . Invalidates only the iterators
and references to the spliced element.

8 Throws: Nothing
9 Requires: i is a valid dereferenceable iterator ofx .
10 Complexity: Constant time.

void splice(iterator position , list<T,Allocator>& x, iterator first ,
iterator last);

11 Effects: Inserts elements in the range[first, last) beforeposition and removes the elements
from x .

12 Requires: [first, last) is a valid range inx . The result is undefined ifposition is an iterator in
the range[first, last) . Invalidates only the iterators and references to the spliced elements.

13 Throws: Nothing
14 Complexity: Constant time if&x == this ; otherwise, linear time.

void remove(const T& value);
template <class Predicate> void remove_if(Predicate pred);

15 Effects: Erases all the elements in the list referred by a list iteratori for which the following conditions
hold: *i == value, pred(*i) != false .

16 Throws: Nothing unless an exception is thrown by*i == value or pred (*i) != false .
17 Notes: Stable: the relative order of the elements that are not removed is the same as their relative order in

the original list.
18 Complexity: Exactlysize() applications of the corresponding predicate.

void unique();
template <class BinaryPredicate> void unique(BinaryPredicate binary_pred);

19 Effects: Eliminates all but the first element from every consecutive group of equal elements referred to by
the iteratori in the range[first + 1, last) for which *i == *(i-1) (for the version of
unique with no arguments) orpred (*i, *(i - 1)) (for the version ofunique with a predicate
argument) holds.

20 Throws: Nothing unless an exception in thrown by*i == *(i-1) or pred (*i, *(i - 1))
21 Complexity: If the range(last - first) is not empty, exactly(last - first) - 1 applica-

tions of the corresponding predicate, otherwise no applications of the predicate.

void merge(list<T,Allocator>& x);
template <class Compare> void merge(list<T,Allocator>& x, Compare comp);

22 Requires: comp defines a strict weak ordering (25.3), and the list and the argument list are both sorted
according to this ordering.

23 Effects: Merges the argument list into the list.
24 Notes: Stable: for equivalent elements in the two lists, the elements from the list always precede the ele-

ments from the argument list.x is empty after the merge.
25 Complexity: At mostsize() + x.size() - 1 comparisons. If an exception is thrown other than

by a comparison there are no effects.

void reverse();

26 Effects: Reverses the order of the elements in the list.
27 Throws: Nothing.
28 Complexity: Linear time.

478

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.2.2.4list operations

void sort();
template <class Compare> void sort(Compare comp);

29 Requires: operator< (for the first version, orcomp (for the second version) defines a strict weak
ordering (25.3).

30 Effects: Sorts the list according to theoperator< or aCompare function object.
31 Notes: Stable: the relative order of the equivalent elements is preserved. If an exception is thrown the

order of the elements in the list is indeterminate.
32 Complexity: ApproximatelyNlogN comparisons, whereN == size() .

[lib.list.special] 23.2.2.5 list specialized algorithms

template <class T, class Allocator>
void swap(list<T,Allocator>& x, list<T,Allocator>& y);

1 Effects:

x.swap(y);

[lib.container.adaptors] 23.2.3 Container adaptors

1 The container adaptors each take a Container template parameter, and each constructor takes a Container
reference argument. This container is copied into the Container member of each adaptor.

[lib.queue] 23.2.3.1 Template classqueue

1 Any sequence supporting operationsfront() , back() , push_back() and pop_front() can be
used to instantiatequeue . In particular,list (23.2.2) anddeque (23.2.1) can be used.

namespace std {
template <class T, class Container = deque<T> >
class queue {
public:

typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef Container container_type;

protected:
Container c;

public:
explicit queue(const Container& = Container());

bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
value_type& front() { return c.front(); }
const value_type& front() const { return c.front(); }
value_type& back() { return c.back(); }
const value_type& back() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void pop() { c.pop_front(); }

};

479

ISO/IEC 14882:1998(E) © ISO/IEC

23.2.3.1 Template classqueue 23 Containers library

template <class T, class Container>
bool operator==(const queue<T, Container>& x,

const queue<T, Container>& y);
template <class T, class Container>

bool operator< (const queue<T, Container>& x,
const queue<T, Container>& y);

template <class T, class Container>
bool operator!=(const queue<T, Container>& x,

const queue<T, Container>& y);
template <class T, class Container>

bool operator> (const queue<T, Container>& x,
const queue<T, Container>& y);

template <class T, class Container>
bool operator>=(const queue<T, Container>& x,

const queue<T, Container>& y);
template <class T, class Container>

bool operator<=(const queue<T, Container>& x,
const queue<T, Container>& y);

}

operator==

2 Returns: x.c == y.c .

operator<

3 Returns: x.c < y.c .

[lib.priority.queue] 23.2.3.2 Template classpriority_queue

1 Any sequence with random access iterator and supporting operationsfront() , push_back() and
pop_back() can be used to instantiatepriority_queue . In particular,vector (23.2.4) anddeque
(23.2.1) can be used. Instantiatingpriority_queue also involves supplying a function or function
object for making priority comparisons; the library assumes that the function or function object defines a
strict weak ordering (25.3).

namespace std {
template <class T, class Container = vector<T>,

class Compare = less<typename Container::value_type> >
class priority_queue {
public:

typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef Container container_type;

protected:
Container c;
Compare comp;

public:
explicit priority_queue(const Compare& x = Compare(),

const Container& = Container());
template <class InputIterator>

priority_queue(InputIterator first, InputIterator last,
const Compare& x = Compare(),
const Container& = Container());

480

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.2.3.2 Template classpriority_queue

bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
const value_type& top() const { return c.front(); }
void push(const value_type& x);
void pop();

};
// no equality is provided

}

[lib.priqueue.cons] 23.2.3.2.1priority_queue constructors

priority_queue(const Compare& x = Compare(),
const Container& y = Container());

1 Requires: x defines a strict weak ordering (25.3).
2 Effects: Initializescomp with x andc with y ; callsmake_heap(c.begin(), c.end(), comp) .

template <class InputIterator>
priority_queue(InputIterator first, InputIterator last,

const Compare& x = Compare(),
const Container& y = Container());

3 Requires: x defines a strict weak ordering (25.3).
4 Effects: Initializes c with y and comp with x ; calls c.insert(c.end(), first, last) ; and

finally callsmake_heap(c.begin(), c.end(), comp) .

[lib.priqueue.members] 23.2.3.2.2priority_queue members

void push(const value_type& x);

1 Effects:

c.push_back(x);
push_heap(c.begin(), c.end(), comp);

void pop();

2 Effects:

pop_heap(c.begin(), c.end(), comp);
c.pop_back();

[lib.stack] 23.2.3.3 Template classstack

1 Any sequence supporting operationsback() , push_back() andpop_back() can be used to instanti-
atestack . In particular,vector (23.2.4),list (23.2.2) anddeque (23.2.1) can be used.

namespace std {
template <class T, class Container = deque<T> >
class stack {
public:

typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef Container container_type;

protected:
Container c;

481

ISO/IEC 14882:1998(E) © ISO/IEC

23.2.3.3 Template classstack 23 Containers library

public:
explicit stack(const Container& = Container());

bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
value_type& top() { return c.back(); }
const value_type& top() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void pop() { c.pop_back(); }

};

template <class T, class Container>
bool operator==(const stack<T, Container>& x,

const stack<T, Container>& y);
template <class T, class Container>

bool operator< (const stack<T, Container>& x,
const stack<T, Container>& y);

template <class T, class Container>
bool operator!=(const stack<T, Container>& x,

const stack<T, Container>& y);
template <class T, class Container>

bool operator> (const stack<T, Container>& x,
const stack<T, Container>& y);

template <class T, class Container>
bool operator>=(const stack<T, Container>& x,

const stack<T, Container>& y);
template <class T, class Container>

bool operator<=(const stack<T, Container>& x,
const stack<T, Container>& y);

}

[lib.vector] 23.2.4 Template classvector

1 A vector is a kind of sequence that supports random access iterators. In addition, it supports (amortized)
constant time insert and erase operations at the end; insert and erase in the middle take linear time. Storage
management is handled automatically, though hints can be given to improve efficiency.

2 A vector satisfies all of the requirements of a container and of a reversible container (given in two tables
in 23.1) and of a sequence, including most of the optional sequence requirements (23.1.1). The exceptions
are thepush_front andpop_front member functions, which are not provided. Descriptions are pro-
vided here only for operations onvector that are not described in one of these tables or for operations
where there is additional semantic information.

namespace std {
template <class T, class Allocator = allocator<T> >
class vector {
public:

// types:
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef implementation defined size_type; // See 23.1
typedef implementation defined difference_type;// See 23.1
typedef T value_type;
typedef Allocator allocator_type;
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

482

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.2.4 Template classvector

// 23.2.4.1 construct/copy/destroy:
explicit vector(const Allocator& = Allocator());
explicit vector(size_type n, const T& value = T(),

const Allocator& = Allocator());
template <class InputIterator>

vector(InputIterator first, InputIterator last,
const Allocator& = Allocator());

vector(const vector<T,Allocator>& x);
~vector();

vector<T,Allocator>& operator=(const vector<T,Allocator>& x);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
void assign(size_type n, const T& u);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// 23.2.4.2 capacity:
size_type size() const;
size_type max_size() const;
void resize(size_type sz, T c = T());
size_type capacity() const;
bool empty() const;
void reserve(size_type n);

// element access:
reference operator[](size_type n);
const_reference operator[](size_type n) const;
const_reference at(size_type n) const;
reference at(size_type n);
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// 23.2.4.3 modifiers:
void push_back(const T& x);
void pop_back();
iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>

void insert(iterator position,
InputIterator first, InputIterator last);

iterator erase(iterator position);
iterator erase(iterator first, iterator last);
void swap(vector<T,Allocator>&);
void clear();

};

483

ISO/IEC 14882:1998(E) © ISO/IEC

23.2.4 Template classvector 23 Containers library

template <class T, class Allocator>
bool operator==(const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>

bool operator< (const vector<T,Allocator>& x,
const vector<T,Allocator>& y);

template <class T, class Allocator>
bool operator!=(const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>

bool operator> (const vector<T,Allocator>& x,
const vector<T,Allocator>& y);

template <class T, class Allocator>
bool operator>=(const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>

bool operator<=(const vector<T,Allocator>& x,
const vector<T,Allocator>& y);

// specialized algorithms:
template <class T, class Allocator>

void swap(vector<T,Allocator>& x, vector<T,Allocator>& y);
}

[lib.vector.cons] 23.2.4.1vector constructors, copy, and assignment

vector(const Allocator& = Allocator());
explicit vector(size_type n, const T& value = T(),

const Allocator& = Allocator());
template <class InputIterator>

vector(InputIterator first, InputIterator last,
const Allocator& = Allocator());

vector(const vector<T,Allocator>& x);

1 Complexity: The constructortemplate <class InputIterator> vector(InputIterator
first, InputIterator last) makes onlyN calls to the copy constructor ofT (whereN is the
distance betweenfirst and last) and no reallocations if iterators first and last are of forward, bidi-
rectional, or random access categories. It does at most2N calls to the copy constructor ofT andlogN
reallocations if they are just input iterators, since it is impossible to determine the distance between
first andlast and then do copying.

template <class InputIterator>
void assign(InputIterator first, InputIterator last);

2 Effects:

erase(begin(), end());
insert(begin(), first, last);

void assign(size_type n, const T& t);

3 Effects:

erase(begin(), end());
insert(begin(), n, t);

484

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.2.4.2vector capacity

[lib.vector.capacity] 23.2.4.2vector capacity

size_type capacity() const;

1 Returns: The total number of elements that the vector can hold without requiring reallocation.

void reserve(size_type n);

2 Effects: A directive that informs avector of a planned change in size, so that it can manage the storage
allocation accordingly. Afterreserve() , capacity() is greater or equal to the argument of
reserve if reallocation happens; and equal to the previous value ofcapacity() otherwise. Reallo-
cation happens at this point if and only if the current capacity is less than the argument ofreserve() .

3 Complexity: It does not change the size of the sequence and takes at most linear time in the size of the
sequence.

4 Throws: length_error if n > max_size() .248)

5 Notes: Reallocation invalidates all the references, pointers, and iterators referring to the elements in the
sequence. It is guaranteed that no reallocation takes place during insertions that happen after a call to
reserve() until the time when an insertion would make the size of the vector greater than the size
specified in the most recent call toreserve() .

void resize(size_type sz, T c = T());

6 Effects:

if (sz > size())
insert(end(), sz-size(), c);

else if (sz < size())
erase(begin()+sz, end());

else
; // do nothing

[lib.vector.modifiers] 23.2.4.3vector modifiers

iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>

void insert(iterator position, InputIterator first, InputIterator last);

1 Notes: Causes reallocation if the new size is greater than the old capacity. If no reallocation happens, all
the iterators and references before the insertion point remain valid. If an exception is thrown other than
by the copy constructor or assignment operator ofT there are no effects.

2 Complexity: If first andlast are forward iterators, bidirectional iterators, or random access iterators,
the complexity is linear in the number of elements in the range[first, last) plus the distance to
the end of the vector. If they are input iterators, the complexity is proportional to the number of ele-
ments in the range[first, last) times the distance to the end of the vector.

iterator erase(iterator position);
iterator erase(iterator first, iterator last);

3 Effects: Invalidates all the iterators and references after the point of the erase.
4 Complexity: The destructor ofT is called the number of times equal to the number of the elements erased,

but the assignment operator ofT is called the number of times equal to the number of elements in the
vector after the erased elements.

5 Throws: Nothing unless an exception is thrown by the copy constructor or assignment operator ofT.

248)reserve() usesAllocator::allocate() which may throw an appropriate exception.

485

ISO/IEC 14882:1998(E) © ISO/IEC

23.2.4.4vector specialized algorithms 23 Containers library

[lib.vector.special] 23.2.4.4vector specialized algorithms

template <class T, class Allocator>
void swap(vector<T,Allocator>& x, vector<T,Allocator>& y);

1 Effects:

x.swap(y);

[lib.vector.bool] 23.2.5 Classvector<bool>

1 To optimize space allocation, a specialization of vector forbool elements is provided:

namespace std {
template <class Allocator> class vector<bool, Allocator> {
public:

// types:
typedef bool const_reference;
typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef implementation defined size_type; // See 23.1
typedef implementation defined difference_type;// See 23.1
typedef bool value_type;
typedef Allocator allocator_type;
typedef implementation defined pointer;
typedef implementation defined const_pointer
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

// bit reference:
class reference {

friend class vector;
reference();

public:
~reference();

operator bool() const;
reference& operator=(const bool x);
reference& operator=(const reference& x);
void flip(); // flips the bit

};

// construct/copy/destroy:
explicit vector(const Allocator& = Allocator());
explicit vector(size_type n, const bool& value = bool(),

const Allocator& = Allocator());
template <class InputIterator>

vector(InputIterator first, InputIterator last,
const Allocator& = Allocator());

vector(const vector<bool,Allocator>& x);
~vector();

vector<bool,Allocator>& operator=(const vector<bool,Allocator>& x);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
void assign(size_type n, const T& t);
allocator_type get_allocator() const;

486

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.2.5 Classvector<bool>

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// capacity:
size_type size() const;
size_type max_size() const;
void resize(size_type sz, bool c = false);
size_type capacity() const;
bool empty() const;
void reserve(size_type n);

// element access:
reference operator[](size_type n);
const_reference operator[](size_type n) const;
const_reference at(size_type n) const;
reference at(size_type n);
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// modifiers:
void push_back(const bool& x);
void pop_back();
iterator insert(iterator position, const bool& x);
void insert (iterator position, size_type n, const bool& x);
template <class InputIterator>

void insert(iterator position,
InputIterator first, InputIterator last);

iterator erase(iterator position);
iterator erase(iterator first, iterator last);
void swap(vector<bool,Allocator>&);
static void swap(reference x, reference y);
void flip(); // flips all bits
void clear();

};

487

ISO/IEC 14882:1998(E) © ISO/IEC

23.2.5 Classvector<bool> 23 Containers library

template <class Allocator>
bool operator==(const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);
template <class Allocator>

bool operator< (const vector<bool,Allocator>& x,
const vector<bool,Allocator>& y);

template <class Allocator>
bool operator!=(const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);
template <class Allocator>

bool operator> (const vector<bool,Allocator>& x,
const vector<bool,Allocator>& y);

template <class Allocator>
bool operator>=(const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);
template <class Allocator>

bool operator<=(const vector<bool,Allocator>& x,
const vector<bool,Allocator>& y);

// specialized algorithms:
template <class Allocator>

void swap(vector<bool,Allocator>& x, vector<bool,Allocator>& y);
}

2 reference is a class that simulates the behavior of references of a single bit invector<bool> .

[lib.associative] 23.3 Associative containers

1 Headers<map>and<set> :

Header<map>synopsis

namespace std {
template <class Key, class T, class Compare = less<Key>,

class Allocator = allocator<pair<const Key, T> > >
class map;

template <class Key, class T, class Compare, class Allocator>
bool operator==(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator< (const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator!=(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator> (const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator>=(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator<=(const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
void swap(map<Key,T,Compare,Allocator>& x,

map<Key,T,Compare,Allocator>& y);

488

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.3 Associative containers

template <class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key, T> > >

class multimap;
template <class Key, class T, class Compare, class Allocator>

bool operator==(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator< (const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator!=(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator> (const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator>=(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator<=(const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

void swap(multimap<Key,T,Compare,Allocator>& x,
multimap<Key,T,Compare,Allocator>& y);

}

Header<set> synopsis

namespace std {
template <class Key, class Compare = less<Key>,

class Allocator = allocator<Key> >
class set;

template <class Key, class Compare, class Allocator>
bool operator==(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator< (const set<Key,Compare,Allocator>& x,
const set<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator!=(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator> (const set<Key,Compare,Allocator>& x,
const set<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator>=(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator<=(const set<Key,Compare,Allocator>& x,
const set<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
void swap(set<Key,Compare,Allocator>& x,

set<Key,Compare,Allocator>& y);

489

ISO/IEC 14882:1998(E) © ISO/IEC

23.3 Associative containers 23 Containers library

template <class Key, class Compare = less<Key>,
class Allocator = allocator<Key> >

class multiset;
template <class Key, class Compare, class Allocator>

bool operator==(const multiset<Key,Compare,Allocator>& x,
const multiset<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator< (const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator!=(const multiset<Key,Compare,Allocator>& x,
const multiset<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator> (const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator>=(const multiset<Key,Compare,Allocator>& x,
const multiset<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator<=(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

void swap(multiset<Key,Compare,Allocator>& x,
multiset<Key,Compare,Allocator>& y);

}

[lib.map] 23.3.1 Template classmap

1 A map is a kind of associative container that supports unique keys (contains at most one of each key value)
and provides for fast retrieval of values of another typeT based on the keys.Map supports bidirectional
iterators.

2 A mapsatisfies all of the requirements of a container and of a reversible container (23.1) and of an associa-
tive container (23.1.2). Amap also provides most operations described in (23.1.2) for unique keys. This
means that amap supports thea_uniq operations in (23.1.2) but not thea_eq operations. For a
map<Key,T> the key_type is Key and thevalue_type is pair<const Key,T> . Descriptions
are provided here only for operations onmap that are not described in one of those tables or for operations
where there is additional semantic information.

namespace std {
template <class Key, class T, class Compare = less<Key>,

class Allocator = allocator<pair<const Key, T> > >
class map {
public:

// types:
typedef Key key_type;
typedef T mapped_type;
typedef pair<const Key, T> value_type;
typedef Compare key_compare;
typedef Allocator allocator_type;
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef implementation defined size_type; // See 23.1
typedef implementation defined difference_type;// See 23.1
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

490

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.3.1 Template classmap

class value_compare
: public binary_function<value_type,value_type,bool> {

friend class map;
protected:

Compare comp;
value_compare(Compare c) : comp(c) {}

public:
bool operator()(const value_type& x, const value_type& y) const {

return comp(x.first, y.first);
}

};

// 23.3.1.1 construct/copy/destroy:
explicit map(const Compare& comp = Compare(),

const Allocator& = Allocator());
template <class InputIterator>

map(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());

map(const map<Key,T,Compare,Allocator>& x);
~map();

map<Key,T,Compare,Allocator>&
operator=(const map<Key,T,Compare,Allocator>& x);

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;

// 23.3.1.2 element access:
T& operator[](const key_type& x);

// modifiers:
pair<iterator, bool> insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
template <class InputIterator>

void insert(InputIterator first, InputIterator last);

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
void swap(map<Key,T,Compare,Allocator>&);
void clear();

// observers:
key_compare key_comp() const;
value_compare value_comp() const;

491

ISO/IEC 14882:1998(E) © ISO/IEC

23.3.1 Template classmap 23 Containers library

// 23.3.1.3 map operations:
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;

pair<iterator,iterator>
equal_range(const key_type& x);

pair<const_iterator,const_iterator>
equal_range(const key_type& x) const;

};

template <class Key, class T, class Compare, class Allocator>
bool operator==(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator< (const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator!=(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator> (const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator>=(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator<=(const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y);

// specialized algorithms:
template <class Key, class T, class Compare, class Allocator>

void swap(map<Key,T,Compare,Allocator>& x,
map<Key,T,Compare,Allocator>& y);

}

[lib.map.cons] 23.3.1.1mapconstructors, copy, and assignment

explicit map(const Compare& comp = Compare(),
const Allocator& = Allocator());

1 Effects: Constructs an emptymapusing the specified comparison object and allocator.
2 Complexity: Constant.

template <class InputIterator>
map(InputIterator first , InputIterator last ,

const Compare& comp = Compare(), const Allocator& = Allocator());

3 Effects: Constructs an emptymap using the specified comparison object and allocator, and inserts ele-
ments from the range[first , last) .

4 Complexity: Linear in N if the range[first , last) is already sorted usingcomp and otherwiseN
log N , whereN is last - first .

492

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.3.1.2mapelement access

[lib.map.access] 23.3.1.2mapelement access

T& operator[](const key_type& x);

1 Returns: (*((insert(make_pair(x, T()))).first)).second .

[lib.map.ops] 23.3.1.3mapoperations

iterator find(const key_type& x);
const_iterator find(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type &x) const;

pair<iterator, iterator>
equal_range(const_key_type &x);

pair<const_iterator, const_iterator>
equal_range(const key_type& x) const;

1 The find , lower_bound , upper_bound andequal_range member functions each have two ver-
sions, one const and the other non-const. In each case the behavior of the two functions is identical except
that the const version returns aconst_iterator and the non-const version aniterator (23.1.2).

[lib.map.special] 23.3.1.4mapspecialized algorithms

template <class Key, class T, class Compare, class Allocator>
void swap(map<Key,T,Compare,Allocator>& x,

map<Key,T,Compare,Allocator>& y);

1 Effects:

x.swap(y);

[lib.multimap] 23.3.2 Template classmultimap

1 A multimap is a kind of associative container that supports equivalent keys (possibly containing multiple
copies of the same key value) and provides for fast retrieval of values of another typeT based on the keys.
Multimap supports bidirectional iterators.

2 A multimap satisfies all of the requirements of a container and of a reversible container (23.1) and of an
associative container (23.1.2). Amultimap also provides most operations described in (23.1.2) for equal
keys. This means that amultimap supports thea_eq operations in (23.1.2) but not thea_uniq opera-
tions. For amultimap<Key,T> the key_type is Key and thevalue_type is pair<const
Key,T> . Descriptions are provided here only for operations onmultimap that are not described in one
of those tables or for operations where there is additional semantic information.

493

ISO/IEC 14882:1998(E) © ISO/IEC

23.3.2 Template classmultimap 23 Containers library

namespace std {
template <class Key, class T, class Compare = less<Key>,

class Allocator = allocator<pair<const Key, T> > >
class multimap {
public:

// types:
typedef Key key_type;
typedef T mapped_type;
typedef pair<const Key,T> value_type;
typedef Compare key_compare;
typedef Allocator allocator_type;
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef implementation defined size_type; // See 23.1
typedef implementation defined difference_type;// See 23.1
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

class value_compare
: public binary_function<value_type,value_type,bool> {

friend class multimap;
protected:

Compare comp;
value_compare(Compare c) : comp(c) {}

public:
bool operator()(const value_type& x, const value_type& y) const {

return comp(x.first, y.first);
}

};

// construct/copy/destroy:
explicit multimap(const Compare& comp = Compare(),

const Allocator& = Allocator());
template <class InputIterator>

multimap(InputIterator first, InputIterator last,
const Compare& comp = Compare(),
const Allocator& = Allocator());

multimap(const multimap<Key,T,Compare,Allocator>& x);
~multimap();

multimap<Key,T,Compare,Allocator>&
operator=(const multimap<Key,T,Compare,Allocator>& x);

allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

494

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.3.2 Template classmultimap

// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;

// modifiers:
iterator insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
template <class InputIterator>

void insert(InputIterator first, InputIterator last);

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
void swap(multimap<Key,T,Compare,Allocator>&);
void clear();

// observers:
key_compare key_comp() const;
value_compare value_comp() const;

// map operations:
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;

pair<iterator,iterator>
equal_range(const key_type& x);

pair<const_iterator,const_iterator>
equal_range(const key_type& x) const;

};

template <class Key, class T, class Compare, class Allocator>
bool operator==(const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator< (const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator!=(const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator> (const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator>=(const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator<=(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);

495

ISO/IEC 14882:1998(E) © ISO/IEC

23.3.2 Template classmultimap 23 Containers library

// specialized algorithms:
template <class Key, class T, class Compare, class Allocator>

void swap(multimap<Key,T,Compare,Allocator>& x,
multimap<Key,T,Compare,Allocator>& y);

}

[lib.multimap.cons] 23.3.2.1multimap constructors

explicit multimap(const Compare& comp = Compare(),
const Allocator& = Allocator());

1 Effects: Constructs an emptymultimap using the specified comparison object and allocator.
2 Complexity: Constant.

template <class InputIterator>
multimap(InputIterator first , InputIterator last ,

const Compare& comp = Compare(),
const Allocator& = Allocator()0;

3 Effects: Constructs an emptymultimap using the specified comparison object and allocator, and inserts
elements from the range[first , last) .

4 Complexity: Linear inN if the range[first , last) . is already sorted usingcomp and otherwiseN
log N , whereN is last - first .

[lib.multimap.ops] 23.3.2.2multimap operations

iterator find(const key_type &x);
const_iterator find(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;

pair<iterator, iterator>
equal_range(const key_type& x);

pair<const_iterator, const_iterator>
equal_range(const_key_type& x) const;

1 The find , lower_bound , upper_bound , andequal_range member functions each have two ver-
sions, one const and one non-const. In each case the behavior of the two versions is identical except that
the const version returns a const_iterator and the non-const version an
iterator (_lib.associative.reqmts).

[lib.multimap.special] 23.3.2.3multimap specialized algorithms

template <class Key, class T, class Compare, class Allocator>
void swap(multimap<Key,T,Compare,Allocator>& x,

multimap<Key,T,Compare,Allocator>& y);

1 Effects:

x.swap(y);

[lib.set] 23.3.3 Template classset

1 A set is a kind of associative container that supports unique keys (contains at most one of each key value)
and provides for fast retrieval of the keys themselves.Set supports bidirectional iterators.

496

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.3.3 Template classset

2 A set satisfies all of the requirements of a container and of a reversible container (23.1), and of an associa-
tive container (23.1.2). Aset also provides most operations described in (23.1.2) for unique keys. This
means that aset supports thea_uniq operations in (23.1.2) but not thea_eq operations. For a
set<Key> both thekey_type and value_type are Key. Descriptions are provided here only for
operations onset that are not described in one of these tables and for operations where there is additional
semantic information.

namespace std {
template <class Key, class Compare = less<Key>,

class Allocator = allocator<Key> >
class set {
public:

// types:
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef Allocator allocator_type;
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef implementation defined size_type; // See 23.1
typedef implementation defined difference_type;// See 23.1
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

// 23.3.3.1 construct/copy/destroy:
explicit set(const Compare& comp = Compare(),

const Allocator& = Allocator());
template <class InputIterator>

set(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());

set(const set<Key,Compare,Allocator>& x);
~set();

set<Key,Compare,Allocator>& operator=
(const set<Key,Compare,Allocator>& x);

allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;

497

ISO/IEC 14882:1998(E) © ISO/IEC

23.3.3 Template classset 23 Containers library

// modifiers:
pair<iterator,bool> insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
template <class InputIterator>

void insert(InputIterator first, InputIterator last);

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
void swap(set<Key,Compare,Allocator>&);
void clear();

// observers:
key_compare key_comp() const;
value_compare value_comp() const;

// set operations:
iterator find(const key_type& x) const;
size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x) const;
pair<iterator,iterator> equal_range(const key_type& x) const;

};

template <class Key, class Compare, class Allocator>
bool operator==(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator< (const set<Key,Compare,Allocator>& x,
const set<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator!=(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator> (const set<Key,Compare,Allocator>& x,
const set<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator>=(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator<=(const set<Key,Compare,Allocator>& x,
const set<Key,Compare,Allocator>& y);

// specialized algorithms:
template <class Key, class Compare, class Allocator>

void swap(set<Key,Compare,Allocator>& x,
set<Key,Compare,Allocator>& y);

}

[lib.set.cons] 23.3.3.1set constructors, copy, and assignment

explicit set(const Compare& comp = Compare(),
const Allocator& = Allocator());

1 Effects: Constructs an empty set using the specified comparison objects and allocator.
2 Complexity: Constant.

498

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.3.3.1set constructors, copy, and assignment

template <class InputIterator>
set(InputIterator first , last ,

const Compare& comp = Compare(), const Allocator& = Allocator());

3 Effects: Constructs an emptyset using the specified comparison object and allocator, and inserts ele-
ments from the range[first , last) .

4 Complexity: Linear in N if the range[first , last) is already sorted usingcomp and otherwiseN
log N , whereN is last - first .

[lib.set.special] 23.3.3.2set specialized algorithms

template <class Key, class Compare, class Allocator>
void swap(set<Key,Compare,Allocator>& x,

set<Key,Compare,Allocator>& y);

1 Effects:

x.swap(y);

[lib.multiset] 23.3.4 Template classmultiset

1 A multiset is a kind of associative container that supports equivalent keys (possibly contains multiple
copies of the same key value) and provides for fast retrieval of the keys themselves.Multiset supports
bidirectional iterators.

2 A multiset satisfies all of the requirements of a container and of a reversible container (23.1), and of an
associative container (23.1.2).multiset also provides most operations described in (23.1.2) for dupli-
cate keys. This means that amultiset supports thea_eq operations in (23.1.2) but not thea_uniq
operations. For amultiset<Key> both thekey_type andvalue_type areKey. Descriptions are
provided here only for operations onmultiset that are not described in one of these tables and for opera-
tions where there is additional semantic information.

namespace std {
template <class Key, class Compare = less<Key>,

class Allocator = allocator<Key> >
class multiset {
public:

// types:
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef Allocator allocator_type;
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef implementation defined size_type; // See 23.1
typedef implementation defined difference_type;// See 23.1
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

499

ISO/IEC 14882:1998(E) © ISO/IEC

23.3.4 Template classmultiset 23 Containers library

// construct/copy/destroy:
explicit multiset(const Compare& comp = Compare(),

const Allocator& = Allocator());
template <class InputIterator>

multiset(InputIterator first, InputIterator last,
const Compare& comp = Compare(),
const Allocator& = Allocator());

multiset(const multiset<Key,Compare,Allocator>& x);
~multiset();

multiset<Key,Compare,Allocator>&
operator=(const multiset<Key,Compare,Allocator>& x);

allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;

// modifiers:
iterator insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
template <class InputIterator>

void insert(InputIterator first, InputIterator last);

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
void swap(multiset<Key,Compare,Allocator>&);
void clear();

// observers:
key_compare key_comp() const;
value_compare value_comp() const;

// set operations:
iterator find(const key_type& x) const;
size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x) const;
pair<iterator,iterator> equal_range(const key_type& x) const;

};

500

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.3.4 Template classmultiset

template <class Key, class Compare, class Allocator>
bool operator==(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator< (const multiset<Key,Compare,Allocator>& x,
const multiset<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator!=(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator> (const multiset<Key,Compare,Allocator>& x,
const multiset<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator>=(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator<=(const multiset<Key,Compare,Allocator>& x,
const multiset<Key,Compare,Allocator>& y);

// specialized algorithms:
template <class Key, class Compare, class Allocator>

void swap(multiset<Key,Compare,Allocator>& x,
multiset<Key,Compare,Allocator>& y);

}

[lib.multiset.cons] 23.3.4.1multiset constructors

explicit multiset(const Compare& comp = Compare(),
const Allocator& = Allocator());

1 Effects: Constructs an empty set using the specified comparison object and allocator.
2 Complexity: Constant.

template <class InputIterator>
multiset(InputIterator first , last ,

const Compare& comp = Compare(), const Allocator& = Allocator());

3 Effects: Constructs an emptymultiset using the specified comparison object and allocator, and inserts
elements from the range[first , last) .

4 Complexity: Linear in N if the range[first , last) is already sorted usingcomp and otherwiseN
log N , whereN is last - first .

[lib.multiset.special] 23.3.4.2multiset specialized algorithms

template <class Key, class Compare, class Allocator>
void swap(multiset<Key,Compare,Allocator>& x,

multiset<Key,Compare,Allocator>& y);

1 Effects:

x.swap(y);

501

ISO/IEC 14882:1998(E) © ISO/IEC

23.3.4.2multiset specialized algorithms 23 Containers library

[lib.template.bitset] 23.3.5 Template classbitset

Header<bitset> synopsis

#include <cstddef> // for size_t
#include <string>
#include <stdexcept> // for invalid_argument ,

// out_of_range , overflow_error
#include <iosfwd> // for istream , ostream
namespace std {

template <size_t N> class bitset;

// 23.3.5.3 bitset operations:
template <size_t N>

bitset<N> operator&(const bitset<N>&, const bitset<N>&);
template <size_t N>

bitset<N> operator|(const bitset<N>&, const bitset<N>&);
template <size_t N>

bitset<N> operator^(const bitset<N>&, const bitset<N>&);
template <class charT, class traits, size_t N>

basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is , bitset<N>& x);

template <class charT, class traits, size_t N>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os , const bitset<N>& x);

}

1 The header<bitset> defines a template class and several related functions for representing and manipu-
lating fixed-size sequences of bits.

namespace std {
template<size_t N> class bitset {
public:

// bit reference:
class reference {

friend class bitset;
reference();

public:
~reference();

reference& operator=(bool x); // for b[i] = x;
reference& operator=(const reference&); // for b[i] = b[j];
bool operator~() const; // flips the bit
operator bool() const; // for x = b[i];
reference& flip(); // for b[i].flip();

};

// 23.3.5.1 constructors:
bitset();
bitset(unsigned long val);
template<class charT, class traits, class Allocator>

explicit bitset(
const basic_string<charT,traits,Allocator>& str ,
typename basic_string<charT,traits,Allocator>::size_type pos = 0,
typename basic_string<charT,traits,Allocator>::size_type n =

basic_string<charT,traits,Allocator>::npos);

502

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.3.5 Template classbitset

// 23.3.5.2 bitset operations:
bitset<N>& operator&=(const bitset<N>& rhs);
bitset<N>& operator|=(const bitset<N>& rhs);
bitset<N>& operator^=(const bitset<N>& rhs);
bitset<N>& operator<<=(size_t pos);
bitset<N>& operator>>=(size_t pos);
bitset<N>& set();
bitset<N>& set(size_t pos , int val = true);
bitset<N>& reset();
bitset<N>& reset(size_t pos);
bitset<N> operator~() const;
bitset<N>& flip();
bitset<N>& flip(size_t pos);

// element access:
reference operator[](size_t pos); // for b[i];

unsigned long to_ulong() const;
template <class charT, class traits, class Allocator>

basic_string<charT, traits, Allocator> to_string() const;
size_t count() const;
size_t size() const;
bool operator==(const bitset<N>& rhs) const;
bool operator!=(const bitset<N>& rhs) const;
bool test(size_t pos) const;
bool any() const;
bool none() const;
bitset<N> operator<<(size_t pos) const;
bitset<N> operator>>(size_t pos) const;

};
}

2 The template classbitset<N> describes an object that can store a sequence consisting of a fixed number
of bits,N.

3 Each bit represents either the value zero (reset) or one (set). Totogglea bit is to change the value zero to
one, or the value one to zero. Each bit has a non-negative positionpos . When converting between an
object of classbitset<N> and a value of some integral type, bit positionpos corresponds to thebit
value1 << pos . The integral value corresponding to two or more bits is the sum of their bit values.

4 The functions described in this subclause can report three kinds of errors, each associated with a distinct
exception:

— an invalid-argumenterror is associated with exceptions of typeinvalid_argument (19.1.3);

— anout-of-rangeerror is associated with exceptions of typeout_of_range (19.1.5);

— anoverflowerror is associated with exceptions of typeoverflow_error (19.1.8).

[lib.bitset.cons] 23.3.5.1bitset constructors

bitset();

1 Effects: Constructs an object of classbitset<N> , initializing all bits to zero.

503

ISO/IEC 14882:1998(E) © ISO/IEC

23.3.5.1bitset constructors 23 Containers library

bitset(unsigned long val);

2 Effects: Constructs an object of classbitset<N> , initializing the firstMbit positions to the correspond-
ing bit values inval . M is the smaller ofN and the valueCHAR_BIT * sizeof (unsigned
long) .249)

If M < N, remaining bit positions are initialized to zero.

template <class charT, class traits, class Allocator>
explicit
bitset(const basic_string<charT, traits, Allocator>& str ,

typename basic_string<charT, traits, Allocator>::size_type pos = 0,
typename basic_string<charT, traits, Allocator>::size_type n =

basic_string<charT, traits, Allocator>::npos);

3 Requires: pos <= str .size() .
4 Throws: out_of_range if pos > str .size() .
5 Effects: Determines the effective lengthrlen of the initializing string as the smaller ofn and

str .size() - pos .
The function then throwsinvalid_argument if any of therlen characters instr beginning at
positionpos is other than0 or 1.
Otherwise, the function constructs an object of classbitset<N> , initializing the firstMbit positions to
values determined from the corresponding characters in the stringstr . Mis the smaller ofNandrlen .

6 An element of the constructed string has value zero if the corresponding character instr , beginning at
positionpos , is 0. Otherwise, the element has the value one. Character positionpos + M - 1 corre-
sponds to bit position zero. Subsequent decreasing character positions correspond to increasing bit posi-
tions.

7 If M < N , remaining bit positions are initialized to zero.

[lib.bitset.members] 23.3.5.2bitset members

bitset<N>& operator&=(const bitset<N>& rhs);

1 Effects: Clears each bit in*this for which the corresponding bit inrhs is clear, and leaves all other bits
unchanged.

2 Returns: *this .

bitset<N>& operator|=(const bitset<N>& rhs);

3 Effects: Sets each bit in*this for which the corresponding bit inrhs is set, and leaves all other bits
unchanged.

4 Returns: *this .

bitset<N>& operator^=(const bitset<N>& rhs);

5 Effects: Toggles each bit in*this for which the corresponding bit inrhs is set, and leaves all other bits
unchanged.

6 Returns: *this .

bitset<N>& operator<<=(size_t pos);

7 Effects: Replaces each bit at positionI in *this with a value determined as follows:

— If I < pos , the new value is zero;

— If I >= pos , the new value is the previous value of the bit at positionI - pos .

249)The macroCHAR_BIT is defined in<climits> (18.2).

504

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.3.5.2bitset members

8 Returns: *this .

bitset<N>& operator>>=(size_t pos);

9 Effects: Replaces each bit at positionI in *this with a value determined as follows:

— If pos >= N - I , the new value is zero;

— If pos < N - I , the new value is the previous value of the bit at positionI + pos .
10 Returns: *this .

bitset<N>& set();

11 Effects: Sets all bits in*this .
12 Returns: *this .

bitset<N>& set(size_t pos , int val = 1);

13 Requires: pos is valid
14 Throws: out_of_range if pos does not correspond to a valid bit position.
15 Effects: Stores a new value in the bit at positionpos in *this . If val is nonzero, the stored value is

one, otherwise it is zero.
16 Returns: *this .

bitset<N>& reset();

17 Effects: Resets all bits in*this .
18 Returns: *this .

bitset<N>& reset(size_t pos);

19 Requires: pos is valid
20 Throws: out_of_range if pos does not correspond to a valid bit position.
21 Effects: Resets the bit at positionpos in *this .
22 Returns: *this .

bitset<N> operator~() const;

23 Effects: Constructs an objectx of classbitset<N> and initializes it with*this .
24 Returns: x.flip() .

bitset<N>& flip();

25 Effects: Toggles all bits in*this .
26 Returns: *this .

bitset<N>& flip(size_t pos);

27 Requires: pos is valid
28 Throws: out_of_range if pos does not correspond to a valid bit position.
29 Effects: Toggles the bit at positionpos in *this .
30 Returns: *this .

unsigned long to_ulong() const;

31 Throws: overflow_error if the integral valuex corresponding to the bits in*this cannot be repre-
sented as typeunsigned long .

32 Returns: x .

505

ISO/IEC 14882:1998(E) © ISO/IEC

23.3.5.2bitset members 23 Containers library

template <class charT, class traits, class Allocator>
basic_string<charT, traits, Allocator> to_string() const;

33 Effects: Constructs a string object of the appropriate type and initializes it to a string of lengthN charac-
ters. Each character is determined by the value of its corresponding bit position in*this . Character
positionN - 1 corresponds to bit position zero. Subsequent decreasing character positions correspond
to increasing bit positions. Bit value zero becomes the character0, bit value one becomes the character
1.

34 Returns: The created object.

size_t count() const;

35 Returns: A count of the number of bits set in*this .

size_t size() const;

36 Returns: N.

bool operator==(const bitset<N>& rhs) const;

37 Returns: A nonzero value if the value of each bit in*this equals the value of the corresponding bit in
rhs .

bool operator!=(const bitset<N>& rhs) const;

38 Returns: A nonzero value if!(*this == rhs) .

bool test(size_t pos) const;

39 Requires: pos is valid
40 Throws: out_of_range if pos does not correspond to a valid bit position.
41 Returns: true if the bit at positionpos in *this has the value one.

bool any() const;

42 Returns: true if any bit in*this is one.

bool none() const;

43 Returns: true if no bit in *this is one.

bitset<N> operator<<(size_t pos) const;

44 Returns: bitset<N>(*this) <<= pos .

bitset<N> operator>>(size_t pos) const;

45 Returns: bitset<N>(*this) >>= pos .

[lib.bitset.operators] 23.3.5.3bitset operators

bitset<N> operator&(const bitset<N>& lhs , const bitset<N>& rhs);

1 Returns: bitset<N>(lhs) &= rhs .

bitset<N> operator|(const bitset<N>& lhs , const bitset<N>& rhs);

2 Returns: bitset<N>(lhs) |= rhs .

506

© ISO/IEC ISO/IEC 14882:1998(E)

23 Containers library 23.3.5.3bitset operators

bitset<N> operator^(const bitset<N>& lhs , const bitset<N>& rhs);

3 Returns: bitset<N>(lhs) ^= rhs .

template <class charT, class traits, size_t N>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is , bitset<N>& x);

4 A formatted input function (27.6.1.2).
5 Effects: Extracts up toN (single-byte) characters fromis . Stores these characters in a temporary object

str of type string , then evaluates the expressionx = bitset<N>(str) . Characters are
extracted and stored until any of the following occurs:

— Ncharacters have been extracted and stored;

— end-of-file occurs on the input sequence;

— the next input character is neither0 or 1 (in which case the input character is not extracted).

6 If no characters are stored instr , calls is .setstate(ios::failbit) (which may throw
ios_base::failure (27.4.4.3).

7 Returns: is .

template <class charT, class traits, size_t N>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os , const bitset<N>& x);

8 Returns: os << x.template to_string<charT,traits,allocator<charT> >()
(27.6.2.5).

507

ISO/IEC 14882:1998(E) © ISO/IEC

508

(Blank page)

© ISO/IEC ISO/IEC 14882:1998(E)

24 Iterators library 24 Iterators library

24 Iterators library [lib.iterators]

1 This clause describes components that C++ programs may use to perform iterations over containers (clause
23), streams (27.6), and stream buffers (27.5).

2 The following subclauses describe iterator requirements, and components for iterator primitives, predefined
iterators, and stream iterators, as summarized in Table 70:

Table 70—Iterators library summary
_ ____________________________________

Subclause Header(s)_ _____________________________________ ____________________________________
24.1 Requirements_ ____________________________________
24.3 Iterator primitives
24.4 Predefined iterators
24.5 Stream iterators

<iterator>

_ ____________________________________

[lib.iterator.requirements] 24.1 Iterator requirements

1 Iterators are a generalization of pointers that allow a C++ program to work with different data structures
(containers) in a uniform manner. To be able to construct template algorithms that work correctly and effi-
ciently on different types of data structures, the library formalizes not just the interfaces but also the seman-
tics and complexity assumptions of iterators. All iteratorsi support the expression*i , resulting in a value
of some class, enumeration, or built-in typeT, called thevalue typeof the iterator. All iteratorsi for which
the expression(*i).m is well-defined, support the expressioni->m with the same semantics as(*i).m .
For every iterator typeX for which equality is defined, there is a corresponding signed integral type called
thedifference typeof the iterator.

2 Since iterators are an abstraction of pointers, their semantics is a generalization of most of the semantics of
pointers in C++. This ensures that every template function that takes iterators works as well with regular
pointers. This International Standard defines five categories of iterators, according to the operations
defined on them:input iterators, output iterators, forward iterators, bidirectional iteratorsand random
access iterators, as shown in Table 71.

Table 71—Relations among iterator categories
_ __
Random access → Bidirectional → Forward → Input

→ Output_ __

3 Forward iterators satisfy all the requirements of the input and output iterators and can be used whenever
either kind is specified; Bidirectional iterators also satisfy all the requirements of the forward iterators and
can be used whenever a forward iterator is specified; Random access iterators also satisfy all the require-
ments of bidirectional iterators and can be used whenever a bidirectional iterator is specified.

4 Besides its category, a forward, bidirectional, or random access iterator can also bemutableor constant
depending on whether the result of the expression*i behaves as a reference or as a reference to a constant.
Constant iterators do not satisfy the requirements for output iterators, and the result of the expression*i
(for constant iteratori) cannot be used in an expression where an lvalue is required.

5 Just as a regular pointer to an array guarantees that there is a pointer value pointing past the last element of
the array, so for any iterator type there is an iterator value that points past the last element of a correspond-
ing container. These values are calledpast-the-endvalues. Values of an iteratori for which the expression

509

ISO/IEC 14882:1998(E) © ISO/IEC

24.1 Iterator requirements 24 Iterators library

*i is defined are calleddereferenceable. The library never assumes that past-the-end values are derefer-
enceable. Iterators can also have singular values that are not associated with any container. [Example:
After the declaration of an uninitialized pointerx (as withint* x;), x must always be assumed to have a
singular value of a pointer.] Results of most expressions are undefined for singular values; the only excep-
tion is an assignment of a non-singular value to an iterator that holds a singular value. In this case the sin-
gular value is overwritten the same way as any other value. Dereferenceable and past-the-end values are
always non-singular.

6 An iteratorj is calledreachablefrom an iteratori if and only if there is a finite sequence of applications of
the expression++i that makesi == j . If j is reachable fromi , they refer to the same container.

7 Most of the library’s algorithmic templates that operate on data structures have interfaces that use ranges.
A rangeis a pair of iterators that designate the beginning and end of the computation. A range[i, i) is
an empty range; in general, a range[i, j) refers to the elements in the data structure starting with the
one pointed to byi and up to but not including the one pointed to byj . Range[i, j) is valid if and
only if j is reachable fromi . The result of the application of functions in the library to invalid ranges is
undefined.

8 All the categories of iterators require only those functions that are realizable for a given category in con-
stant time (amortized). Therefore, requirement tables for the iterators do not have a complexity column.

9 In the following sections,a andb denote values ofX, n denotes a value of the difference typeDistance ,
u, tmp , andmdenote identifiers,r denotes a value ofX&, t denotes a value of value typeT.

[lib.input.iterators] 24.1.1 Input iterators

1 A class or a built-in typeX satisfies the requirements of an input iterator for the value typeT if the follow-
ing expressions are valid, whereU is the type of any specified member of typeT, as shown in Table 72.

2 In Table 72, the termthe domain of== is used in the ordinary mathematical sense to denote the set of val-
ues over which== is (required to be) defined. This set can change over time. Each algorithm places addi-
tional requirements on the domain of== for the iterator values it uses. These requirements can be inferred
from the uses that algorithm makes of== and!= . [Example:the callfind(a,b,x) is defined only if the
value ofa has the propertyp defined as follows:b has propertyp and a valuei has propertyp if (*i==x)
or if (*i!=x and++i has propertyp).]

510

© ISO/IEC ISO/IEC 14882:1998(E)

24 Iterators library 24.1.1 Input iterators

Table 72—Input iterator requirements
_ ___

operation type semantics, pre/post-conditions_ __ ___
X u(a); X post:u is a copy ofa

A destructor is assumed to be present and accessible._ ___
u = a; X& result:u

post:u is a copy ofa_ ___
a == b convertible tobool == is an equivalence relation over its domain._ ___
a != b convertible tobool bool(a==b) != bool(a!=b) over the domain of==_ ___
*a convertible toT pre:a is dereferenceable.

If a==b and(a,b) is in the domain of==
then*a is equivalent to*b ._ ___

a->m pre:(*a).m is well-defined
Equivalent to(*a).m_ ___

++r X& pre:r is dereferenceable.
post:r is dereferenceable orr is past-the-end.
post: any copies of the previous value ofr are no longer
required either to be dereferenceable or to be in the domain
of ==._ ___

(void)r++ equivalent to(void)++r_ ___
*r++ T { T tmp = *r; ++r; return tmp; }_ ___

3 [Note:For input iterators,a == b does not imply++a == ++b . (Equality does not guarantee the substi-
tution property or referential transparency.) Algorithms on input iterators should never attempt to pass
through the same iterator twice. They should besingle passalgorithms. Value type T is not required to be
an Assignable type (23.1).These algorithms can be used with istreams as the source of the input data
through theistream_iterator class.]

[lib.output.iterators] 24.1.2 Output iterators

1 A class or a built-in typeX satisfies the requirements of an output iterator ifX is an Assignable type (23.1)
and also the following expressions are valid, as shown in Table 73:

Table 73—Output iterator requirements
_ ___

operational assertion/note
expression return type

semantics pre/post-condition_ __ ___
X(a) a = t is equivalent to

X(a) = t .
note: a destructor is assumed._ ___

X u(a);

X u = a;_ ___
*a = t result is not used_ ___
++r X& &r == &++r ._ ___
r++ convertible to

const X&
{ X tmp = r;

++r;
return tmp; }_ ___

*r++ = t result is not used_ ___

511

ISO/IEC 14882:1998(E) © ISO/IEC

24.1.2 Output iterators 24 Iterators library

2 [Note: The only valid use of anoperator* is on the left side of the assignment statement.Assignment
through the same value of the iterator happens only once.Algorithms on output iterators should never
attempt to pass through the same iterator twice. They should besingle passalgorithms. Equality and
inequality might not be defined. Algorithms that take output iterators can be used with ostreams as the des-
tination for placing data through theostream_iterator class as well as with insert iterators and insert
pointers. —end note]

[lib.forward.iterators] 24.1.3 Forward iterators

1 A class or a built-in typeX satisfies the requirements of a forward iterator if the following expressions are
valid, as shown in Table 74:

Table 74—Forward iterator requirements
_ ___

operational assertion/note
expression return type

semantics pre/post-condition_ __ ___
X u; note:u might have a singular

value.
note: a destructor is assumed._ ___

X() note:X() might be singular._ ___
X(a) a == X(a) ._ ___
X u(a); X u; u = a; post:u == a .
X u = a;_ ___
a == b convertible tobool == is an equivalence relation._ ___
a != b convertible tobool !(a == b)_ ___
r = a X& post: r == a._ ___
*a T& pre:a is dereferenceable.

a == b implies*a == *b .
If X is mutable,*a = t is valid._ ___

a->m U& (*a).m pre:(*a).m is well-defined._ ___
++r X& pre:r is dereferenceable.

post:r is dereferenceable orr is
past-the-end.
r == s andr is dereference-
able implies++r == ++s .
&r == &++r ._ ___

r++ convertible to
const X&

{ X tmp = r;
++r;
return tmp; }_ ___

*r++ T&_ ___

— If a andb are equal, then eithera andb are both dereferenceable or else neither is dereferenceable.

— If a andb are both dereferenceable, thena == b if and only if *a and*b are the same object.

2 [Note:The condition thata == b implies++a == ++b (which is not true for input and output iterators)
and the removal of the restrictions on the number of the assignments through the iterator (which applies to
output iterators) allows the use of multi-pass one-directional algorithms with forward iterators.
—end note]

512

© ISO/IEC ISO/IEC 14882:1998(E)

24 Iterators library 24.1.4 Bidirectional iterators

[lib.bidirectional.iterators] 24.1.4 Bidirectional iterators

1 A class or a built-in typeX satisfies the requirements of a bidirectional iterator if, in addition to satisfying
the requirements for forward iterators, the following expressions are valid as shown in Table 75:

Table 75—Bidirectional iterator requirements (in addition to forward iterator)
__

operational assertion/note
expression return type

semantics pre/post-condition__
--r X& pre: there existss such

thatr == ++s .
post:s is dereferenceable.
--(++r) == r .
--r == --s impliesr
== s .
&r == &--r .__

r-- convertible to
const X&

{ X tmp = r;
--r;
return tmp; }__

*r-- convertible toT__

2 [Note:Bidirectional iterators allow algorithms to move iterators backward as well as forward.—end note]

[lib.random.access.iterators] 24.1.5 Random access iterators

1 A class or a built-in typeX satisfies the requirements of a random access iterator if, in addition to satisfying
the requirements for bidirectional iterators, the following expressions are valid as shown in Table 76:

513

ISO/IEC 14882:1998(E) © ISO/IEC

24.1.5 Random access iterators 24 Iterators library

Table 76—Random access iterator requirements (in addition to bidirectional iterator)
_ __

operational assertion/note
expression return type

semantics pre/post-condition_ ___ __
r += n X& { Distance m =

n;
if (m >= 0)

while (m--)
++r;

else
while (m++)

--r;
return r; }_ __

a + n { X tmp = a;
return tmp +=

n; }

n + a

X a + n == n + a .

_ __
r -= n X& return r += -n;_ __
a - n X { X tmp = a;

return tmp -=
n; }_ __

b - a Distance (a<b)?
distance(a,b):
-distance(b,a)

pre: there exists a valuen
of Distance such thata
+ n == b . b == a +
(b - a) ._ __

a[n] convertible toT *(a + n)_ __
a < b convertible tobool b - a > 0 < is a total ordering relation_ __
a > b convertible to bool b < a > is a total ordering relation

opposite to<._ __
a >= b convertible to bool !(a < b)_ __
a <= b convertible to bool !(a > b)_ __

[lib.iterator.synopsis] 24.2 Header<iterator> synopsis

namespace std {
// 24.3, primitives:
template<class Iterator> struct iterator_traits;
template<class T> struct iterator_traits<T*>;

template<class Category, class T, class Distance = ptrdiff_t,
class Pointer = T*, class Reference = T&> struct iterator;

struct input_iterator_tag {};
struct output_iterator_tag {};
struct forward_iterator_tag: public input_iterator_tag {};
struct bidirectional_iterator_tag: public forward_iterator_tag {};
struct random_access_iterator_tag: public bidirectional_iterator_tag {};

514

© ISO/IEC ISO/IEC 14882:1998(E)

24 Iterators library 24.2 Header<iterator> synopsis

// 24.3.4, iterator operations:
template <class InputIterator, class Distance>

void advance(InputIterator& i, Distance n);
template <class InputIterator>

typename iterator_traits<InputIterator>::difference_type
distance(InputIterator first, InputIterator last);

// 24.4, predefined iterators:
template <class Iterator> class reverse_iterator;

template <class Iterator>
bool operator==(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator<(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator!=(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator>(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator>=(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator<=(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
typename reverse_iterator<Iterator>::difference_type operator-(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
reverse_iterator<Iterator>

operator+(
typename reverse_iterator<Iterator>::difference_type n,
const reverse_iterator<Iterator>& x);

template <class Container> class back_insert_iterator;
template <class Container>

back_insert_iterator<Container> back_inserter(Container& x);

template <class Container> class front_insert_iterator;
template <class Container>

front_insert_iterator<Container> front_inserter(Container& x);

template <class Container> class insert_iterator;
template <class Container, class Iterator>

insert_iterator<Container> inserter(Container& x, Iterator i);

515

ISO/IEC 14882:1998(E) © ISO/IEC

24.2 Header<iterator> synopsis 24 Iterators library

// 24.5, stream iterators:
template <class T, class charT = char, class traits = char_traits<charT>,

class Distance = ptrdiff_t>
class istream_iterator;
template <class T, class charT, class traits, class Distance>

bool operator==(const istream_iterator<T,charT,traits,Distance>& x,
const istream_iterator<T,charT,traits,Distance>& y);

template <class T, class charT, class traits, class Distance>
bool operator!=(const istream_iterator<T,charT,traits,Distance>& x,

const istream_iterator<T,charT,traits,Distance>& y);

template <class T, class charT = char, class traits = char_traits<charT> >
class ostream_iterator;

template<class charT, class traits = char_traits<charT> >
class istreambuf_iterator;

template <class charT, class traits>
bool operator==(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);
template <class charT, class traits>

bool operator!=(const istreambuf_iterator<charT,traits>& a,
const istreambuf_iterator<charT,traits>& b);

template <class charT, class traits = char_traits<charT> >
class ostreambuf_iterator;

}

[lib.iterator.primitives] 24.3 Iterator primitives

1 To simplify the task of defining iterators, the library provides several classes and functions:

[lib.iterator.traits] 24.3.1 Iterator traits

1 To implement algorithms only in terms of iterators, it is often necessary to determine the value and differ-
ence types that correspond to a particular iterator type. Accordingly, it is required that ifIterator is the
type of an iterator, the types

iterator_traits<Iterator>::difference_type
iterator_traits<Iterator>::value_type
iterator_traits<Iterator>::iterator_category

be defined as the iterator’s difference type, value type and iterator category, respectively. In the case of an
output iterator, the types

iterator_traits<Iterator>::difference_type
iterator_traits<Iterator>::value_type

are both defined asvoid .

2 The templateiterator_traits<Iterator> is defined as

template<class Iterator> struct iterator_traits {
typedef typename Iterator::difference_type difference_type;
typedef typename Iterator::value_type value_type;
typedef typename Iterator::pointer pointer;
typedef typename Iterator::reference reference;
typedef typename Iterator::iterator_category iterator_category;

};

It is specialized for pointers as

516

© ISO/IEC ISO/IEC 14882:1998(E)

24 Iterators library 24.3.1 Iterator traits

template<class T> struct iterator_traits<T*> {
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef T* pointer;
typedef T& reference;
typedef random_access_iterator_tag iterator_category;

};

and for pointers to const as

template<class T> struct iterator_traits<const T*> {
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef const T* pointer;
typedef const T& reference;
typedef random_access_iterator_tag iterator_category;

};

[Note: If there is an additional pointer type_ _far such that the difference of two_ _far is of type
long , an implementation may define

template<class T> struct iterator_traits<T _ _far*> {
typedef long difference_type;
typedef T value_type;
typedef T _ _far* pointer;
typedef T _ _far& reference;
typedef random_access_iterator_tag iterator_category;

};

—end note]

3 [Example:To implement a genericreverse function, a C++ program can do the following:

template <class BidirectionalIterator>
void reverse(BidirectionalIterator first, BidirectionalIterator last) {

typename iterator_traits<BidirectionalIterator>::difference_type n =
distance(first, last);

--n;
while(n > 0) {

typename iterator_traits<BidirectionalIterator>::value_type
tmp = *first;

*first++ = *--last;
*last = tmp;
n -= 2;

}
}

—end example]

[lib.iterator.basic] 24.3.2 Basic iterator

1 The iterator template may be used as a base class to ease the definition of required types for new itera-
tors.

517

ISO/IEC 14882:1998(E) © ISO/IEC

24.3.2 Basic iterator 24 Iterators library

namespace std {
template<class Category, class T, class Distance = ptrdiff_t,

class Pointer = T*, class Reference = T&>
struct iterator {

typedef T value_type;
typedef Distance difference_type;
typedef Pointer pointer;
typedef Reference reference;
typedef Category iterator_category;

};
}

[lib.std.iterator.tags] 24.3.3 Standard iterator tags

1 It is often desirable for a template function to find out what is the most specific category of its iterator argu-
ment, so that the function can select the most efficient algorithm at compile time. To facilitate this, the
library introducescategory tagclasses which are used as compile time tags for algorithm selection. They
are: input_iterator_tag , output_iterator_tag , forward_iterator_tag ,
bidirectional_iterator_tag and random_access_iterator_tag . For every iterator of
type Iterator , iterator_traits<Iterator>::iterator_category must be defined to be
the most specific category tag that describes the iterator’s behavior.

namespace std {
struct input_iterator_tag {};
struct output_iterator_tag {};
struct forward_iterator_tag: public input_iterator_tag {};
struct bidirectional_iterator_tag: public forward_iterator_tag {};
struct random_access_iterator_tag: public bidirectional_iterator_tag {};

}

2 [Example:For a program-defined iteratorBinaryTreeIterator , it could be included into the bidirec-
tional iterator category by specializing theiterator_traits template:

template<class T> struct iterator_traits<BinaryTreeIterator<T> > {
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef T* pointer;
typedef T& reference;
typedef bidirectional_iterator_tag iterator_category;

};

Typically, however, it would be easier to deriveBinaryTreeIterator<T> from
iterator<bidirectional_iterator_tag,T,ptrdiff_t,T*,T&> . —end example]

3 [Example:If evolve() is well defined for bidirectional iterators, but can be implemented more efficiently
for random access iterators, then the implementation is as follows:

template <class BidirectionalIterator>
inline void

evolve(BidirectionalIterator first, BidirectionalIterator last) {
evolve(first, last,

typename iterator_traits<BidirectionalIterator>::iterator_category());
}

template <class BidirectionalIterator>
void evolve(BidirectionalIterator first, BidirectionalIterator last,

bidirectional_iterator_tag) {
// ... more generic, but less efficient algorithm

}

518

© ISO/IEC ISO/IEC 14882:1998(E)

24 Iterators library 24.3.3 Standard iterator tags

template <class RandomAccessIterator>
void evolve(RandomAccessIterator first, RandomAccessIterator last,

random_access_iterator_tag) {
// ... more efficient, but less generic algorithm

}

—end example]

4 [Example:If a C++ program wants to define a bidirectional iterator for some data structure containing
double and such that it works on a large memory model of the implementation, it can do so with:

class MyIterator :
public iterator<bidirectional_iterator_tag, double, long, T*, T&> {

// code implementing++, etc.
};

5 Then there is no need to specialize theiterator_traits template. —end example]

[lib.iterator.operations] 24.3.4 Iterator operations

1 Since only random access iterators provide+ and- operators, the library provides two template functions
advance anddistance . These functions use+ and - for random access iterators (and are, therefore,
constant time for them); for input, forward and bidirectional iterators they use++ to provide linear time
implementations.

template <class InputIterator, class Distance>
void advance(InputIterator& i, Distance n);

2 Requires: n may be negative only for random access and bidirectional iterators.
3 Effects: Increments (or decrements for negativen) iterator referencei by n.

template<class InputIterator>
typename iterator_traits<InputIterator>::difference_type

distance(InputIterator first, InputIterator last);

4 Effects: Returns the number of increments or decrements needed to get fromfirst to last .
5 Requires: last must be reachable fromfirst .

[lib.predef.iterators] 24.4 Predefined iterators

[lib.reverse.iterators] 24.4.1 Reverse iterators

1 Bidirectional and random access iterators have corresponding reverse iterator adaptors that iterate through
the data structure in the opposite direction. They have the same signatures as the corresponding iterators.
The fundamental relation between a reverse iterator and its corresponding iteratori is established by the
identity: &*(reverse_iterator(i)) == &*(i - 1) .

2 This mapping is dictated by the fact that while there is always a pointer past the end of an array, there might
not be a valid pointer before the beginning of an array.

519

ISO/IEC 14882:1998(E) © ISO/IEC

24.4.1 Reverse iterators 24 Iterators library

[lib.reverse.iterator] 24.4.1.1 Template classreverse_iterator

namespace std {
template <class Iterator>
class reverse_iterator : public

iterator<typename iterator_traits<Iterator>::iterator_category,
typename iterator_traits<Iterator>::value_type,
typename iterator_traits<Iterator>::difference_type,
typename iterator_traits<Iterator>::pointer,
typename iterator_traits<Iterator>::reference> {

protected:
Iterator current;

public:
typedef Iterator

iterator_type;
typedef typename iterator_traits<Iterator>::difference_type

difference_type;
typedef typename iterator_traits<Iterator>::reference

reference;
typedef typename iterator_traits<Iterator>::pointer

pointer;

reverse_iterator();
explicit reverse_iterator(Iterator x);
template <class U> reverse_iterator(const reverse_iterator<U>& u);

Iterator base() const; // explicit
reference operator*() const;
pointer operator->() const;

reverse_iterator& operator++();
reverse_iterator operator++(int);
reverse_iterator& operator--();
reverse_iterator operator--(int);

reverse_iterator operator+ (difference_type n) const;
reverse_iterator& operator+=(difference_type n);
reverse_iterator operator- (difference_type n) const;
reverse_iterator& operator-=(difference_type n);
reference operator[](difference_type n) const;

};

template <class Iterator>
bool operator==(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator<(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator!=(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator>(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

520

© ISO/IEC ISO/IEC 14882:1998(E)

24 Iterators library 24.4.1.1 Template classreverse_iterator

template <class Iterator>
bool operator>=(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator<=(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
typename reverse_iterator<Iterator>::difference_type operator-(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
reverse_iterator<Iterator> operator+(

typename reverse_iterator<Iterator>::difference_type n,
const reverse_iterator<Iterator>& x);

}

[lib.reverse.iter.requirements] 24.4.1.2 reverse_iterator requirements

1 The template parameterIterator shall meet all the requirements of a Bidirectional Iterator (24.1.4).

2 Additionally, Iterator shall meet the requirements of a Random Access Iterator (24.1.5) if any of the
membersoperator+ (24.4.1.3.7),operator- (24.4.1.3.9),operator+= (24.4.1.3.8),operator-=
(24.4.1.3.10), operator[] (24.4.1.3.11), or the global operatorsoperator< (24.4.1.3.13),
operator> (24.4.1.3.15), operator<= (24.4.1.3.17), operator>= (24.4.1.3.16), operator-
(24.4.1.3.18) oroperator+ (24.4.1.3.19). is referenced in a way that requires instantiation (14.7.1).

[lib.reverse.iter.ops] 24.4.1.3 reverse_iterator operations

[lib.reverse.iter.cons] 24.4.1.3.1reverse_iterator constructor

explicit reverse_iterator(Iterator x);

1 Effects: Initializescurrent with x .

template <class U> reverse_iterator(const reverse_iterator<U> &u);

2 Effects: Initializescurrent with u.current .

[lib.reverse.iter.conv] 24.4.1.3.2 Conversion

Iterator base() const; // explicit

1 Returns: current

[lib.reverse.iter.op.star] 24.4.1.3.3operator*

reference operator*() const;

1 Effects:

Iterator tmp = current;
return *--tmp;

521

ISO/IEC 14882:1998(E) © ISO/IEC

24.4.1.3.4operator-> 24 Iterators library

[lib.reverse.iter.opref] 24.4.1.3.4operator->

pointer operator->() const;

1 Effects:

return &(operator*());

[lib.reverse.iter.op++] 24.4.1.3.5operator++

reverse_iterator& operator++();

1 Effects: --current;
2 Returns: *this

reverse_iterator operator++(int);

3 Effects:

reverse_iterator tmp = *this;
--current;
return tmp;

[lib.reverse.iter.op--] 24.4.1.3.6operator--

reverse_iterator& operator--();

1 Effects: ++current
2 Returns: *this

reverse_iterator operator--(int);

3 Effects:

reverse_iterator tmp = *this;
++current;
return tmp;

[lib.reverse.iter.op+] 24.4.1.3.7operator+

reverse_iterator
operator+(typename reverse_iterator<Iterator>::difference_type n) const;

1 Returns: reverse_iterator(current-n)

[lib.reverse.iter.op+=] 24.4.1.3.8operator+=

reverse_iterator&
operator+=(typename reverse_iterator<Iterator>::difference_type n);

1 Effects: current -= n;
2 Returns: *this

522

© ISO/IEC ISO/IEC 14882:1998(E)

24 Iterators library 24.4.1.3.8operator+=

[lib.reverse.iter.op-] 24.4.1.3.9operator-

reverse_iterator
operator-(typename reverse_iterator<Iterator>::difference_type n) const;

1 Returns: reverse_iterator(current+n)

[lib.reverse.iter.op-=] 24.4.1.3.10operator-=

reverse_iterator&
operator-=(typename reverse_iterator<Iterator>::difference_type n);

1 Effects: current += n;
2 Returns: *this

[lib.reverse.iter.opindex] 24.4.1.3.11operator[]

reference
operator[](typename reverse_iterator<Iterator>::difference_type n) const;

1 Returns: current[-n-1]

[lib.reverse.iter.op==] 24.4.1.3.12operator==

template <class Iterator>
bool operator==(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

1 Returns: x.current == y.current

[lib.reverse.iter.op<] 24.4.1.3.13operator<

template <class Iterator>
bool operator<(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

1 Returns: x.current > y.current

[lib.reverse.iter.op!=] 24.4.1.3.14operator!=

template <class Iterator>
bool operator!=(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

1 Returns: x.current != y.current

[lib.reverse.iter.op>] 24.4.1.3.15operator>

template <class Iterator>
bool operator>(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

1 Returns: x.current < y.current

523

ISO/IEC 14882:1998(E) © ISO/IEC

24.4.1.3.16operator>= 24 Iterators library

[lib.reverse.iter.op>=] 24.4.1.3.16operator>=

template <class Iterator>
bool operator>=(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

1 Returns: x.current <= y.current

[lib.reverse.iter.op<=] 24.4.1.3.17operator<=

template <class Iterator>
bool operator<=(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

1 Returns: x.current >= y.current

[lib.reverse.iter.opdiff] 24.4.1.3.18operator-

template <class Iterator>
typename reverse_iterator<Iterator>::difference_type operator-(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

1 Returns: y.current - x.current

[lib.reverse.iter.opsum] 24.4.1.3.19operator+

template <class Iterator>
reverse_iterator<Iterator> operator+(

typename reverse_iterator<Iterator>::difference_type n,
const reverse_iterator<Iterator>& x);

1 Returns: reverse_iterator<Iterator> (x.current - n)

[lib.insert.iterators] 24.4.2 Insert iterators

1 To make it possible to deal with insertion in the same way as writing into an array, a special kind of iterator
adaptors, calledinsert iterators, are provided in the library. With regular iterator classes,

while (first != last) *result++ = *first++;

2 causes a range[first, last) to be copied into a range starting with result. The same code with
result being an insert iterator will insert corresponding elements into the container. This device allows
all of the copying algorithms in the library to work in theinsert modeinstead of the regular overwrite
mode.

3 An insert iterator is constructed from a container and possibly one of its iterators pointing to where inser-
tion takes place if it is neither at the beginning nor at the end of the container. Insert iterators satisfy the
requirements of output iterators.operator* returns the insert iterator itself. The assignment
operator=(const T& x) is defined on insert iterators to allow writing into them, it insertsx right
before where the insert iterator is pointing. In other words, an insert iterator is like a cursor pointing into
the container where the insertion takes place.back_insert_iterator inserts elements at the end of a
container, front_insert_iterator inserts elements at the beginning of a container, and
insert_iterator inserts elements where the iterator points to in a container.back_inserter ,
front_inserter , andinserter are three functions making the insert iterators out of a container.

524

© ISO/IEC ISO/IEC 14882:1998(E)

24 Iterators library 24.4.2.1 Template classback_insert_iterator

[lib.back.insert.iterator] 24.4.2.1 Template classback_insert_iterator

namespace std {
template <class Container>
class back_insert_iterator :

public iterator<output_iterator_tag,void,void,void,void> {
protected:

Container* container;

public:
typedef Container container_type;
explicit back_insert_iterator(Container& x);
back_insert_iterator<Container>&

operator=(typename Container::const_reference value);

back_insert_iterator<Container>& operator*();
back_insert_iterator<Container>& operator++();
back_insert_iterator<Container> operator++(int);

};

template <class Container>
back_insert_iterator<Container> back_inserter(Container& x);

}

[lib.back.insert.iter.ops] 24.4.2.2back_insert_iterator operations

[lib.back.insert.iter.cons] 24.4.2.2.1back_insert_iterator constructor

explicit back_insert_iterator(Container& x);

1 Effects: Initializescontainer with &x .

[lib.back.insert.iter.op=] 24.4.2.2.2back_insert_iterator::operator=

back_insert_iterator<Container>&
operator=(typename Container::const_reference value);

1 Effects: container->push_back(value);
2 Returns: *this .

[lib.back.insert.iter.op*] 24.4.2.2.3back_insert_iterator::operator*

back_insert_iterator<Container>& operator*();

1 Returns: *this .

[lib.back.insert.iter.op++] 24.4.2.2.4back_insert_iterator::operator++

back_insert_iterator<Container>& operator++();
back_insert_iterator<Container> operator++(int);

1 Returns: *this .

525

ISO/IEC 14882:1998(E) © ISO/IEC

24.4.2.2.4back_insert_iterator::operator++ 24 Iterators library

[lib.back.inserter] 24.4.2.2.5back_inserter

template <class Container>
back_insert_iterator<Container> back_inserter(Container& x);

1 Returns: back_insert_iterator<Container>(x) .

[lib.front.insert.iterator] 24.4.2.3 Template classfront_insert_iterator

namespace std {
template <class Container>
class front_insert_iterator :

public iterator<output_iterator_tag,void,void,void,void> {
protected:

Container* container;

public:
typedef Container container_type;
explicit front_insert_iterator(Container& x);
front_insert_iterator<Container>&

operator=(typename Container::const_reference value);

front_insert_iterator<Container>& operator*();
front_insert_iterator<Container>& operator++();
front_insert_iterator<Container> operator++(int);

};

template <class Container>
front_insert_iterator<Container> front_inserter(Container& x);

}

[lib.front.insert.iter.ops] 24.4.2.4 front_insert_iterator operations

[lib.front.insert.iter.cons] 24.4.2.4.1front_insert_iterator constructor

explicit front_insert_iterator(Container& x);

1 Effects: Initializescontainer with &x .

[lib.front.insert.iter.op=] 24.4.2.4.2front_insert_iterator::operator=

front_insert_iterator<Container>&
operator=(typename Container::const_reference value);

1 Effects: container->push_front(value);
2 Returns: *this .

[lib.front.insert.iter.op*] 24.4.2.4.3front_insert_iterator::operator*

front_insert_iterator<Container>& operator*();

1 Returns: *this .

526

© ISO/IEC ISO/IEC 14882:1998(E)

24 Iterators library 24.4.2.4.3front_insert_iterator::operator*

[lib.front.insert.iter.op++] 24.4.2.4.4front_insert_iterator::operator++

front_insert_iterator<Container>& operator++();
front_insert_iterator<Container> operator++(int);

1 Returns: *this .

[lib.front.inserter] 24.4.2.4.5front_inserter

template <class Container>
front_insert_iterator<Container> front_inserter(Container& x);

1 Returns: front_insert_iterator<Container>(x) .

[lib.insert.iterator] 24.4.2.5 Template classinsert_iterator

namespace std {
template <class Container>
class insert_iterator :

public iterator<output_iterator_tag,void,void,void,void> {
protected:

Container* container;
typename Container::iterator iter;

public:
typedef Container container_type;
insert_iterator(Container& x, typename Container::iterator i);
insert_iterator<Container>&

operator=(typename Container::const_reference value);

insert_iterator<Container>& operator*();
insert_iterator<Container>& operator++();
insert_iterator<Container>& operator++(int);

};

template <class Container, class Iterator>
insert_iterator<Container> inserter(Container& x, Iterator i);

}

[lib.insert.iter.ops] 24.4.2.6 insert_iterator operations

[lib.insert.iter.cons] 24.4.2.6.1insert_iterator constructor

insert_iterator(Container& x, typename Container::iterator i);

1 Effects: Initializescontainer with &x anditer with i .

[lib.insert.iter.op=] 24.4.2.6.2insert_iterator::operator=

insert_iterator<Container>&
operator=(typename Container::const_reference value);

1 Effects:

iter = container->insert(iter, value);
++iter;

2 Returns: *this .

527

ISO/IEC 14882:1998(E) © ISO/IEC

24.4.2.6.3insert_iterator::operator* 24 Iterators library

[lib.insert.iter.op*] 24.4.2.6.3insert_iterator::operator*

insert_iterator<Container>& operator*();

1 Returns: *this .

[lib.insert.iter.op++] 24.4.2.6.4insert_iterator::operator++

insert_iterator<Container>& operator++();
insert_iterator<Container>& operator++(int);

1 Returns: *this .

[lib.inserter] 24.4.2.6.5inserter

template <class Container, class Inserter>
insert_iterator<Container> inserter(Container& x, Inserter i);

1 Returns: insert_iterator<Container>(x,typename Container::iterator(i)) .

[lib.stream.iterators] 24.5 Stream iterators

1 To make it possible for algorithmic templates to work directly with input/output streams, appropriate
iterator-like template classes are provided.

2 [Example:

partial_sum_copy(istream_iterator<double, char>(cin),
istream_iterator<double, char>(),
ostream_iterator<double, char>(cout, "\n"));

reads a file containing floating point numbers fromcin , and prints the partial sums ontocout .
—end example]

[lib.istream.iterator] 24.5.1 Template classistream_iterator

1 istream_iterator reads (usingoperator>>) successive elements from the input stream for which
it was constructed. After it is constructed, and every time++ is used, the iterator reads and stores a value of
T. If the end of stream is reached (operator void*() on the stream returnsfalse), the iterator
becomes equal to theend-of-stream iterator value. The constructor with no arguments
istream_iterator() always constructs an end of stream input iterator object, which is the only legiti-
mate iterator to be used for the end condition. The result ofoperator* on an end of stream is not
defined. For any other iterator value aconst T& is returned. The result ofoperator-> on an end of
stream is not defined. For any other iterator value aconst T* is returned. It is impossible to store things
into istream iterators. The main peculiarity of the istream iterators is the fact that++ operators are not
equality preserving, that is,i == j does not guarantee at all that++i == ++j . Every time++ is used a
new value is read.

2 The practical consequence of this fact is that istream iterators can be used only for one-pass algorithms,
which actually makes perfect sense, since for multi-pass algorithms it is always more appropriate to use in-
memory data structures.

3 Two end-of-stream iterators are always equal. An end-of-stream iterator is not equal to a non-end-of-
stream iterator. Two non-end-of-stream iterators are equal when they are constructed from the same
stream.

528

© ISO/IEC ISO/IEC 14882:1998(E)

24 Iterators library 24.5.1 Template classistream_iterator

namespace std {
template <class T, class charT = char, class traits = char_traits<charT>,

class Distance = ptrdiff_t>
class istream_iterator:

public iterator<input_iterator_tag, T, Distance, const T*, const T&> {
public:

typedef charT char_type
typedef traits traits_type;
typedef basic_istream<charT,traits> istream_type;
istream_iterator();
istream_iterator(istream_type& s);
istream_iterator(const istream_iterator<T,charT,traits,Distance>& x);

~istream_iterator();

const T& operator*() const;
const T* operator->() const;
istream_iterator<T,charT,traits,Distance>& operator++();
istream_iterator<T,charT,traits,Distance> operator++(int);

private:
// basic_istream<charT,traits>* in_stream; exposition only
// T value; exposition only

};

template <class T, class charT, class traits, class Distance>
bool operator==(const istream_iterator<T,charT,traits,Distance>& x,

const istream_iterator<T,charT,traits,Distance>& y);
template <class T, class charT, class traits, class Distance>

bool operator!=(const istream_iterator<T,charT,traits,Distance>& x,
const istream_iterator<T,charT,traits,Distance>& y);

}

[lib.istream.iterator.cons] 24.5.1.1 istream_iterator constructors and destructor

istream_iterator();

1 Effects: Constructs the end-of-stream iterator.

istream_iterator(istream_type& s);

2 Effects: Initializes in_streamwith s . value may be initialized during construction or the first time it is
referenced.

istream_iterator(const istream_iterator<T,charT,traits,Distance>& x);

3 Effects: Constructs a copy ofx .

~istream_iterator();

4 Effects: The iterator is destroyed.

[lib.istream.iterator.ops] 24.5.1.2 istream_iterator operations

const T& operator*() const;

1 Returns: value

529

ISO/IEC 14882:1998(E) © ISO/IEC

24.5.1.2istream_iterator operations 24 Iterators library

const T* operator->() const;

2 Returns: &(operator*())

istream_iterator<T,charT,traits,Distance>& operator++();

3 Effects: * in_stream >> value
4 Returns: *this

istream_iterator<T,charT,traits,Distance>& operator++(int);

5 Effects:

istream_iterator<T,charT,traits,Distance> tmp = *this;
* in_stream >> value;
return (tmp);

template <class T, class charT, class traits, class Distance>
bool operator==(const istream_iterator<T,charT,traits,Distance> & x,

const istream_iterator<T,charT,traits,Distance> & y);

6 Returns: (x. in_stream == y. in_stream)

[lib.ostream.iterator] 24.5.2 Template classostream_iterator

1 ostream_iterator writes (usingoperator<<) successive elements onto the output stream from
which it was constructed. If it was constructed withchar* as a constructor argument, this string, called a
delimiter string, is written to the stream after everyT is written. It is not possible to get a value out of the
output iterator. Its only use is as an output iterator in situations like

while (first != last) *result++ = *first++;

2 ostream_iterator is defined as:

namespace std {
template <class T, class charT = char, class traits = char_traits<charT> >
class ostream_iterator:

public iterator<output_iterator_tag, void, void, void, void> {
public:

typedef charT char_type;
typedef traits traits_type;
typedef basic_ostream<charT,traits> ostream_type;
ostream_iterator(ostream_type& s);
ostream_iterator(ostream_type& s, const charT* delimiter);
ostream_iterator(const ostream_iterator<T,charT,traits>& x);

~ostream_iterator();
ostream_iterator<T,charT,traits>& operator=(const T& value);

ostream_iterator<T,charT,traits>& operator*();
ostream_iterator<T,charT,traits>& operator++();
ostream_iterator<T,charT,traits>& operator++(int);

private:
// basic_ostream<charT,traits>* out_stream; exposition only
// const char* delim; exposition only

};
}

530

© ISO/IEC ISO/IEC 14882:1998(E)

24 Iterators library 24.5.2.1ostream_iterator constructors and destructor

[lib.ostream.iterator.cons.des] 24.5.2.1ostream_iterator constructors and destructor

ostream_iterator(ostream_type& s);

1 Effects: Initializesout_streamwith s anddelim with null.

ostream_iterator(ostream_type& s, const charT* delimiter);

2 Effects: Initializesout_streamwith s anddelim with delimiter .

ostream_iterator(const ostream_iterator& x);

3 Effects: Constructs a copy ofx .

~ostream_iterator();

4 Effects: The iterator is destroyed.

[lib.ostream.iterator.ops] 24.5.2.2ostream_iterator operations

ostream_iterator& operator=(const T& value);

1 Effects:

* out_stream << value ;
if(delim != 0) * out_stream << delim;
return (*this);

ostream_iterator& operator*();

2 Returns: *this

ostream_iterator& operator++();
ostream_iterator& operatot++(int);

3 Returns: *this

[lib.istreambuf.iterator] 24.5.3 Template classistreambuf_iterator

namespace std {
template<class charT, class traits = char_traits<charT> >
class istreambuf_iterator

: public iterator<input_iterator_tag, charT,
typename traits::off_type, charT*, charT&> {

public:
typedef charT char_type;
typedef traits traits_type;
typedef typename traits::int_type int_type;
typedef basic_streambuf<charT,traits> streambuf_type;
typedef basic_istream<charT,traits> istream_type;

class proxy; // exposition only

531

ISO/IEC 14882:1998(E) © ISO/IEC

24.5.3 Template classistreambuf_iterator 24 Iterators library

public:
istreambuf_iterator() throw();
istreambuf_iterator(istream_type& s) throw();
istreambuf_iterator(streambuf_type* s) throw();
istreambuf_iterator(const proxy& p) throw();
charT operator*() const;
istreambuf_iterator<charT,traits>& operator++();
proxy operator++(int);
bool equal(istreambuf_iterator& b);

private:
streambuf_type* sbuf_; exposition only

};

template <class charT, class traits>
bool operator==(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);

template <class charT, class traits>
bool operator!=(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);
}

1 The template classistreambuf_iterator reads successivecharactersfrom the streambuf for which
it was constructed.operator* provides access to the current input character, if any. Each time
operator++ is evaluated, the iterator advances to the next input character. If the end of stream is
reached (streambuf_type::sgetc() returnstraits::eof()), the iterator becomes equal to theend of
stream iterator value. The default constructoristreambuf_iterator() and the constructor
istreambuf_iterator(0) both construct an end of stream iterator object suitable for use as an end-
of-range.

2 The result of operator*() on an end of stream is undefined. For any other iterator value a
char_type value is returned. It is impossible to assign a character via an input iterator.

3 Note that in the input iterators,++ operators are notequality preserving, that is,i == j does not guaran-
tee at all that++i == ++j . Every time++ is evaluated a new value is used.

4 The practical consequence of this fact is that anistreambuf_iterator object can be used only for
one-pass algorithms. Two end of stream iterators are always equal. An end of stream iterator is not equal
to a non-end of stream iterator.

[lib.istreambuf.iterator::proxy] 24.5.3.1 Template classistreambuf_iterator::proxy

namespace std {
template <class charT, class traits = char_traits<charT> >
class istreambuf_iterator<charT, traits>::proxy {

charT keep_;
basic_streambuf<charT,traits>* sbuf_;
proxy(charT c,

basic_streambuf<charT,traits>* sbuf);
: keep_(c), sbuf_(sbuf) {}

public:
charT operator*() { return keep_; }

};
}

1 Classistreambuf_iterator<charT,traits>::proxy is for exposition only. An implementa-
tion is permitted to provide equivalent functionality without providing a class with this name. Class
istreambuf_iterator<charT,traits>::proxy provides a temporary placeholder as the return
value of the post-increment operator (operator++). It keeps the character pointed to by the previous
value of the iterator for some possible future access to get the character.

532

© ISO/IEC ISO/IEC 14882:1998(E)

24 Iterators library 24.5.3.2 istreambuf_iterator constructors

[lib.istreambuf.iterator.cons] 24.5.3.2 istreambuf_iterator constructors

istreambuf_iterator() throw();

1 Effects: Constructs the end-of-stream iterator.

istreambuf_iterator(basic_istream<charT,traits>& s) throw();
istreambuf_iterator(basic_streambuf<charT,traits>* s) throw();

2 Effects: Constructs anistreambuf_iterator<> that uses thebasic_streambuf<> object
*(s.rdbuf()) , or * s , respectively. Constructs an end-of-stream iterator ifs.rdbuf() is null.

istreambuf_iterator(const proxy& p) throw();

3 Effects: Constructs aistreambuf_iterator<> that uses thebasic_streambuf<> object pointed
to by theproxy object’s constructor argumentp.

[lib.istreambuf.iterator::op*] 24.5.3.3 istreambuf_iterator::operator*

charT operator*() const

1 Returns: The character obtained via thestreambuf membersbuf_->sgetc() .

[lib.istreambuf.iterator::op++] 24.5.3.4 istreambuf_iterator::operator++

istreambuf_iterator<charT,traits>&
istreambuf_iterator<charT,traits>::operator++();

1 Effects: sbuf_->sbumpc() .
2 Returns: *this .

proxy istreambuf_iterator<charT,traits>::operator++(int);

3 Returns: proxy(sbuf_->sbumpc(), sbuf_) .

istreambuf_iterator<charT,traits> tmp = *this;
sbuf_->sbumpc();
return(tmp);

[lib.istreambuf.iterator::equal] 24.5.3.5 istreambuf_iterator::equal

bool equal(istreambuf_iterator<charT,traits>& b);

1 Returns: true if and only if both iterators are at end-of-stream, or neither is at end-of-stream, regardless
of whatstreambuf object they use.

[lib.istreambuf.iterator::op==] 24.5.3.6operator==

template <class charT, class traits>
bool operator==(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);

1 Returns: a.equal(b) .

533

ISO/IEC 14882:1998(E) © ISO/IEC

24.5.3.6operator== 24 Iterators library

[lib.istreambuf.iterator::op!=] 24.5.3.7operator!=

template <class charT, class traits>
bool operator!=(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);

1 Returns: ! a.equal(b) .

[lib.ostreambuf.iterator] 24.5.4 Template classostreambuf_iterator

namespace std {
template <class charT, class traits = char_traits<charT> >
class ostreambuf_iterator:

public iterator<output_iterator_tag, void, void, void, void> {
public:

typedef charT char_type;
typedef traits traits_type;
typedef basic_streambuf<charT,traits> streambuf_type;
typedef basic_ostream<charT,traits> ostream_type;

public:
ostreambuf_iterator(ostream_type& s) throw();
ostreambuf_iterator(streambuf_type* s) throw();
ostreambuf_iterator& operator=(charT c);

ostreambuf_iterator& operator*();
ostreambuf_iterator& operator++();
ostreambuf_iterator& operator++(int);
bool failed() const throw();

private:
streambuf_type* sbuf_; exposition only

};
}

1 The template classostreambuf_iterator writes successivecharactersonto the output stream from
which it was constructed. It is not possible to get a character value out of the output iterator.

[lib.ostreambuf.iter.cons] 24.5.4.1ostreambuf_iterator constructors

ostreambuf_iterator(ostream_type& s) throw();

1 Requires: s is not null.
2 Effects: : sbuf_(s.rdbuf()) {}

ostreambuf_iterator(streambuf_type* s) throw();

3 Effects: : sbuf_(s) {}

[lib.ostreambuf.iter.ops] 24.5.4.2ostreambuf_iterator operations

ostreambuf_iterator<charT,traits>&
operator=(charT c);

1 Effects: If failed() yields false , callssbuf_->sputc(c) ; otherwise has no effect.
2 Returns: *this .

534

© ISO/IEC ISO/IEC 14882:1998(E)

24 Iterators library 24.5.4.2ostreambuf_iterator operations

ostreambuf_iterator<charT,traits>& operator*();

3 Returns: *this .

ostreambuf_iterator<charT,traits>& operator++();
ostreambuf_iterator<charT,traits>& operator++(int);

4 Returns: *this .

bool failed() const throw();

5 Returns: true if in any prior use of memberoperator= , the call tosbuf_->sputc() returned
traits::eof() ; or false otherwise.

535

ISO/IEC 14882:1998(E) © ISO/IEC

536

(Blank page)

© ISO/IEC ISO/IEC 14882:1998(E)

25 Algorithms library 25 Algorithms library

25 Algorithms library [lib.algorithms]

1 This clause describes components that C++ programs may use to perform algorithmic operations on con-
tainers (clause 23) and other sequences.

2 The following subclauses describe components for non-modifying sequence operation, modifying sequence
operations, sorting and related operations, and algorithms from the ISO C library, as summarized in Table
77:

Table 77—Algorithms library summary
_ ___

Subclause Header(s)_ __ ___
25.1 Non-modifying sequence operations
25.2 Mutating sequence operations
25.3 Sorting and related operations

<algorithm>

_ ___
25.4 C library algorithms <cstdlib>_ ___

Header<algorithm> synopsis

namespace std {
// 25.1, non-modifying sequence operations:
template<class InputIterator, class Function>

Function for_each(InputIterator first , InputIterator last , Function f);
template<class InputIterator, class T>

InputIterator find(InputIterator first , InputIterator last ,
const T& value);

template<class InputIterator, class Predicate>
InputIterator find_if(InputIterator first , InputIterator last ,

Predicate pred);
template<class ForwardIterator1, class ForwardIterator2>

ForwardIterator1
find_end(ForwardIterator1 first1 , ForwardIterator1 last1 ,

ForwardIterator2 first2 , ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2,

class BinaryPredicate>
ForwardIterator1

find_end(ForwardIterator1 first1 , ForwardIterator1 last1 ,
ForwardIterator2 first2 , ForwardIterator2 last2 ,
BinaryPredicate pred);

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

find_first_of(ForwardIterator1 first1 , ForwardIterator1 last1 ,
ForwardIterator2 first2 , ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
find_first_of(ForwardIterator1 first1 , ForwardIterator1 last1 ,

ForwardIterator2 first2 , ForwardIterator2 last2 ,
BinaryPredicate pred);

537

ISO/IEC 14882:1998(E) © ISO/IEC

25 Algorithms library 25 Algorithms library

template<class ForwardIterator>
ForwardIterator adjacent_find(ForwardIterator first ,

ForwardIterator last);
template<class ForwardIterator, class BinaryPredicate>

ForwardIterator adjacent_find(ForwardIterator first ,
ForwardIterator last , BinaryPredicate pred);

template<class InputIterator, class T>
typename iterator_traits<InputIterator>::difference_type

count(InputIterator first , InputIterator last , const T& value);
template<class InputIterator, class Predicate>

typename iterator_traits<InputIterator>::difference_type
count_if(InputIterator first , InputIterator last , Predicate pred);

template<class InputIterator1, class InputIterator2>
pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2);

template
<class InputIterator1, class InputIterator2, class BinaryPredicate>

pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , BinaryPredicate pred);

template<class InputIterator1, class InputIterator2>
bool equal(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2);
template

<class InputIterator1, class InputIterator2, class BinaryPredicate>
bool equal(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , BinaryPredicate pred);

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1 search

(ForwardIterator1 first1 , ForwardIterator1 last1 ,
ForwardIterator2 first2 , ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1 search
(ForwardIterator1 first1 , ForwardIterator1 last1 ,

ForwardIterator2 first2 , ForwardIterator2 last2 ,
BinaryPredicate pred);

template<class ForwardIterator, class Size, class T>
ForwardIterator search_n(ForwardIterator first , ForwardIterator last ,

Size count , const T& value);
template

<class ForwardIterator, class Size, class T, class BinaryPredicate>
ForwardIterator1 search_n(ForwardIterator first , ForwardIterator last ,

Size count , const T& value ,
BinaryPredicate pred);

538

© ISO/IEC ISO/IEC 14882:1998(E)

25 Algorithms library 25 Algorithms library

// 25.2, modifying sequence operations:
// 25.2.1, copy:
template<class InputIterator, class OutputIterator>

OutputIterator copy(InputIterator first , InputIterator last ,
OutputIterator result);

template<class BidirectionalIterator1, class BidirectionalIterator2>
BidirectionalIterator2

copy_backward
(BidirectionalIterator1 first , BidirectionalIterator1 last ,

BidirectionalIterator2 result);

// 25.2.2, swap:
template<class T> void swap(T& a, T& b);
template<class ForwardIterator1, class ForwardIterator2>

ForwardIterator2 swap_ranges(ForwardIterator1 first1 ,
ForwardIterator1 last1 , ForwardIterator2 first2);

template<class ForwardIterator1, class ForwardIterator2>
void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

template<class InputIterator, class OutputIterator, class UnaryOperation>
OutputIterator transform(InputIterator first , InputIterator last ,

OutputIterator result , UnaryOperation op);
template<class InputIterator1, class InputIterator2, class OutputIterator,

class BinaryOperation>
OutputIterator transform(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , OutputIterator result ,
BinaryOperation binary_op);

template<class ForwardIterator, class T>
void replace(ForwardIterator first , ForwardIterator last ,

const T& old_value , const T& new_value);
template<class ForwardIterator, class Predicate, class T>

void replace_if(ForwardIterator first , ForwardIterator last ,
Predicate pred, const T& new_value);

template<class InputIterator, class OutputIterator, class T>
OutputIterator replace_copy(InputIterator first , InputIterator last ,

OutputIterator result ,
const T& old_value , const T& new_value);

template<class Iterator, class OutputIterator, class Predicate, class T>
OutputIterator replace_copy_if(Iterator first , Iterator last ,

OutputIterator result ,
Predicate pred , const T& new_value);

template<class ForwardIterator, class T>
void fill(ForwardIterator first , ForwardIterator last , const T& value);

template<class OutputIterator, class Size, class T>
void fill_n(OutputIterator first , Size n, const T& value);

template<class ForwardIterator, class Generator>
void generate(ForwardIterator first , ForwardIterator last ,

Generator gen);
template<class OutputIterator, class Size, class Generator>

void generate_n(OutputIterator first , Size n, Generator gen);

539

ISO/IEC 14882:1998(E) © ISO/IEC

25 Algorithms library 25 Algorithms library

template<class ForwardIterator, class T>
ForwardIterator remove(ForwardIterator first , ForwardIterator last ,

const T& value);
template<class ForwardIterator, class Predicate>

ForwardIterator remove_if(ForwardIterator first , ForwardIterator last ,
Predicate pred);

template<class InputIterator, class OutputIterator, class T>
OutputIterator remove_copy(InputIterator first , InputIterator last ,

OutputIterator result , const T& value);
template<class InputIterator, class OutputIterator, class Predicate>

OutputIterator remove_copy_if(InputIterator first , InputIterator last ,
OutputIterator result , Predicate pred);

template<class ForwardIterator>
ForwardIterator unique(ForwardIterator first , ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
ForwardIterator unique(ForwardIterator first , ForwardIterator last ,

BinaryPredicate pred);
template<class InputIterator, class OutputIterator>

OutputIterator unique_copy(InputIterator first , InputIterator last ,
OutputIterator result);

template<class InputIterator, class OutputIterator, class BinaryPredicate>
OutputIterator unique_copy(InputIterator first , InputIterator last ,

OutputIterator result , BinaryPredicate pred);

template<class BidirectionalIterator>
void reverse(BidirectionalIterator first , BidirectionalIterator last);

template<class BidirectionalIterator, class OutputIterator>
OutputIterator reverse_copy(BidirectionalIterator first ,

BidirectionalIterator last ,
OutputIterator result);

template<class ForwardIterator>
void rotate(ForwardIterator first , ForwardIterator middle ,

ForwardIterator last);
template<class ForwardIterator, class OutputIterator>

OutputIterator rotate_copy
(ForwardIterator first , ForwardIterator middle ,

ForwardIterator last , OutputIterator result);

template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first ,

RandomAccessIterator last);
template<class RandomAccessIterator, class RandomNumberGenerator>

void random_shuffle(RandomAccessIterator first ,
RandomAccessIterator last ,
RandomNumberGenerator& rand);

// 25.2.12, partitions:
template<class BidirectionalIterator, class Predicate>

BidirectionalIterator partition(BidirectionalIterator first ,
BidirectionalIterator last ,
Predicate pred);

template<class BidirectionalIterator, class Predicate>
BidirectionalIterator stable_partition(BidirectionalIterator first ,

BidirectionalIterator last ,
Predicate pred);

540

© ISO/IEC ISO/IEC 14882:1998(E)

25 Algorithms library 25 Algorithms library

// 25.3, sorting and related operations:
// 25.3.1, sorting:
template<class RandomAccessIterator>

void sort(RandomAccessIterator first , RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>

void sort(RandomAccessIterator first , RandomAccessIterator last ,
Compare comp);

template<class RandomAccessIterator>
void stable_sort(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void stable_sort(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

template<class RandomAccessIterator>
void partial_sort(RandomAccessIterator first ,

RandomAccessIterator middle ,
RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void partial_sort(RandomAccessIterator first ,

RandomAccessIterator middle ,
RandomAccessIterator last , Compare comp);

template<class InputIterator, class RandomAccessIterator>
RandomAccessIterator

partial_sort_copy(InputIterator first , InputIterator last ,
RandomAccessIterator result_first ,
RandomAccessIterator result_last);

template<class InputIterator, class RandomAccessIterator, class Compare>
RandomAccessIterator

partial_sort_copy(InputIterator first , InputIterator last ,
RandomAccessIterator result_first ,
RandomAccessIterator result_last ,
Compare comp);

template<class RandomAccessIterator>
void nth_element(RandomAccessIterator first , RandomAccessIterator nth ,

RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>

void nth_element(RandomAccessIterator first , RandomAccessIterator nth ,
RandomAccessIterator last , Compare comp);

// 25.3.3, binary search:
template<class ForwardIterator, class T>

ForwardIterator lower_bound(ForwardIterator first , ForwardIterator last ,
const T& value);

template<class ForwardIterator, class T, class Compare>
ForwardIterator lower_bound(ForwardIterator first , ForwardIterator last ,

const T& value , Compare comp);

template<class ForwardIterator, class T>
ForwardIterator upper_bound(ForwardIterator first , ForwardIterator last ,

const T& value);
template<class ForwardIterator, class T, class Compare>

ForwardIterator upper_bound(ForwardIterator first , ForwardIterator last ,
const T& value , Compare comp);

541

ISO/IEC 14882:1998(E) © ISO/IEC

25 Algorithms library 25 Algorithms library

template<class ForwardIterator, class T>
pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first , ForwardIterator last ,
const T& value);

template<class ForwardIterator, class T, class Compare>
pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first , ForwardIterator last ,
const T& value , Compare comp);

template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first , ForwardIterator last ,

const T& value);
template<class ForwardIterator, class T, class Compare>

bool binary_search(ForwardIterator first , ForwardIterator last ,
const T& value , Compare comp);

// 25.3.4, merge:
template<class InputIterator1, class InputIterator2, class OutputIterator>

OutputIterator merge(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator merge(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

template<class BidirectionalIterator>
void inplace_merge(BidirectionalIterator first ,

BidirectionalIterator middle ,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
void inplace_merge(BidirectionalIterator first ,

BidirectionalIterator middle ,
BidirectionalIterator last , Compare comp);

// 25.3.5, set operations:
template<class InputIterator1, class InputIterator2>

bool includes(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
bool includes

(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 , Compare comp);

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_union(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator set_union(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

542

© ISO/IEC ISO/IEC 14882:1998(E)

25 Algorithms library 25 Algorithms library

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_intersection

(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator set_intersection
(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_difference

(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator set_difference
(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator

set_symmetric_difference(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator
set_symmetric_difference(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

// 25.3.6, heap operations:
template<class RandomAccessIterator>

void push_heap(RandomAccessIterator first , RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>

void push_heap(RandomAccessIterator first , RandomAccessIterator last ,
Compare comp);

template<class RandomAccessIterator>
void pop_heap(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void pop_heap(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

template<class RandomAccessIterator>
void make_heap(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void make_heap(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

template<class RandomAccessIterator>
void sort_heap(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void sort_heap(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

543

ISO/IEC 14882:1998(E) © ISO/IEC

25 Algorithms library 25 Algorithms library

// 25.3.7, minimum and maximum:
template<class T> const T& min(const T& a, const T& b);
template<class T, class Compare>

const T& min(const T& a, const T& b, Compare comp);
template<class T> const T& max(const T& a, const T& b);
template<class T, class Compare>

const T& max(const T& a, const T& b, Compare comp);

template<class ForwardIterator>
ForwardIterator min_element

(ForwardIterator first , ForwardIterator last);
template<class ForwardIterator, class Compare>

ForwardIterator min_element(ForwardIterator first , ForwardIterator last ,
Compare comp);

template<class ForwardIterator>
ForwardIterator max_element

(ForwardIterator first , ForwardIterator last);
template<class ForwardIterator, class Compare>

ForwardIterator max_element(ForwardIterator first , ForwardIterator last ,
Compare comp);

template<class InputIterator1, class InputIterator2>
bool lexicographical_compare

(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
bool lexicographical_compare

(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 ,
Compare comp);

// 25.3.9, permutations
template<class BidirectionalIterator>

bool next_permutation(BidirectionalIterator first ,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
bool next_permutation(BidirectionalIterator first ,

BidirectionalIterator last , Compare comp);
template<class BidirectionalIterator>

bool prev_permutation(BidirectionalIterator first ,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
bool prev_permutation(BidirectionalIterator first ,

BidirectionalIterator last , Compare comp);
}

3 All of the algorithms are separated from the particular implementations of data structures and are parame-
terized by iterator types. Because of this, they can work with program-defined data structures, as long as
these data structures have iterator types satisfying the assumptions on the algorithms.

4 Throughout this clause, the names of template parameters are used to express type requirements. If an
algorithm’s template parameter isInputIterator , InputIterator1 , or InputIterator2 , the
actual template argument shall satisfy the requirements of an input iterator (24.1.1). If an algorithm’s tem-
plate parameter isOutputIterator , OutputIterator1 , or OutputIterator2 , the actual tem-
plate argument shall satisfy the requirements of an output iterator (24.1.2). If an algorithm’s template
parameter isForwardIterator , ForwardIterator1 , or ForwardIterator2 , the actual tem-
plate argument shall satisfy the requirements of a forward iterator (24.1.3). If an algorithm’s template
parameter is BidirectionalIterator , BidirectionalIterator1 , or
BidirectionalIterator2 , the actual template argument shall satisfy the requirements of a bidirec-
tional iterator (24.1.4). If an algorithm’s template parameter isRandomAccessIterator ,

544

© ISO/IEC ISO/IEC 14882:1998(E)

25 Algorithms library 25 Algorithms library

RandomAccessIterator1 , or RandomAccessIterator2 , the actual template argument shall sat-
isfy the requirements of a random-access iterator (24.1.5).

5 If an algorithm’sEffectssection says that a value pointed to by any iterator passed as an argument is modi-
fied, then that algorithm has an additional type requirement: The type of that argument shall satisfy the
requirements of a mutable iterator (24.1). [Note: this requirement does not affect arguments that are
declared asOutputIterator , OutputIterator1 , orOutputIterator2 , because output iterators
must always be mutable.—end note]

6 Both in-place and copying versions are provided for certain algorithms.250) When such a version is pro-
vided foralgorithm it is calledalgorithm_copy . Algorithms that take predicates end with the suffix_if
(which follows the suffix_copy).

7 ThePredicate parameter is used whenever an algorithm expects a function object that when applied to
the result of dereferencing the corresponding iterator returns a value testable astrue . In other words, if an
algorithm takesPredicate pred as its argument andfirst as its iterator argument, it should work
correctly in the constructif (pred (* first)){...} . The function objectpred shall not apply any
non-constant function through the dereferenced iterator. This function object may be a pointer to function,
or an object of a type with an appropriate function call operator.

8 The BinaryPredicate parameter is used whenever an algorithm expects a function object that when
applied to the result of dereferencing two corresponding iterators or to dereferencing an iterator and typeT
when T is part of the signature returns a value testable astrue . In other words, if an algorithm takes
BinaryPredicate binary_pred as its argument andfirst1 and first2 as its iterator argu-
ments, it should work correctly in the constructif (binary_pred (*first1, * first2)){...} .
BinaryPredicate always takes the first iterator type as its first argument, that is, in those cases whenT
value is part of the signature, it should work correctly in the context ofif
(binary_pred (*first1, value)){...} . binary_pred shall not apply any non-constant
function through the dereferenced iterators.

9 In the description of the algorithms operators+ and- are used for some of the iterator categories for which
they do not have to be defined. In these cases the semantics ofa+n is the same as that of

{ X tmp = a;
advance(tmp, n);
return tmp;

}

and that ofa-b is the same as of

return distance(a, b);

[lib.alg.nonmodifying] 25.1 Non-modifying sequence operations

[lib.alg.foreach] 25.1.1 For each

template<class InputIterator, class Function>
Function for_each(InputIterator first , InputIterator last , Function f);

1 Effects: Applies f to the result of dereferencing every iterator in the range[first , last) , starting
from first and proceeding tolast - 1 .

2 Returns: f .
3 Complexity: Appliesf exactlylast - first times.

250)The decision whether to include a copying version was usually based on complexity considerations. When the cost of doing the
operation dominates the cost of copy, the copying version is not included. For example,sort_copy is not included because the cost
of sorting is much more significant, and users might as well docopy followed bysort .

545

ISO/IEC 14882:1998(E) © ISO/IEC

25.1.1 For each 25 Algorithms library

4 Notes: If f returns a result, the result is ignored.

[lib.alg.find] 25.1.2 Find

template<class InputIterator, class T>
InputIterator find(InputIterator first , InputIterator last ,

const T& value);

template<class InputIterator, class Predicate>
InputIterator find_if(InputIterator first , InputIterator last ,

Predicate pred);

1 Requires: TypeT is EqualityComparable (20.1.1).
2 Returns: The first iteratori in the range[first , last) for which the following corresponding condi-

tions hold:*i == value , pred (*i) != false . Returnslast if no such iterator is found.
3 Complexity: At mostlast - first applications of the corresponding predicate.

[lib.alg.find.end] 25.1.3 Find End

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

find_end(ForwardIterator1 first1 , ForwardIterator1 last1 ,
ForwardIterator2 first2 , ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
find_end(ForwardIterator1 first1 , ForwardIterator1 last1 ,

ForwardIterator2 first2 , ForwardIterator2 last2 ,
BinaryPredicate pred);

1 Effects: Finds a subsequence of equal values in a sequence.
2 Returns: The last iteratori in the range[first1 , last1 - (last2 - first2)) such that for any

non-negative integern < (last2 - first2) , the following corresponding conditions hold:*(i+n)
== *(first2 +n), pred (*(i+n),*(first2 +n)) != false . Returnslast1 if no such
iterator is found.

3 Complexity: At most (last2 - first2) * (last1 - first1 - (last2 - first2) +
1) applications of the corresponding predicate.

[lib.alg.find.first.of] 25.1.4 Find First

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

find_first_of(ForwardIterator1 first1 , ForwardIterator1 last1 ,
ForwardIterator2 first2 , ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
find_first_of(ForwardIterator1 first1 , ForwardIterator1 last1 ,

ForwardIterator2 first2 , ForwardIterator2 last2 ,
BinaryPredicate pred);

1 Effects: Finds an element that matches one of a set of values.
2 Returns: The first iteratori in the range[first1 , last1) such that for some integerj in the range

[first2 , last2) the following conditions hold:*i == *j, pred (*i,*j) != false .
Returnslast1 if no such iterator is found.

3 Complexity: At most (last1 - first1) * (last2 - first2) applications of the corresponding
predicate.

546

© ISO/IEC ISO/IEC 14882:1998(E)

25 Algorithms library 25.1.5 Adjacent find

[lib.alg.adjacent.find] 25.1.5 Adjacent find

template<class ForwardIterator>
ForwardIterator adjacent_find(ForwardIterator first , ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
ForwardIterator adjacent_find(ForwardIterator first , ForwardIterator last ,

BinaryPredicate pred);

1 Returns: The first iteratori such that bothi and i + 1 are in the range[first , last) for which
the following corresponding conditions hold:*i == *(i + 1), pred (*i, *(i + 1)) !=
false . Returnslast if no such iterator is found.

2 Complexity: Exactly find(first , last , value) - first applications of the corresponding
predicate.

[lib.alg.count] 25.1.6 Count

template<class InputIterator, class T>
typename iterator_traits<InputIterator>::difference_type

count(InputIterator first , InputIterator last , const T& value);

template<class InputIterator, class Predicate>
typename iterator_traits<InputIterator>::difference_type

count_if(InputIterator first , InputIterator last , Predicate pred);

1 Requires: TypeT is EqualityComparable (20.1.1) .
2 Effects: Returns the number of iteratorsi in the range[first , last) for which the following corre-

sponding conditions hold:*i == value , pred (*i) != false .
3 Complexity: Exactly last - first applications of the corresponding predicate.

[lib.mismatch] 25.1.7 Mismatch

template<class InputIterator1, class InputIterator2>
pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2);

template<class InputIterator1, class InputIterator2,
class BinaryPredicate>

pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , BinaryPredicate pred);

1 Returns: A pair of iteratorsi andj such thatj == first2 + (i - first1) andi is the first iter-
ator in the range[first1 , last1) for which the following corresponding conditions hold:

!(*i == *(first2 + (i - first1)))
pred (*i, *(first2 + (i - first1))) == false

Returns the pairlast1 andfirst2 + (last1 - first1) if such an iteratori is not found.
2 Complexity: At mostlast1 - first1 applications of the corresponding predicate.

547

ISO/IEC 14882:1998(E) © ISO/IEC

25.1.7 Mismatch 25 Algorithms library

[lib.alg.equal] 25.1.8 Equal

template<class InputIterator1, class InputIterator2>
bool equal(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2);

template<class InputIterator1, class InputIterator2,
class BinaryPredicate>

bool equal(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , BinaryPredicate pred);

1 Returns: true if for every iteratori in the range[first1 , last1) the following corresponding con-
ditions hold: *i == *(first2 + (i - first1)), pred (*i, *(first2 + (i -
first1))) != false . Otherwise, returnsfalse .

2 Complexity: At mostlast1 - first1 applications of the corresponding predicate.

[lib.alg.search] 25.1.9 Search

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

search(ForwardIterator1 first1 , ForwardIterator1 last1 ,
ForwardIterator2 first2 , ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
search(ForwardIterator1 first1 , ForwardIterator1 last1 ,

ForwardIterator2 first2 , ForwardIterator2 last2 ,
BinaryPredicate pred);

1 Effects: Finds a subsequence of equal values in a sequence.
2 Returns: The first iteratori in the range[first1 , last1 - (last2 - first2)) such that for

any non-negative integern less thanlast 2 - first2 the following corresponding conditions hold:
*(i + n) == *(first2 + n), pred (*(i + n), *(first2 + n)) != false .
Returnslast1 if no such iterator is found.

3 Complexity: At most(last1 - first1) * (last2 - first2) applications of the correspond-
ing predicate.

template<class ForwardIterator, class Size, class T>
ForwardIterator

search_n(ForwardIterator first , ForwardIterator last , Size count ,
const T& value);

template<class ForwardIterator, class Size, class T,
class BinaryPredicate>

ForwardIterator
search_n(ForwardIterator first , ForwardIterator last , Size count ,

const T& value , BinaryPredicate pred);

4 Requires: Type T is EqualityComparable (20.1.1), typeSize is convertible to integral type (4.7,
12.3).

5 Effects: Finds a subsequence of equal values in a sequence.
6 Returns: The first iteratori in the range[first , last - count) such that for any non-negative

integern less thancount the following corresponding conditions hold:*(i + n) == value ,
pred (*(i + n), value) != false . Returnslast if no such iterator is found.

7 Complexity: At most(last1 - first1) * count applications of the corresponding predicate.

548

© ISO/IEC ISO/IEC 14882:1998(E)

25 Algorithms library 25.2 Mutating sequence operations

[lib.alg.modifying.operations] 25.2 Mutating sequence operations

[lib.alg.copy] 25.2.1 Copy

template<class InputIterator, class OutputIterator>
OutputIterator copy(InputIterator first , InputIterator last ,

OutputIterator result);

1 Effects: Copies elements in the range[first , last) into the range[result , result + (last
- first)) starting from first and proceeding tolast . For each non-negative integern <
(last - first) , performs*(result + n) = *(first + n) .

2 Returns: result + (last - first) .
3 Requires: result shall not be in the range[first , last) .
4 Complexity: Exactly last - first assignments.

template<class BidirectionalIterator1, class BidirectionalIterator2>
BidirectionalIterator2

copy_backward(BidirectionalIterator1 first ,
BidirectionalIterator1 last ,
BidirectionalIterator2 result);

5 Effects: Copies elements in the range[first , last) into the range[result - (last -
first), result) starting fromlast - 1 and proceeding tofirst . 251) For each positive inte-
gern <= (last - first) , performs*(result - n) = *(last - n) .

6 Requires: result shall not be in the range[first , last) .
7 Returns: result - (last - first) .
8 Complexity: Exactly last - first assignments.

[lib.alg.swap] 25.2.2 Swap

template<class T> void swap(T& a, T& b);

1 Requires: TypeT is Assignable (23.1).
2 Effects: Exchanges values stored in two locations.

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator2

swap_ranges(ForwardIterator1 first1 , ForwardIterator1 last1 ,
ForwardIterator2 first2);

3 Effects: For each non-negative integern < (last1 - first1) performs:swap(*(first1 +
n), *(first2 + n)) .

4 Requires: The two ranges[first1 , last1) and[first2 , first2 + (last1 - first1))
shall not overlap.

5 Returns: first 2 + (last1 - first1) .
6 Complexity: Exactly last1 - first1 swaps.

template<class ForwardIterator1, class ForwardIterator2>
void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

7 Effects: Exchanges the values pointed to by the two iteratorsa andb.

251)copy_backward (_lib.copy.backward_) should be used instead of copy whenlast is in the range[result - (last -
first), result) .

549

ISO/IEC 14882:1998(E) © ISO/IEC

25.2.3 Transform 25 Algorithms library

[lib.alg.transform] 25.2.3 Transform

template<class InputIterator, class OutputIterator,
class UnaryOperation>

OutputIterator
transform(InputIterator first , InputIterator last ,

OutputIterator result , UnaryOperation op);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class BinaryOperation>

OutputIterator
transform(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , OutputIterator result ,
BinaryOperation binary_op);

1 Effects: Assigns through every iteratori in the range[result , result + (last1 - first1))
a new corresponding value equal toop(*(first1 + (i - result)) or
binary_op (*(first1 + (i - result), *(first2 + (i - result))) .

2 Requires: op andbinary_op shall not have any side effects.
3 Returns: result + (last1 - first1) .
4 Complexity: Exactly last1 - first1 applications ofop or binary_op
5 Notes: result may be equal tofirst in case of unary transform, or tofirst1 or first2 in case of

binary transform.

[lib.alg.replace] 25.2.4 Replace

template<class ForwardIterator, class T>
void replace(ForwardIterator first , ForwardIterator last ,

const T& old_value , const T& new_value);

template<class ForwardIterator, class Predicate, class T>
void replace_if(ForwardIterator first , ForwardIterator last ,

Predicate pred , const T& new_value);

1 Requires: TypeT is Assignable (23.1) (and, forreplace() , EqualityComparable (20.1.1)).
2 Effects: Substitutes elements referred by the iteratori in the range[first , last) with new_value ,

when the following corresponding conditions hold:*i == old_value , pred (*i) != false .
3 Complexity: Exactly last - first applications of the corresponding predicate.

template<class InputIterator, class OutputIterator, class T>
OutputIterator

replace_copy(InputIterator first , InputIterator last ,
OutputIterator result ,
const T& old_value , const T& new_value);

template<class Iterator, class OutputIterator, class Predicate, class T>
OutputIterator

replace_copy_if(Iterator first , Iterator last ,
OutputIterator result ,
Predicate pred , const T& new_value);

4 Requires: Type T is Assignable (23.1) (and, forreplace_copy() , EqualityComparable
(20.1.1). The ranges[first , last) and [result , result + (last - first)) shall
not overlap.

5 Effects: Assigns to every iteratori in the range[result , result + (last - first)) either
new_value or *(first + (i - result)) depending on whether the following corresponding
conditions hold:
(first + (i - result)) == old_value , pred ((first + (i - result))) !=
false .

550

© ISO/IEC ISO/IEC 14882:1998(E)

25 Algorithms library 25.2.4 Replace

6 Returns: result + (last - first) .
7 Complexity: Exactly last - first applications of the corresponding predicate.

[lib.alg.fill] 25.2.5 Fill

template<class ForwardIterator, class T>
void fill(ForwardIterator first , ForwardIterator last , const T& value);

template<class OutputIterator, class Size, class T>
void fill_n(OutputIterator first , Size n, const T& value);

1 Requires: TypeT is Assignable (23.1),Size is convertible to an integral type (4.7, 12.3).
2 Effects: Assigns value through all the iterators in the range[first , last) or [first , first +

n) .
3 Complexity: Exactly last - first (or n) assignments.

[lib.alg.generate] 25.2.6 Generate

template<class ForwardIterator, class Generator>
void generate(ForwardIterator first , ForwardIterator last ,

Generator gen);

template<class OutputIterator, class Size, class Generator>
void generate_n(OutputIterator first , Size n, Generator gen);

1 Effects: Invokes the function objectgen and assigns the return value ofgen though all the iterators in the
range[first , last) or [first , first + n) .

2 Requires: gen takes no arguments,Size is convertible to an integral type (4.7, 12.3).
3 Complexity: Exactly last - first (or n) invocations ofgen and assignments.

[lib.alg.remove] 25.2.7 Remove

template<class ForwardIterator, class T>
ForwardIterator remove(ForwardIterator first , ForwardIterator last ,

const T& value);

template<class ForwardIterator, class Predicate>
ForwardIterator remove_if(ForwardIterator first , ForwardIterator last ,

Predicate pred);

1 Requires: TypeT is EqualityComparable (20.1.1).
2 Effects: Eliminates all the elements referred to by iteratori in the range[first , last) for which the

following corresponding conditions hold:*i == value , pred (*i) != false .
3 Returns: The end of the resulting range.
4 Notes: Stable: the relative order of the elements that are not removed is the same as their relative order in

the original range.
5 Complexity: Exactly last - first applications of the corresponding predicate.

template<class InputIterator, class OutputIterator, class T>
OutputIterator

remove_copy(InputIterator first , InputIterator last ,
OutputIterator result , const T& value);

template<class InputIterator, class OutputIterator, class Predicate>
OutputIterator

remove_copy_if(InputIterator first , InputIterator last ,
OutputIterator result , Predicate pred);

551

ISO/IEC 14882:1998(E) © ISO/IEC

25.2.7 Remove 25 Algorithms library

6 Requires: TypeT is EqualityComparable (20.1.1). The ranges[first , last) and[result ,
result +(last - first)) shall not overlap.

7 Effects: Copies all the elements referred to by the iteratori in the range[first , last) for which the
following corresponding conditions do not hold:*i == value , pred (*i) != false .

8 Returns: The end of the resulting range.
9 Complexity: Exactly last - first applications of the corresponding predicate.
10 Notes: Stable: the relative order of the elements in the resulting range is the same as their relative order in

the original range.

[lib.alg.unique] 25.2.8 Unique

template<class ForwardIterator>
ForwardIterator unique(ForwardIterator first , ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
ForwardIterator unique(ForwardIterator first , ForwardIterator last ,

BinaryPredicate pred);

1 Effects: Eliminates all but the first element from every consecutive group of equal elements referred to by
the iteratori in the range[first , last) for which the following corresponding conditions hold:
*i == *(i - 1) or pred (*i, *(i - 1)) != false

2 Returns: The end of the resulting range.
3 Complexity: If the range(last - first) is not empty, exactly(last - first) - 1 applica-

tions of the corresponding predicate, otherwise no applications of the predicate.

template<class InputIterator, class OutputIterator>
OutputIterator

unique_copy(InputIterator first , InputIterator last ,
OutputIterator result);

template<class InputIterator, class OutputIterator,
class BinaryPredicate>

OutputIterator
unique_copy(InputIterator first , InputIterator last ,

OutputIterator result , BinaryPredicate pred);

4 Requires: The ranges[first , last) and [result , result +(last - first)) shall not over-
lap.

5 Effects: Copies only the first element from every consecutive group of equal elements referred to by the
iterator i in the range[first , last) for which the following corresponding conditions hold:*i
== *(i - 1) or pred (*i, *(i - 1)) != false

6 Returns: The end of the resulting range.
7 Complexity: Exactly last - first applications of the corresponding predicate.

[lib.alg.reverse] 25.2.9 Reverse

template<class BidirectionalIterator>
void reverse(BidirectionalIterator first , BidirectionalIterator last);

1 Effects: For each non-negative integeri <= (last - first)/2 , appliesswap to all pairs of itera-
torsfirst + i, (last - i) - 1 .

2 Complexity: Exactly(last - first)/2 swaps.

552

© ISO/IEC ISO/IEC 14882:1998(E)

25 Algorithms library 25.2.9 Reverse

template<class BidirectionalIterator, class OutputIterator>
OutputIterator

reverse_copy(BidirectionalIterator first ,
BidirectionalIterator last , OutputIterator result);

3 Effects: Copies the range[first , last) to the range[result , result + (last -
first)) such that for any non-negative integeri < (last - first) the following assignment
takes place:*(result + (last - first) - i) = *(first + i)

4 Requires: The ranges[first , last) and[result , result + (last - first)) shall not
overlap.

5 Returns: result + (last - first) .
6 Complexity: Exactly last - first assignments.

[lib.alg.rotate] 25.2.10 Rotate

template<class ForwardIterator>
void rotate(ForwardIterator first , ForwardIterator middle ,

ForwardIterator last);

1 Effects: For each non-negative integeri < (last - first) , places the element from the position
first + i into positionfirst + (i + (last - middle)) % (last - first) .

2 Notes: This is a left rotate.
3 Requires: [first , middle) and[middle , last) are valid ranges.
4 Complexity: At mostlast - first swaps.

template<class ForwardIterator, class OutputIterator>
OutputIterator

rotate_copy(ForwardIterator first , ForwardIterator middle ,
ForwardIterator last , OutputIterator result);

5 Effects: Copies the range[first , last) to the range[result , result + (last -
first)) such that for each non-negative integeri < (last - first) the following assignment
takes place:*(result + i) = *(first + (i + (middle - first)) % (last -
first))

6 Returns: result + (last - first) .
7 Requires The ranges[first , last) and [result , result + (last - first)) shall not

overlap.
8 Complexity: Exactly last - first assignments.

[lib.alg.random.shuffle] 25.2.11 Random shuffle

template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first ,

RandomAccessIterator last);

template<class RandomAccessIterator, class RandomNumberGenerator>
void random_shuffle(RandomAccessIterator first ,

RandomAccessIterator last ,
RandomNumberGenerator& rand);

1 Effects: Shuffles the elements in the range[first , last) with uniform distribution.
2 Complexity: Exactly(last - first) - 1 swaps.
3 Notes: random_shuffle() can take a particular random number generating function objectrand

such that if n is an argument for rand , with a positive value, that has type
iterator_traits<RandomAccessIterator>::difference_type , then rand (n)
returns a randomly chosen value, which lies in the interval[0, n) , and which has a type that is con-
vertible toiterator_traits<RandomAccessIterator>::difference_type .

553

ISO/IEC 14882:1998(E) © ISO/IEC

25.2.11 Random shuffle 25 Algorithms library

[lib.alg.partitions] 25.2.12 Partitions

template<class BidirectionalIterator, class Predicate>
BidirectionalIterator

partition(BidirectionalIterator first ,
BidirectionalIterator last , Predicate pred);

1 Effects: Places all the elements in the range[first , last) that satisfypred before all the elements
that do not satisfy it.

2 Returns: An iteratori such that for any iteratorj in the range[first , i) , pred (*j) != false ,
and for any iteratork in the range[i, last) , pred (*j) == false .

3 Complexity: At most(last - first)/2 swaps. Exactlylast - first applications of the predi-
cate are done.

template<class BidirectionalIterator, class Predicate>
BidirectionalIterator

stable_partition(BidirectionalIterator first ,
BidirectionalIterator last , Predicate pred);

4 Effects: Places all the elements in the range[first , last) that satisfypred before all the elements
that do not satisfy it.

5 Returns: An iteratori such that for any iteratorj in the range[first , i) , pred (*j) != false ,
and for any iteratork in the range[i, last) , pred (*j) == false . The relative order of the
elements in both groups is preserved.

6 Complexity: At most(last - first) * log(last - first) swaps, but only linear number of
swaps if there is enough extra memory. Exactlylast - first applications of the predicate.

[lib.alg.sorting] 25.3 Sorting and related operations

1 All the operations in 25.3 have two versions: one that takes a function object of typeCompare and one
that uses anoperator< .

2 Compare is used as a function object which returnstrue if the first argument is less than the second, and
false otherwise.Compare comp is used throughout for algorithms assuming an ordering relation. It is
assumed thatcomp will not apply any non-constant function through the dereferenced iterator.

3 For all algorithms that takeCompare , there is a version that usesoperator< instead. That is,
comp(*i, *j) != false defaults to*i < *j != false . For the algorithms to work correctly,
comp has to induce a strict weak ordering on the values.

4 The termstrict refers to the requirement of an irreflexive relation (!comp(x, x) for all x), and the term
weakto requirements that are not as strong as those for a total ordering, but stronger than those for a partial
ordering. If we defineequiv(a, b) as !comp(a, b) && !comp(b, a) , then the requirements
are thatcomp andequiv both be transitive relations:

— comp(a, b) && comp(b, c) impliescomp(a, c)

— equiv(a, b) && equiv(b, c) implies equiv(a, c) [Note: Under these conditions, it can
be shown that

— equiv is an equivalence relation

— comp induces a well-defined relation on the equivalence classes determined byequiv

— The induced relation is a strict total ordering.—end note]

5 A sequence issorted with respect to a comparatorcomp if for any iteratori pointing to the sequence and
any non-negative integern such thati + n is a valid iterator pointing to an element of the sequence,
comp(*(i + n), *i) == false .

554

© ISO/IEC ISO/IEC 14882:1998(E)

25 Algorithms library 25.3 Sorting and related operations

6 In the descriptions of the functions that deal with ordering relationships we frequently use a notion of
equivalence to describe concepts such as stability. The equivalence to which we refer is not necessarily an
operator== , but an equivalence relation induced by the strict weak ordering. That is, two elementsa
andb are considered equivalent if and only if!(a < b) && !(b < a) .

[lib.alg.sort] 25.3.1 Sorting

[lib.sort] 25.3.1.1sort

template<class RandomAccessIterator>
void sort(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void sort(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

1 Effects: Sorts the elements in the range[first , last) .
2 Complexity: ApproximatelyN log N (whereN == last - first) comparisons on the average.252)

[lib.stable.sort] 25.3.1.2stable_sort

template<class RandomAccessIterator>
void stable_sort(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void stable_sort(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

1 Effects: Sorts the elements in the range[first , last) .
2 Complexity: It does at mostN(log N) 2 (whereN == last - first) comparisons; if enough extra

memory is available, it isN log N.
3 Notes: Stable: the relative order of the equivalent elements is preserved.

[lib.partial.sort] 25.3.1.3partial_sort

template<class RandomAccessIterator>
void partial_sort(RandomAccessIterator first ,

RandomAccessIterator middle ,
RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void partial_sort(RandomAccessIterator first ,

RandomAccessIterator middle ,
RandomAccessIterator last ,
Compare comp);

1 Effects: Places the firstmiddle - first sorted elements from the range[first , last) into the
range[first , middle) . The rest of the elements in the range[middle , last) are placed in
an unspecified order.

2 Complexity: It takes approximately(last - first) * log(middle - first) comparisons.

252)If the worst case behavior is importantstable_sort() (25.3.1.2) orpartial_sort() (25.3.1.3) should be used.

555

ISO/IEC 14882:1998(E) © ISO/IEC

25.3.1.3partial_sort 25 Algorithms library

[lib.partial.sort.copy] 25.3.1.4partial_sort_copy

template<class InputIterator, class RandomAccessIterator>
RandomAccessIterator

partial_sort_copy(InputIterator first , InputIterator last ,
RandomAccessIterator result_first ,
RandomAccessIterator result_last);

template<class InputIterator, class RandomAccessIterator,
class Compare>

RandomAccessIterator
partial_sort_copy(InputIterator first , InputIterator last ,

RandomAccessIterator result_first ,
RandomAccessIterator result_last ,
Compare comp);

1 Effects: Places the firstmin(last - first , result_last - result_first) sorted ele-
ments into the range[result_first , result_first + min(last - first ,
result_last - result_first)) .

2 Returns: The smaller of:result_last or result_first + (last - first)
3 Complexity: Approximately(last - first) * log(min(last - first , result_last

- result_first)) comparisons.

[lib.alg.nth.element] 25.3.2 Nth element

template<class RandomAccessIterator>
void nth_element(RandomAccessIterator first , RandomAccessIterator nth ,

RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void nth_element(RandomAccessIterator first , RandomAccessIterator nth ,

RandomAccessIterator last , Compare comp);

1 After nth_element the element in the position pointed to bynth is the element that would be in that
position if the whole range were sorted. Also for any iteratori in the range[first , nth) and any iter-
ator j in the range[nth , last) it holds that:!(*i > *j) or comp(*j, *i) == false .

2 Complexity: Linear on average.

[lib.alg.binary.search] 25.3.3 Binary search

1 All of the algorithms in this section are versions of binary search and assume that the sequence being
searched is in order according to the implied or explicit comparison function. They work on non-random
access iterators minimizing the number of comparisons, which will be logarithmic for all types of iterators.
They are especially appropriate for random access iterators, because these algorithms do a logarithmic num-
ber of steps through the data structure. For non-random access iterators they execute a linear number of
steps.

[lib.lower.bound] 25.3.3.1 lower_bound

template<class ForwardIterator, class T>
ForwardIterator

lower_bound(ForwardIterator first , ForwardIterator last ,
const T& value);

template<class ForwardIterator, class T, class Compare>
ForwardIterator

lower_bound(ForwardIterator first , ForwardIterator last ,
const T& value , Compare comp);

556

© ISO/IEC ISO/IEC 14882:1998(E)

25 Algorithms library 25.3.3.1 lower_bound

1 Requires: TypeT is LessThanComparable (20.1.2).
2 Effects: Finds the first position into which value can be inserted without violating the ordering.
3 Returns: The furthermost iteratori in the range[first , last] such that for any iteratorj in the

range [first , i) the following corresponding conditions hold:*j < value or comp(*j,
value) != false

4 Complexity: At mostlog(last - first) + 1 comparisons.

[lib.upper.bound] 25.3.3.2upper_bound

template<class ForwardIterator, class T>
ForwardIterator

upper_bound(ForwardIterator first , ForwardIterator last ,
const T& value);

template<class ForwardIterator, class T, class Compare>
ForwardIterator

upper_bound(ForwardIterator first , ForwardIterator last ,
const T& value , Compare comp);

1 Requires: TypeT is LessThanComparable (20.1.2).
2 Effects: Finds the furthermost position into which value can be inserted without violating the ordering.
3 Returns: The furthermost iteratori in the range[first , last) such that for any iteratorj in the

range [first , i) the following corresponding conditions hold:!(value < *j) or
comp(value , *j) == false

4 Complexity: At mostlog(last - first) + 1 comparisons.

[lib.equal.range] 25.3.3.3equal_range

template<class ForwardIterator, class T>
pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first ,
ForwardIterator last , const T& value);

template<class ForwardIterator, class T, class Compare>
pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first ,
ForwardIterator last , const T& value ,
Compare comp);

1 Requires: TypeT is LessThanComparable (20.1.2).
2 Effects: Finds the largest subrange[i, j) such that the value can be inserted at any iteratork in it with-

out violating the ordering.k satisfies the corresponding conditions:!(*k < value) &&
!(value < *k) or comp(*k, value) == false && comp(value , *k) == false .

3 Complexity: At most2 * log(last - first) + 1 comparisons.

[lib.binary.search] 25.3.3.4binary_search

template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first , ForwardIterator last ,

const T& value);

template<class ForwardIterator, class T, class Compare>
bool binary_search(ForwardIterator first , ForwardIterator last ,

const T& value , Compare comp);

1 Requires: TypeT is LessThanComparable (20.1.2).
2 Returns: true if there is an iteratori in the range[first , last) that satisfies the corresponding

conditions:!(*i < value) && !(value < *i) or comp(*i, value) == false &&
comp(value , *i) == false .

557

ISO/IEC 14882:1998(E) © ISO/IEC

25.3.3.4binary_search 25 Algorithms library

3 Complexity: At mostlog(last - first) + 2 comparisons.

[lib.alg.merge] 25.3.4 Merge

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
merge(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
merge(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

1 Effects: Merges two sorted ranges[first1 , last1) and [first2 , last2) into the range
[result , result + (last1 - first1) + (last2 - first2)) .

2 The resulting range shall not overlap with either of the original ranges. The list will be sorted in non-
decreasing order according to the ordering defined bycomp; that is, for every iteratori in [first ,
last) other thanfirst , the condition*i < *(i - 1) or comp(*i, *(i - 1)) will be false.

3 Returns: result + (last1 - first1) + (last2 - first2) .
4 Complexity: At most(last1 - first1) + (last2 - first2) - 1 comparisons.
5 Notes: Stable: for equivalent elements in the two ranges, the elements from the first range always precede

the elements from the second.

template<class BidirectionalIterator>
void inplace_merge(BidirectionalIterator first ,

BidirectionalIterator middle ,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
void inplace_merge(BidirectionalIterator first ,

BidirectionalIterator middle ,
BidirectionalIterator last , Compare comp);

6 Effects: Merges two sorted consecutive ranges[first , middle) and [middle, last) , putting
the result of the merge into the range[first , last) . The resulting range will be in non-decreasing
order; that is, for every iteratori in [first , last) other thanfirst , the condition*i < *(i -
1) or, respectively,comp(*i, *(i - 1)) will be false.

7 Complexity: When enough additional memory is available,(last - first) - 1 comparisons. If no
additional memory is available, an algorithm with complexityN log N (whereN is equal tolast -
first) may be used.

8 Notes: Stable: for equivalent elements in the two ranges, the elements from the first range always precede
the elements from the second.

[lib.alg.set.operations] 25.3.5 Set operations on sorted structures

1 This section defines all the basic set operations on sorted structures. They also work withmultiset s
(23.3.4) containing multiple copies of equivalent elements. The semantics of the set operations are general-
ized tomultiset s in a standard way by definingunion() to contain the maximum number of occur-
rences of every element,intersection() to contain the minimum, and so on.

558

© ISO/IEC ISO/IEC 14882:1998(E)

25 Algorithms library 25.3.5.1 includes

[lib.includes] 25.3.5.1 includes

template<class InputIterator1, class InputIterator2>
bool includes(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
bool includes(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
Compare comp);

1 Returns: true if every element in the range[first2 , last2) is contained in the range[first1 ,
last1) . Returnsfalse otherwise.

2 Complexity: At most2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

[lib.set.union] 25.3.5.2set_union

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
set_union(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
set_union(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

1 Effects: Constructs a sorted union of the elements from the two ranges; that is, the set of elements that are
present in one or both of the ranges.

2 Requires: The resulting range shall not overlap with either of the original ranges.
3 Returns: The end of the constructed range.
4 Complexity: At most2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.
5 Notes: Stable: if an element is present in both ranges, the one from the first range is copied.

[lib.set.intersection] 25.3.5.3set_intersection

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
set_intersection(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
set_intersection(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

1 Effects: Constructs a sorted intersection of the elements from the two ranges; that is, the set of elements
that are present in both of the ranges.

2 Requires: The resulting range shall not overlap with either of the original ranges.
3 Returns: The end of the constructed range.

559

ISO/IEC 14882:1998(E) © ISO/IEC

25.3.5.3set_intersection 25 Algorithms library

4 Complexity: At most2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.
5 Notes: Stable, that is, if an element is present in both ranges, the one from the first range is copied.

[lib.set.difference] 25.3.5.4set_difference

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
set_difference(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
set_difference(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

1 Effects: Copies the elements of the range[first1 , last1) which are not present in the range
[first2 , last2) to the range beginning atresult . The elements in the constructed range are
sorted.

2 Requires: The resulting range shall not overlap with either of the original ranges.
3 Returns: The end of the constructed range.
4 Complexity: At most2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

[lib.set.symmetric.difference] 25.3.5.5set_symmetric_difference

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
set_symmetric_difference(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
set_symmetric_difference(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

1 Effects: Copies the elements of the range[first1 , last1) which are not present in the range
[first2 , last2) , and the elements of the range[first2 , last2) which are not present in
the range[first1 , last1) to the range beginning atresult . The elements in the constructed
range are sorted.

2 Requires: The resulting range shall not overlap with either of the original ranges.
3 Returns: The end of the constructed range.
4 Complexity: At most2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

[lib.alg.heap.operations] 25.3.6 Heap operations

1 A heapis a particular organization of elements in a range between two random access iterators[a, b) .
Its two key properties are:

(1) *a is the largest element in the range and

(2) *a may be removed bypop_heap() , or a new element added bypush_heap() , in O(logN) time.

560

© ISO/IEC ISO/IEC 14882:1998(E)

25 Algorithms library 25.3.6 Heap operations

2 These properties make heaps useful as priority queues.

3 make_heap() converts a range into a heap andsort_heap() turns a heap into a sorted sequence.

[lib.push.heap] 25.3.6.1push_heap

template<class RandomAccessIterator>
void push_heap(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void push_heap(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

1 Requires: The range[first , last - 1) shall be a valid heap.
2 Effects: Places the value in the locationlast - 1 into the resulting heap[first , last) .
3 Complexity: At mostlog(last - first) comparisons.

[lib.pop.heap] 25.3.6.2pop_heap

template<class RandomAccessIterator>
void pop_heap(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void pop_heap(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

1 Requires: The range[first , last) shall be a valid heap.
2 Effects: Swaps the value in the locationfirst with the value in the locationlast - 1 and makes

[first , last - 1) into a heap.
3 Complexity: At most2 * log(last - first) comparisons.

[lib.make.heap] 25.3.6.3make_heap

template<class RandomAccessIterator>
void make_heap(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void make_heap(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

1 Effects: Constructs a heap out of the range[first , last) .
2 Complexity: At most3 * (last - first) comparisons.

[lib.sort.heap] 25.3.6.4sort_heap

template<class RandomAccessIterator>
void sort_heap(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void sort_heap(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

1 Effects: Sorts elements in the heap[first , last) .
2 Complexity: At mostN log Ncomparisons (whereN == last - first).
3 Notes: Not stable.

561

ISO/IEC 14882:1998(E) © ISO/IEC

25.3.7 Minimum and maximum 25 Algorithms library

[lib.alg.min.max] 25.3.7 Minimum and maximum

template<class T> const T& min(const T& a, const T& b);
template<class T, class Compare>

const T& min(const T& a, const T& b, Compare comp);

1 Requires: TypeT is LessThanComparable (20.1.2) andCopyConstructible (20.1.3).
2 Returns: The smaller value.
3 Notes: Returns the first argument when the arguments are equivalent.

template<class T> const T& max(const T& a, const T& b);
template<class T, class Compare>

const T& max(const T& a, const T& b, Compare comp);

4 Requires: TypeT is LessThanComparable (20.1.2) andCopyConstructible (20.1.3).
5 Returns: The larger value.
6 Notes: Returns the first argument when the arguments are equivalent.

template<class ForwardIterator>
ForwardIterator min_element(ForwardIterator first , ForwardIterator last);

template<class ForwardIterator, class Compare>
ForwardIterator min_element(ForwardIterator first , ForwardIterator last ,

Compare comp);

7 Returns: The first iteratori in the range[first , last) such that for any iteratorj in the range
[first , last) the following corresponding conditions hold:!(*j < *i) or comp(*j, *i)
== false

8 Complexity: Exactly max((last - first) - 1, 0) applications of the corresponding compar-
isons.

template<class ForwardIterator>
ForwardIterator max_element(ForwardIterator first , ForwardIterator last);

template<class ForwardIterator, class Compare>
ForwardIterator max_element(ForwardIterator first , ForwardIterator last ,

Compare comp);

9 Returns: The first iteratori in the range[first , last) such that for any iteratorj in the range
[first , last) the following corresponding conditions hold:!(*i < *j) or comp(*i, *j)
== false .

10 Complexity: Exactly max((last - first) - 1, 0) applications of the corresponding compar-
isons.

[lib.alg.lex.comparison] 25.3.8 Lexicographical comparison

template<class InputIterator1, class InputIterator2>
bool

lexicographical_compare(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
bool

lexicographical_compare(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 ,
Compare comp);

1 Returns: true if the sequence of elements defined by the range[first1 , last1) is lexicographi-
cally less than the sequence of elements defined by the range[first2 , last2) .
Returnsfalse otherwise.

562

© ISO/IEC ISO/IEC 14882:1998(E)

25 Algorithms library 25.3.8 Lexicographical comparison

2 Complexity: At mostmin((last1 - first1), (last2 - first2)) applications of the corre-
sponding comparison.

3 Notes: If two sequences have the same number of elements and their corresponding elements are equiva-
lent, then neither sequence is lexicographically less than the other. If one sequence is a prefix of the
other, then the shorter sequence is lexicographically less than the longer sequence. Otherwise, the lexi-
cographical comparison of the sequences yields the same result as the comparison of the first corre-
sponding pair of elements that are not equivalent.

for (i = first1 , j = first2 ;
i != last1 && j != last2 && !(*i < *j) && !(*j < *i);
++i, ++j);

return j == last2 ? false : i == last1 || *i < *j;

[lib.alg.permutation.generators] 25.3.9 Permutation generators

template<class BidirectionalIterator>
bool next_permutation(BidirectionalIterator first ,

BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
bool next_permutation(BidirectionalIterator first ,

BidirectionalIterator last , Compare comp);

1 Effects: Takes a sequence defined by the range[first , last) and transforms it into the next permu-
tation. The next permutation is found by assuming that the set of all permutations is lexicographically
sorted with respect tooperator< or comp. If such a permutation exists, it returnstrue . Otherwise,
it transforms the sequence into the smallest permutation, that is, the ascendingly sorted one, and returns
false .

2 Complexity: At most(last - first)/2 swaps.

template<class BidirectionalIterator>
bool prev_permutation(BidirectionalIterator first ,

BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
bool prev_permutation(BidirectionalIterator first ,

BidirectionalIterator last , Compare comp);

3 Effects: Takes a sequence defined by the range[first , last) and transforms it into the previous per-
mutation. The previous permutation is found by assuming that the set of all permutations is lexico-
graphically sorted with respect tooperator< or comp.

4 Returns: true if such a permutation exists. Otherwise, it transforms the sequence into the largest permu-
tation, that is, the descendingly sorted one, and returnsfalse .

5 Complexity: At most(last - first)/2 swaps.

[lib.alg.c.library] 25.4 C library algorithms

1 Header<cstdlib> (partial, Table 78):

Table 78—Header<cstdlib> synopsis
_ ______________________________

Type Name(s)_ ______________________________
Functions: bsearch qsort_ ______________________________

2 The contents are the same as the Standard C library header<stdlib.h> with the following exceptions:

563

ISO/IEC 14882:1998(E) © ISO/IEC

25.4 C library algorithms 25 Algorithms library

3 The function signature:

bsearch(const void *, const void *, size_t, size_t,
int (*)(const void *, const void *));

is replaced by the two declarations:

extern "C" void *bsearch(const void * key , const void * base ,
size_t nmemb, size_t size ,
int (* compar)(const void *, const void *));

extern "C++" void *bsearch(const void * key , const void * base ,
size_t nmemb, size_t size ,
int (* compar)(const void *, const void *));

both of which have the same behavior as the original declaration.

4 The function signature:

qsort(void *, size_t, size_t,
int (*)(const void *, const void *));

is replaced by the two declarations:

extern "C" void qsort(void* base , size_t nmemb, size_t size ,
int (* compar)(const void*, const void*));

extern "C++" void qsort(void* base , size_t nmemb, size_t size ,
int (* compar)(const void*, const void*));

[Note: Because the function argumentcompar() may throw an exception,bsearch() andqsort()
are allowed to propagate the exception (17.4.4.8).—end note]

SEE ALSO: ISO C subclause 7.10.5.

564

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library [lib.numerics]

1 This clause describes components that C++ programs may use to perform seminumerical operations.

2 The following subclauses describe components for complex number types, numeric (n-at-a-time) arrays,
generalized numeric algorithms, and facilities included from the ISO C library, as summarized in Table 79:

Table 79—Numerics library summary
_ __

Subclause Header(s)_ ___ __
26.1 Requirements_ __
26.2 Complex numbers <complex>_ __
26.3 Numeric arrays <valarray>_ __
26.4 Generalized numeric operations<numeric>_ __

<cmath>
26.5 C library

<cstdlib>_ __

[lib.numeric.requirements] 26.1 Numeric type requirements

1 Thecomplex andvalarray components are parameterized by the type of information they contain and
manipulate. A C++ program shall instantiate these components only with a typeT that satisfies the follow-
ing requirements:253)

— T is not an abstract class (it has no pure virtual member functions);

— T is not a reference type;

— T is not cv-qualified;

— If T is a class, it has a public default constructor;

— If T is a class, it has a public copy constructor with the signatureT::T(const T&)

— If T is a class, it has a public destructor;

— If T is a class, it has a public assignment operator whose signature is either
T& T::operator=(const T&) or T& T::operator=(T)

— If T is a class, its assignment operator, copy and default constructors, and destructor shall correspond to
each other in the following sense: Initialization of raw storage using the default constructor, followed by
assignment, is semantically equivalent to initialization of raw storage using the copy constructor.
Destruction of an object, followed by initialization of its raw storage using the copy constructor, is
semantically equivalent to assignment to the original object.
[Note:This rule states that there shall not be any subtle differences in the semantics of initialization ver-
sus assignment. This gives an implementation considerable flexibility in how arrays are initialized.
[Example:An implementation is allowed to initialize avalarray by allocating storage using thenew
operator (which implies a call to the default constructor for each element) and then assigning each ele-
ment its value. Or the implementation can allocate raw storage and use the copy constructor to initialize
each element.—end example]
If the distinction between initialization and assignment is important for a class, or if it fails to satisfy
any of the other conditions listed above, the programmer should usevector (23.2.4) instead of

253) In other words, value types. These include built-in arithmetic types, pointers, the library classcomplex , and instantiations of
valarray for value types.

565

ISO/IEC 14882:1998(E) © ISO/IEC

26.1 Numeric type requirements 26 Numerics library

valarray for that class;—end note]

— If T is a class, it does not overload unaryoperator& .

2 If any operation onT throws an exception the effects are undefined.

3 In addition, many member and related functions ofvalarray< T> can be successfully instantiated and
will exhibit well-defined behavior if and only ifT satisfies additional requirements specified for each such
member or related function.

4 [Example:It is valid to instantiatevalarray< complex >, but operator>() will not be successfully
instantiated forvalarray< complex > operands, sincecomplex does not have any ordering operators.
—end example]

[lib.complex.numbers] 26.2 Complex numbers

1 The header<complex> defines a template class, and numerous functions for representing and manipulat-
ing complex numbers.

2 The effect of instantiating the templatecomplex for any type other than float, double or long double is
unspecified.

3 If the result of a function is not mathematically defined or not in the range of representable values for its
type, the behavior is undefined.

[lib.complex.synopsis] 26.2.1 Header<complex> synopsis

namespace std {
template<class T> class complex;
template<> class complex<float>;
template<> class complex<double>;
template<> class complex<long double>;

// 26.2.6 operators:
template<class T>

complex<T> operator+(const complex<T>&, const complex<T>&);
template<class T> complex<T> operator+(const complex<T>&, const T&);
template<class T> complex<T> operator+(const T&, const complex<T>&);

template<class T> complex<T> operator-
(const complex<T>&, const complex<T>&);

template<class T> complex<T> operator-(const complex<T>&, const T&);
template<class T> complex<T> operator-(const T&, const complex<T>&);

template<class T> complex<T> operator*
(const complex<T>&, const complex<T>&);

template<class T> complex<T> operator*(const complex<T>&, const T&);
template<class T> complex<T> operator*(const T&, const complex<T>&);

template<class T> complex<T> operator/
(const complex<T>&, const complex<T>&);

template<class T> complex<T> operator/(const complex<T>&, const T&);
template<class T> complex<T> operator/(const T&, const complex<T>&);

template<class T> complex<T> operator+(const complex<T>&);
template<class T> complex<T> operator-(const complex<T>&);

template<class T> bool operator==
(const complex<T>&, const complex<T>&);

template<class T> bool operator==(const complex<T>&, const T&);
template<class T> bool operator==(const T&, const complex<T>&);

566

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library 26.2.1 Header<complex> synopsis

template<class T> bool operator!=(const complex<T>&, const complex<T>&);
template<class T> bool operator!=(const complex<T>&, const T&);
template<class T> bool operator!=(const T&, const complex<T>&);

template<class T, class charT, class traits>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>&, complex<T>&);

template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>&, const complex<T>&);

// 26.2.7 values:

template<class T> T real(const complex<T>&);
template<class T> T imag(const complex<T>&);

template<class T> T abs(const complex<T>&);
template<class T> T arg(const complex<T>&);
template<class T> T norm(const complex<T>&);

template<class T> complex<T> conj(const complex<T>&);
template<class T> complex<T> polar(const T&, const T&);

// 26.2.8 transcendentals:
template<class T> complex<T> cos (const complex<T>&);
template<class T> complex<T> cosh (const complex<T>&);
template<class T> complex<T> exp (const complex<T>&);
template<class T> complex<T> log (const complex<T>&);
template<class T> complex<T> log10(const complex<T>&);

template<class T> complex<T> pow(const complex<T>&, int);
template<class T> complex<T> pow(const complex<T>&, const T&);
template<class T> complex<T> pow(const complex<T>&, const complex<T>&);
template<class T> complex<T> pow(const T&, const complex<T>&);

template<class T> complex<T> sin (const complex<T>&);
template<class T> complex<T> sinh (const complex<T>&);
template<class T> complex<T> sqrt (const complex<T>&);
template<class T> complex<T> tan (const complex<T>&);
template<class T> complex<T> tanh (const complex<T>&);

}

[lib.complex] 26.2.2 Template classcomplex

namespace std {
template<class T>
class complex {
public:

typedef T value_type;

complex(const T& re = T(), const T& im = T());
complex(const complex&);
template<class X> complex(const complex<X>&);

567

ISO/IEC 14882:1998(E) © ISO/IEC

26.2.2 Template classcomplex 26 Numerics library

T real() const;
T imag() const;

complex<T>& operator= (const T&);
complex<T>& operator+=(const T&);
complex<T>& operator-=(const T&);
complex<T>& operator*=(const T&);
complex<T>& operator/=(const T&);

complex& operator=(const complex&);
template<class X> complex<T>& operator= (const complex<X>&);
template<class X> complex<T>& operator+=(const complex<X>&);
template<class X> complex<T>& operator-=(const complex<X>&);
template<class X> complex<T>& operator*=(const complex<X>&);
template<class X> complex<T>& operator/=(const complex<X>&);

};

template<class T> complex<T> operator+
(const complex<T>&, const complex<T>&);

template<class T> complex<T> operator+(const complex<T>&, const T&);
template<class T> complex<T> operator+(const T&, const complex<T>&);

template<class T> complex<T> operator-
(const complex<T>&, const complex<T>&);

template<class T> complex<T> operator-(const complex<T>&, const T&);
template<class T> complex<T> operator-(const T&, const complex<T>&);

template<class T> complex<T> operator*
(const complex<T>&, const complex<T>&);

template<class T> complex<T> operator*(const complex<T>&, const T&);
template<class T> complex<T> operator*(const T&, const complex<T>&);

template<class T> complex<T> operator/
(const complex<T>&, const complex<T>&);

template<class T> complex<T> operator/(const complex<T>&, const T&);
template<class T> complex<T> operator/(const T&, const complex<T>&);

template<class T> complex<T> operator+(const complex<T>&);
template<class T> complex<T> operator-(const complex<T>&);

template<class T> bool operator==(const complex<T>&, const complex<T>&);
template<class T> bool operator==(const complex<T>&, const T&);
template<class T> bool operator==(const T&, const complex<T>&);

template<class T> bool operator!=(const complex<T>&, const complex<T>&);
template<class T> bool operator!=(const complex<T>&, const T&);
template<class T> bool operator!=(const T&, const complex<T>&);

template<class T, class charT, class traits>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>&, complex<T>&);

template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>&, const complex<T>&);

};

1 The classcomplex describes an object that can store the Cartesian components,real() andimag() , of
a complex number.

568

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library 26.2.3complex specializations

[lib.complex.special] 26.2.3 complex specializations

template<> class complex<float> {
public:

typedef float value_type;

complex(float re = 0.0f, float im = 0.0f);
explicit complex(const complex<double>&);
explicit complex(const complex<long double>&);

float real() const;
float imag() const;

complex<float>& operator= (float);
complex<float>& operator+=(float);
complex<float>& operator-=(float);
complex<float>& operator*=(float);
complex<float>& operator/=(float);

complex<float>& operator=(const complex<float>&);
template<class X> complex<float>& operator= (const complex<X>&);
template<class X> complex<float>& operator+=(const complex<X>&);
template<class X> complex<float>& operator-=(const complex<X>&);
template<class X> complex<float>& operator*=(const complex<X>&);
template<class X> complex<float>& operator/=(const complex<X>&);

};

template<> class complex<double> {
public:

typedef double value_type;

complex(double re = 0.0, double im = 0.0);
complex(const complex<float>&);
explicit complex(const complex<long double>&);

double real() const;
double imag() const;

complex<double>& operator= (double);
complex<double>& operator+=(double);
complex<double>& operator-=(double);
complex<double>& operator*=(double);
complex<double>& operator/=(double);

complex<double>& operator=(const complex<double>&);
template<class X> complex<double>& operator= (const complex<X>&);
template<class X> complex<double>& operator+=(const complex<X>&);
template<class X> complex<double>& operator-=(const complex<X>&);
template<class X> complex<double>& operator*=(const complex<X>&);
template<class X> complex<double>& operator/=(const complex<X>&);

};

template<> class complex<long double> {
public:

typedef long double value_type;

complex(long double re = 0.0L, long double im = 0.0L);
complex(const complex<float>&);
complex(const complex<double>&);

569

ISO/IEC 14882:1998(E) © ISO/IEC

26.2.3complex specializations 26 Numerics library

long double real() const;
long double imag() const;

complex<long double>& operator=(const complex<long double>&);
complex<long double>& operator= (long double);
complex<long double>& operator+=(long double);
complex<long double>& operator-=(long double);
complex<long double>& operator*=(long double);
complex<long double>& operator/=(long double);

template<class X> complex<long double>& operator= (const complex<X>&);
template<class X> complex<long double>& operator+=(const complex<X>&);
template<class X> complex<long double>& operator-=(const complex<X>&);
template<class X> complex<long double>& operator*=(const complex<X>&);
template<class X> complex<long double>& operator/=(const complex<X>&);

};

[lib.complex.members] 26.2.4 complex member functions

template<class T> complex(const T& re = T(), const T& im = T());

1 Effects: Constructs an object of classcomplex .
2 Postcondition: real() == re && imag() == im .

[lib.complex.member.ops] 26.2.5 complex member operators

template <class T> complex<T>& operator+=(const T& rhs);

1 Effects: Adds the scalar valuerhs to the real part of the complex value*this and stores the result in the
real part of*this , leaving the imaginary part unchanged.

2 Returns: *this .

template <class T> complex<T>& operator-=(const T& rhs);

3 Effects: Subtracts the scalar valuerhs from the real part of the complex value*this and stores the
result in the real part of*this , leaving the imaginary part unchanged.

4 Returns: *this .

template <class T> complex<T>& operator*=(const T& rhs);

5 Effects: Multiplies the scalar valuerhs by the complex value*this and stores the result in*this .
6 Returns: *this .

template <class T> complex<T>& operator/=(const T& rhs);

7 Effects: Divides the scalar valuerhs into the complex value*this and stores the result in*this .
8 Returns: *this .

template<class T> complex<T>& operator+=(const complex<T>& rhs);

9 Effects: Adds the complex valuerhs to the complex value*this and stores the sum in*this .
10 Returns: *this .

template<class T> complex<T>& operator-=(const complex<T>& rhs);

11 Effects: Subtracts the complex valuerhs from the complex value*this and stores the difference in
*this .

12 Returns: *this .

570

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library 26.2.5complex member operators

template<class T> complex<T>& operator*=(const complex<T>& rhs);

13 Effects: Multiplies the complex valuerhs by the complex value*this and stores the product in*this .
14 Returns: *this .

template<class T> complex<T>& operator/=(const complex<T>& rhs);

15 Effects: Divides the complex valuerhs into the complex value*this and stores the quotient in*this .
16 Returns: *this .

[lib.complex.ops] 26.2.6 complex non-member operations

template<class T> complex<T> operator+(const complex<T>& lhs);

1 Notes: unary operator.
2 Returns: complex<T>(lhs) .

template<class T>
complex<T> operator+(const complex<T>& lhs , const complex<T>& rhs);

template<class T> complex<T> operator+(const complex<T>& lhs , const T& rhs);
template<class T> complex<T> operator+(const T& lhs , const complex<T>& rhs);

3 Returns: complex<T>(lhs) += rhs .

template<class T> complex<T> operator-(const complex<T>& lhs);

4 Notes: unary operator.
5 Returns: complex<T>(- lhs .real(),- lhs .imag()) .

template<class T>
complex<T> operator-(const complex<T>& lhs , const complex<T>& rhs);

template<class T> complex<T> operator-(const complex<T>& lhs , const T& rhs);
template<class T> complex<T> operator-(const T& lhs , const complex<T>& rhs);

6 Returns: complex<T>(lhs) -= rhs .

template<class T>
complex<T> operator*(const complex<T>& lhs , const complex<T>& rhs);

template<class T> complex<T> operator*(const complex<T>& lhs , const T& rhs);
template<class T> complex<T> operator*(const T& lhs , const complex<T>& rhs);

7 Returns: complex<T>(lhs) *= rhs .

template<class T>
complex<T> operator/(const complex<T>& lhs , const complex<T>& rhs);

template<class T> complex<T> operator/(const complex<T>& lhs , const T& rhs);
template<class T> complex<T> operator/(const T& lhs , const complex<T>& rhs);

8 Returns: complex<T>(lhs) /= rhs .

template<class T>
bool operator==(const complex<T>& lhs , const complex<T>& rhs);

template<class T> bool operator==(const complex<T>& lhs , const T& rhs);
template<class T> bool operator==(const T& lhs , const complex<T>& rhs);

9 Returns: lhs .real() == rhs .real() && lhs .imag() == rhs .imag() .
10 Notes: The imaginary part is assumed to beT() , or 0.0, for theT arguments.

571

ISO/IEC 14882:1998(E) © ISO/IEC

26.2.6complex non-member operations 26 Numerics library

template<class T>
bool operator!=(const complex<T>& lhs , const complex<T>& rhs);

template<class T> bool operator!=(const complex<T>& lhs , const T& rhs);
template<class T> bool operator!=(const T& lhs , const complex<T>& rhs);

11 Returns: rhs.real() != lhs.real() || rhs.imag() != lhs.imag() .

template<class T, class charT, class traits>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is , complex<T>& x);

12 Effects: Extracts a complex numberx of the form:u, (u) , or (u,v) , whereu is the real part andv is the
imaginary part (27.6.1.2).

13 Requires: The input values be convertible toT.
If bad input is encountered, callsis .setstate(ios::failbit) (which may throw
ios::failure (27.4.4.3).

14 Returns: is .

template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& o, const complex<T>& x);

15 Effects: inserts the complex numberx onto the streamo as if it were implemented as follows:

template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& o, const complex<T>& x)
{

basic_ostringstream<charT, traits> s;
s.flags(o.flags());
s.imbue(o.getloc());
s.precision(o.precision());
s << ’(’ << x.real() << "," << x.imag() << ’)’;
return o << s.str();

}

[lib.complex.value.ops] 26.2.7 complex value operations

template<class T> T real(const complex<T>& x);

1 Returns: x.real() .

template<class T> T imag(const complex<T>& x);

2 Returns: x.imag() .

template<class T> T abs(const complex<T>& x);

3 Returns: the magnitude ofx .

template<class T> T arg(const complex<T>& x);

4 Returns: the phase angle ofx , oratan2(imag(x), real(x)) .

template<class T> T norm(const complex<T>& x);

5 Returns: the squared magnitude ofx .

572

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library 26.2.7complex value operations

template<class T> complex<T> conj(const complex<T>& x);

6 Returns: the complex conjugate ofx .

template<class T> complex<T> polar(const T& rho , const T& theta = 0);

7 Returns: the complex value corresponding to a complex number whose magnitude isrho and whose
phase angle istheta .

[lib.complex.transcendentals] 26.2.8 complex transcendentals

template<class T> complex<T> cos(const complex<T>& x);

1 Returns: the complex cosine ofx .

template<class T> complex<T> cosh(const complex<T>& x);

2 Returns: the complex hyperbolic cosine ofx .

template<class T> complex<T> exp(const complex<T>& x);

3 Returns: the complex base e exponential ofx .

template<class T> complex<T> log(const complex<T>& x);

4 Notes: the branch cuts are along the negative real axis.
5 Returns: the complex natural (base e) logarithm ofx , in the range of a strip mathematically unbounded

along the real axis and in the interval [-i times pi, i times pi] along the imaginary axis. Whenx is a
negative real number,imag(log(x)) is pi.

template<class T> complex<T> log10(const complex<T>& x);

6 Notes: the branch cuts are along the negative real axis.
7 Returns: the complex common (base 10)logarithm ofx , defined aslog(x)/log(10) .

template<class T> complex<T> pow(const complex<T>& x, int y);
template<class T>

complex<T> pow(const complex<T>& x, const complex<T>& y);
template<class T> complex<T> pow (const complex<T>& x, const T& y);
template<class T> complex<T> pow (const T& x, const complex<T>& y);

8 Notes: the branch cuts are along the negative real axis.
9 Returns: the complex power of basex raised to they– th power, defined asexp(y*log(x)) . The

value returned forpow(0,0) is implementation-defined.

template<class T> complex<T> sin (const complex<T>& x);

10 Returns: the complex sine ofx .

template<class T> complex<T> sinh (const complex<T>& x);

11 Returns: the complex hyperbolic sine ofx .

template<class T> complex<T> sqrt (const complex<T>& x);

12 Notes: the branch cuts are along the negative real axis.
13 Returns: the complex square root ofx , in the range of the right half-plane. If the argument is a negative

real number, the value returned lies on the positive imaginary axis.

573

ISO/IEC 14882:1998(E) © ISO/IEC

26.2.8complex transcendentals 26 Numerics library

template<class T> complex<T> tan (const complex<T>& x);

14 Returns: the complex tangent ofx .

template<class T> complex<T> tanh (const complex<T>& x);

15 Returns: the complex hyperbolic tangent ofx .

[lib.numarray] 26.3 Numeric arrays

[lib.valarray.synopsis] 26.3.1 Header<valarray> synopsis

namespace std {
template<class T> class valarray; // An array of typeT
class slice; // a BLAS-like slice out of an array
template<class T> class slice_array;
class gslice; // a generalized slice out of an array
template<class T> class gslice_array;
template<class T> class mask_array; // a masked array
template<class T> class indirect_array; // an indirected array

template<class T> valarray<T> operator*
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator* (const valarray<T>&, const T&);
template<class T> valarray<T> operator* (const T&, const valarray<T>&);

template<class T> valarray<T> operator/
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator/ (const valarray<T>&, const T&);
template<class T> valarray<T> operator/ (const T&, const valarray<T>&);

template<class T> valarray<T> operator%
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator% (const valarray<T>&, const T&);
template<class T> valarray<T> operator% (const T&, const valarray<T>&);

template<class T> valarray<T> operator+
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator+ (const valarray<T>&, const T&);
template<class T> valarray<T> operator+ (const T&, const valarray<T>&);

template<class T> valarray<T> operator-
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator- (const valarray<T>&, const T&);
template<class T> valarray<T> operator- (const T&, const valarray<T>&);

template<class T> valarray<T> operator^
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator^ (const valarray<T>&, const T&);
template<class T> valarray<T> operator^ (const T&, const valarray<T>&);

template<class T> valarray<T> operator&
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator& (const valarray<T>&, const T&);
template<class T> valarray<T> operator& (const T&, const valarray<T>&);

template<class T> valarray<T> operator|
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator| (const valarray<T>&, const T&);
template<class T> valarray<T> operator| (const T&, const valarray<T>&);

574

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library 26.3.1 Header<valarray> synopsis

template<class T> valarray<T> operator<<
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator<<(const valarray<T>&, const T&);
template<class T> valarray<T> operator<<(const T&, const valarray<T>&);

template<class T> valarray<T> operator>>
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator>>(const valarray<T>&, const T&);
template<class T> valarray<T> operator>>(const T&, const valarray<T>&);

template<class T> valarray<bool> operator&&
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator&&(const valarray<T>&, const T&);
template<class T> valarray<bool> operator&&(const T&, const valarray<T>&);

template<class T> valarray<bool> operator||
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator||(const valarray<T>&, const T&);
template<class T> valarray<bool> operator||(const T&, const valarray<T>&);

template<class T>
valarray<bool> operator==(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator==(const valarray<T>&, const T&);
template<class T> valarray<bool> operator==(const T&, const valarray<T>&);
template<class T>

valarray<bool> operator!=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator!=(const T&, const valarray<T>&);

template<class T>
valarray<bool> operator< (const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator< (const valarray<T>&, const T&);
template<class T> valarray<bool> operator< (const T&, const valarray<T>&);
template<class T>

valarray<bool> operator> (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&, const T&);
template<class T> valarray<bool> operator> (const T&, const valarray<T>&);
template<class T>

valarray<bool> operator<=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator<=(const T&, const valarray<T>&);
template<class T>

valarray<bool> operator>=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator>=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator>=(const T&, const valarray<T>&);

template<class T> valarray<T> abs (const valarray<T>&);
template<class T> valarray<T> acos (const valarray<T>&);
template<class T> valarray<T> asin (const valarray<T>&);
template<class T> valarray<T> atan (const valarray<T>&);

template<class T> valarray<T> atan2
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> atan2(const valarray<T>&, const T&);
template<class T> valarray<T> atan2(const T&, const valarray<T>&);

575

ISO/IEC 14882:1998(E) © ISO/IEC

26.3.1 Header<valarray> synopsis 26 Numerics library

template<class T> valarray<T> cos (const valarray<T>&);
template<class T> valarray<T> cosh (const valarray<T>&);
template<class T> valarray<T> exp (const valarray<T>&);
template<class T> valarray<T> log (const valarray<T>&);
template<class T> valarray<T> log10(const valarray<T>&);

template<class T> valarray<T> pow(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> pow(const valarray<T>&, const T&);
template<class T> valarray<T> pow(const T&, const valarray<T>&);

template<class T> valarray<T> sin (const valarray<T>&);
template<class T> valarray<T> sinh (const valarray<T>&);
template<class T> valarray<T> sqrt (const valarray<T>&);
template<class T> valarray<T> tan (const valarray<T>&);
template<class T> valarray<T> tanh (const valarray<T>&);

}

1 The header<valarray> defines five template classes (valarray , slice_array , gslice_array ,
mask_array , andindirect_array), two classes (slice andgslice), and a series of related func-
tion signatures for representing and manipulating arrays of values.

2 The valarray array classes are defined to be free of certain forms of aliasing, thus allowing operations
on these classes to be optimized.

3 Any function returning avalarray<T> is permitted to return an object of another type, provided all the
const member functions ofvalarray<T> are also applicable to this type. This return type shall not add
more than two levels of template nesting over the most deeply nested argument type.254)

4 Implementations introducing such replacement types shall provide additional functions and operators as
follows:

— for every function taking aconst valarray<T>& , identical functions taking the replacement types
shall be added;

— for every function taking twoconst valarray<T>& arguments, identical functions taking every
combination ofconst valarray<T>& and replacement types shall be added.

5 In particular, an implementation shall allow avalarray<T> to be constructed from such replacement
types and shall allow assignments and computed assignments of such types tovalarray<T> ,
slice_array<T> , gslice_array<T> , mask_array<T> andindirect_array<T> objects.

6 These library functions are permitted to throw abad_alloc (18.4.2.1) exception if there are not sufficient
resources available to carry out the operation. Note that the exception is not mandated.

254) Clause B recommends a minimum number of recursively nested template instantiations. This requirement thus indirectly sug-
gests a minimum allowable complexity for valarray expressions.

576

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library 26.3.1 Header<valarray> synopsis

[lib.template.valarray] 26.3.2 Template classvalarray

namespace std {
template<class T> class valarray {
public:

typedef T value_type;

// 26.3.2.1 construct/destroy:
valarray();
explicit valarray(size_t);
valarray(const T&, size_t);
valarray(const T*, size_t);
valarray(const valarray&);
valarray(const slice_array<T>&);
valarray(const gslice_array<T>&);
valarray(const mask_array<T>&);
valarray(const indirect_array<T>&);

~valarray();

// 26.3.2.2 assignment:
valarray<T>& operator=(const valarray<T>&);
valarray<T>& operator=(const T&);
valarray<T>& operator=(const slice_array<T>&);
valarray<T>& operator=(const gslice_array<T>&);
valarray<T>& operator=(const mask_array<T>&);
valarray<T>& operator=(const indirect_array<T>&);

// 26.3.2.3 element access:
T operator[](size_t) const;
T& operator[](size_t);

// 26.3.2.4 subset operations:
valarray<T> operator[](slice) const;
slice_array<T> operator[](slice);
valarray<T> operator[](const gslice&) const;
gslice_array<T> operator[](const gslice&);
valarray<T> operator[](const valarray<bool>&) const;
mask_array<T> operator[](const valarray<bool>&);
valarray<T> operator[](const valarray<size_t>&) const;
indirect_array<T> operator[](const valarray<size_t>&);

// 26.3.2.5 unary operators:
valarray<T> operator+() const;
valarray<T> operator-() const;
valarray<T> operator~() const;
valarray<T> operator!() const;

// 26.3.2.6 computed assignment:
valarray<T>& operator*= (const T&);
valarray<T>& operator/= (const T&);
valarray<T>& operator%= (const T&);
valarray<T>& operator+= (const T&);
valarray<T>& operator-= (const T&);
valarray<T>& operator^= (const T&);
valarray<T>& operator&= (const T&);
valarray<T>& operator|= (const T&);
valarray<T>& operator<<=(const T&);
valarray<T>& operator>>=(const T&);

577

ISO/IEC 14882:1998(E) © ISO/IEC

26.3.2 Template classvalarray 26 Numerics library

valarray<T>& operator*= (const valarray<T>&);
valarray<T>& operator/= (const valarray<T>&);
valarray<T>& operator%= (const valarray<T>&);
valarray<T>& operator+= (const valarray<T>&);
valarray<T>& operator-= (const valarray<T>&);
valarray<T>& operator^= (const valarray<T>&);
valarray<T>& operator|= (const valarray<T>&);
valarray<T>& operator&= (const valarray<T>&);
valarray<T>& operator<<=(const valarray<T>&);
valarray<T>& operator>>=(const valarray<T>&);

// 26.3.2.7 member functions:
size_t size() const;

T sum() const;
T min() const;
T max() const;

valarray<T> shift (int) const;
valarray<T> cshift(int) const;
valarray<T> apply(T func(T)) const;
valarray<T> apply(T func(const T&)) const;
void resize(size_t sz, T c = T());

};
}

1 The template classvalarray< T> is a one-dimensional smart array, with elements numbered sequentially
from zero. It is a representation of the mathematical concept of an ordered set of values. The illusion of
higher dimensionality may be produced by the familiar idiom of computed indices, together with the pow-
erful subsetting capabilities provided by the generalized subscript operators.255)

2 An implementation is permitted to qualify any of the functions declared in<valarray> asinline .

[lib.valarray.cons] 26.3.2.1valarray constructors

valarray();

1 Effects: Constructs an object of classvalarray< T>,256) which has zero length until it is passed into a
library function as a modifiable lvalue or through a non-constantthis pointer.257)

explicit valarray(size_t);

2 The array created by this constructor has a length equal to the value of the argument. The elements of the
array are constructed using the default constructor for the instantiating typeT.

valarray(const T&, size_t);

3 The array created by this constructor has a length equal to the second argument. The elements of the array
are initialized with the value of the first argument.

255) The intent is to specify an array template that has the minimum functionality necessary to address aliasing ambiguities and the
proliferation of temporaries. Thus, thevalarray template is neither a matrix class nor a field class. However, it is a very useful
building block for designing such classes.
256)For convenience, such objects are referred to as ‘‘arrays’’ throughout the remainder of 26.3.
257) This default constructor is essential, since arrays ofvalarray are likely to prove useful. There shall also be a way to change
the size of an array after initialization; this is supplied by the semantics of theresize member function.

578

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library 26.3.2.1valarray constructors

valarray(const T*, size_t);

4 The array created by this constructor has a length equal to the second argumentn. The values of the ele-
ments of the array are initialized with the firstn values pointed to by the first argument.258) If the value of
the second argument is greater than the number of values pointed to by the first argument, the behavior is
undefined.

valarray(const valarray<T>&);

5 The array created by this constructor has the same length as the argument array. The elements are initial-
ized with the values of the corresponding elements of the argument array.259)

valarray(const slice_array<T>&);
valarray(const gslice_array<T>&);
valarray(const mask_array<T>&);
valarray(const indirect_array<T>&);

6 These conversion constructors convert one of the four reference templates to avalarray .

~valarray();

7 The destructor is applied to every element of*this ; an implementation may return all allocated memory.

[lib.valarray.assign] 26.3.2.2valarray assignment

valarray<T>& operator=(const valarray<T>&);

1 Each element of the*this array is assigned the value of the corresponding element of the argument array.
The resulting behavior is undefined if the length of the argument array is not equal to the length of the
*this array.

valarray<T>& operator=(const T&);

2 The scalar assignment operator causes each element of the*this array to be assigned the value of the
argument.

valarray<T>& operator=(const slice_array<T>&);
valarray<T>& operator=(const gslice_array<T>&);
valarray<T>& operator=(const mask_array<T>&);
valarray<T>& operator=(const indirect_array<T>&);

3 These operators allow the results of a generalized subscripting operation to be assigned directly to a
valarray .

4 If the value of an element in the left hand side of a valarray assignment operator depends on the value of
another element in that left hand side, the resulting behavior is undefined.

258)This constructor is the preferred method for converting a C array to avalarray object.
259) This copy constructor creates a distinct array rather than an alias. Implementations in which arrays share storage are permitted,
but they shall implement a copy-on-reference mechanism to ensure that arrays are conceptually distinct.

579

ISO/IEC 14882:1998(E) © ISO/IEC

26.3.2.2valarray assignment 26 Numerics library

[lib.valarray.access] 26.3.2.3valarray element access

T operator[](size_t) const;
T& operator[](size_t);

1 When applied to a constant array, the subscript operator returns the value of the corresponding element of
the array. When applied to a non-constant array, the subscript operator returns a reference to the corre-
sponding element of the array.

2 Thus, the expression(a[i] = q, a[i]) == q evaluates as true for any non-constant
valarray<T> a , anyT q , and for anysize_t i such that the value ofi is less than the length ofa.

3 The expression&a[i+j] == &a[i] + j evaluates as true for allsize_t i andsize_t j such
that i+j is less than the length of the non-constant arraya.

4 Likewise, the expression&a[i] != &b[j] evaluates astrue for any two non-constant arraysa andb
and for anysize_t i andsize_t j such thati is less than the length ofa andj is less than the length
of b. This property indicates an absence of aliasing and may be used to advantage by optimizing compil-
ers.260)

5 The reference returned by the subscript operator for a non-constant array is guaranteed to be valid until the
member functionresize(size_t, T) (26.3.2.7) is called for that array or until the lifetime of that
array ends, whichever happens first.

6 If the subscript operator is invoked with asize_t argument whose value is not less than the length of the
array, the behavior is undefined.

[lib.valarray.sub] 26.3.2.4valarray subset operations

valarray<T> operator[](slice) const;
slice_array<T> operator[](slice);
valarray<T> operator[](const gslice&) const;
gslice_array<T> operator[](const gslice&);
valarray<T> operator[](const valarray<bool>&) const;
mask_array<T> operator[](const valarray<bool>&);
valarray<T> operator[](const valarray<size_t>&) const;
indirect_array<T> operator[](const valarray<size_t>&);

1 Each of these operations returns a subset of the array. Theconst -qualified versions return this subset as a
newvalarray . The non-const versions return a class template object which has reference semantics to
the original array.

[lib.valarray.unary] 26.3.2.5valarray unary operators

valarray<T> operator+() const;
valarray<T> operator-() const;
valarray<T> operator~() const;
valarray<bool> operator!() const;

1 Each of these operators may only be instantiated for a typeT to which the indicated operator can be applied
and for which the indicated operator returns a value which is of typeT (bool for operator!) or which
may be unambiguously converted to typeT (bool for operator!).

2 Each of these operators returns an array whose length is equal to the length of the array. Each element of
the returned array is initialized with the result of applying the indicated operator to the corresponding ele-
ment of the array.

260) Compilers may take advantage of inlining, constant propagation, loop fusion, tracking of pointers obtained fromoperator
new, and other techniques to generate efficientvalarray s.

580

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library 26.3.2.6valarray computed assignment

[lib.valarray.cassign] 26.3.2.6valarray computed assignment

valarray<T>& operator*= (const valarray<T>&);
valarray<T>& operator/= (const valarray<T>&);
valarray<T>& operator%= (const valarray<T>&);
valarray<T>& operator+= (const valarray<T>&);
valarray<T>& operator-= (const valarray<T>&);
valarray<T>& operator^= (const valarray<T>&);
valarray<T>& operator&= (const valarray<T>&);
valarray<T>& operator|= (const valarray<T>&);
valarray<T>& operator<<=(const valarray<T>&);
valarray<T>& operator>>=(const valarray<T>&);

1 Each of these operators may only be instantiated for a typeT to which the indicated operator can be
applied. Each of these operators performs the indicated operation on each of its elements and the corre-
sponding element of the argument array.

2 The array is then returned by reference.

3 If the array and the argument array do not have the same length, the behavior is undefined. The appearance
of an array on the left hand side of a computed assignment doesnot invalidate references or pointers.

4 If the value of an element in the left hand side of a valarray computed assignment operator depends on the
value of another element in that left hand side, the resulting behavior is undefined.

valarray<T>& operator*= (const T&);
valarray<T>& operator/= (const T&);
valarray<T>& operator%= (const T&);
valarray<T>& operator+= (const T&);
valarray<T>& operator-= (const T&);
valarray<T>& operator^= (const T&);
valarray<T>& operator&= (const T&);
valarray<T>& operator|= (const T&);
valarray<T>& operator<<=(const T&);
valarray<T>& operator>>=(const T&);

5 Each of these operators may only be instantiated for a typeT to which the indicated operator can be
applied.

6 Each of these operators applies the indicated operation to each element of the array and the non-array argu-
ment.

7 The array is then returned by reference.

8 The appearance of an array on the left hand side of a computed assignment doesnot invalidate references or
pointers to the elements of the array.

[lib.valarray.members] 26.3.2.7valarray member functions

size_t size() const;

1 This function returns the number of elements in the array.

T sum() const;

This function may only be instantiated for a typeT to whichoperator+= can be applied. This function
returns the sum of all the elements of the array.

2 If the array has length 0, the behavior is undefined. If the array has length 1,sum() returns the value of
element 0. Otherwise, the returned value is calculated by applyingoperator+= to a copy of an element
of the array and all other elements of the array in an unspecified order.

581

ISO/IEC 14882:1998(E) © ISO/IEC

26.3.2.7valarray member functions 26 Numerics library

T min() const;

3 This function returns the minimum value contained in*this . The value returned for an array of length 0
is undefined. For an array of length 1, the value of element 0 is returned. For all other array lengths, the
determination is made usingoperator< .

T max() const;

4 This function returns the maximum value contained in*this . The value returned for an array of length 0
is undefined. For an array of length 1, the value of element 0 is returned. For all other array lengths, the
determination is made usingoperator< .

valarray<T> shift(int n) const;

5 This function returns an object of classvalarray<T> of lengthsize() , each of whose elementsI is
(*this)[I+n] if I+n is non-negative and less thansize() , otherwiseT() . Thus if element zero is
taken as the leftmost element, a positive value ofn shifts the elements leftn places, with zero fill.

6 [Example:If the argument has the value -2, the first two elements of the result will be constructed using the
default constructor; the third element of the result will be assigned the value of the first element of the argu-
ment; etc. —end example]

valarray<T> cshift(int n) const;

7 This function returns an object of classvalarray<T> , of lengthsize() , each of whose elementsI is
(*this)[(I+n)%size()] . Thus, if element zero is taken as the leftmost element, a positive value ofn
shifts the elements circularly leftn places.

valarray<T> apply(T func(T)) const;
valarray<T> apply(T func(const T&)) const;

8 These functions return an array whose length is equal to the array. Each element of the returned array is
assigned the value returned by applying the argument function to the corresponding element of the array.

void resize(size_t sz, T c = T());

9 This member function changes the length of the*this array tosz and then assigns to each element the
value of the second argument. Resizing invalidates all pointers and references to elements in the array.

582

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library 26.3.2.7valarray member functions

[lib.valarray.nonmembers] 26.3.3 valarray non-member operations

[lib.valarray.binary] 26.3.3.1valarray binary operators

template<class T> valarray<T> operator*
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator/
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator%
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator+
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator-
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator^
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator&
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator|
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator<<
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator>>
(const valarray<T>&, const valarray<T>&);

1 Each of these operators may only be instantiated for a typeT to which the indicated operator can be applied
and for which the indicated operator returns a value which is of typeT or which can be unambiguously con-
verted to typeT.

2 Each of these operators returns an array whose length is equal to the lengths of the argument arrays. Each
element of the returned array is initialized with the result of applying the indicated operator to the corre-
sponding elements of the argument arrays.

3 If the argument arrays do not have the same length, the behavior is undefined.

template<class T> valarray<T> operator* (const valarray<T>&, const T&);
template<class T> valarray<T> operator* (const T&, const valarray<T>&);
template<class T> valarray<T> operator/ (const valarray<T>&, const T&);
template<class T> valarray<T> operator/ (const T&, const valarray<T>&);
template<class T> valarray<T> operator% (const valarray<T>&, const T&);
template<class T> valarray<T> operator% (const T&, const valarray<T>&);
template<class T> valarray<T> operator+ (const valarray<T>&, const T&);
template<class T> valarray<T> operator+ (const T&, const valarray<T>&);
template<class T> valarray<T> operator- (const valarray<T>&, const T&);
template<class T> valarray<T> operator- (const T&, const valarray<T>&);
template<class T> valarray<T> operator^ (const valarray<T>&, const T&);
template<class T> valarray<T> operator^ (const T&, const valarray<T>&);
template<class T> valarray<T> operator& (const valarray<T>&, const T&);
template<class T> valarray<T> operator& (const T&, const valarray<T>&);
template<class T> valarray<T> operator| (const valarray<T>&, const T&);
template<class T> valarray<T> operator| (const T&, const valarray<T>&);
template<class T> valarray<T> operator<<(const valarray<T>&, const T&);
template<class T> valarray<T> operator<<(const T&, const valarray<T>&);
template<class T> valarray<T> operator>>(const valarray<T>&, const T&);
template<class T> valarray<T> operator>>(const T&, const valarray<T>&);

4 Each of these operators may only be instantiated for a typeT to which the indicated operator can be applied
and for which the indicated operator returns a value which is of typeT or which can be unambiguously con-
verted to typeT.

583

ISO/IEC 14882:1998(E) © ISO/IEC

26.3.3.1valarray binary operators 26 Numerics library

5 Each of these operators returns an array whose length is equal to the length of the array argument. Each
element of the returned array is initialized with the result of applying the indicated operator to the corre-
sponding element of the array argument and the non-array argument.

[lib.valarray.comparison] 26.3.3.2valarray logical operators

template<class T> valarray<bool> operator==
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator!=
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator<
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator>
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator<=
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator>=
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator&&
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator||
(const valarray<T>&, const valarray<T>&);

1 Each of these operators may only be instantiated for a typeT to which the indicated operator can be applied
and for which the indicated operator returns a value which is of typebool or which can be unambiguously
converted to typebool .

2 Each of these operators returns abool array whose length is equal to the length of the array arguments.
Each element of the returned array is initialized with the result of applying the indicated operator to the cor-
responding elements of the argument arrays.

3 If the two array arguments do not have the same length, the behavior is undefined.

template<class T> valarray<bool> operator==(const valarray<T>&, const T&);
template<class T> valarray<bool> operator==(const T&, const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator!=(const T&, const valarray<T>&);
template<class T> valarray<bool> operator< (const valarray<T>&, const T&);
template<class T> valarray<bool> operator< (const T&, const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&, const T&);
template<class T> valarray<bool> operator> (const T&, const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator<=(const T&, const valarray<T>&);
template<class T> valarray<bool> operator>=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator>=(const T&, const valarray<T>&);
template<class T> valarray<bool> operator&&(const valarray<T>&, const T&);
template<class T> valarray<bool> operator&&(const T&, const valarray<T>&);
template<class T> valarray<bool> operator||(const valarray<T>&, const T&);
template<class T> valarray<bool> operator||(const T&, const valarray<T>&);

4 Each of these operators may only be instantiated for a typeT to which the indicated operator can be applied
and for which the indicated operator returns a value which is of typebool or which can be unambiguously
converted to typebool .

5 Each of these operators returns abool array whose length is equal to the length of the array argument.
Each element of the returned array is initialized with the result of applying the indicated operator to the cor-
responding element of the array and the non-array argument.

584

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library 26.3.3.2valarray logical operators

[lib.valarray.transcend] 26.3.3.3valarray transcendentals

template<class T> valarray<T> abs (const valarray<T>&);
template<class T> valarray<T> acos (const valarray<T>&);
template<class T> valarray<T> asin (const valarray<T>&);
template<class T> valarray<T> atan (const valarray<T>&);
template<class T> valarray<T> atan2

(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> atan2(const valarray<T>&, const T&);
template<class T> valarray<T> atan2(const T&, const valarray<T>&);
template<class T> valarray<T> cos (const valarray<T>&);
template<class T> valarray<T> cosh (const valarray<T>&);
template<class T> valarray<T> exp (const valarray<T>&);
template<class T> valarray<T> log (const valarray<T>&);
template<class T> valarray<T> log10(const valarray<T>&);
template<class T> valarray<T> pow

(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> pow (const valarray<T>&, const T&);
template<class T> valarray<T> pow (const T&, const valarray<T>&);
template<class T> valarray<T> sin (const valarray<T>&);
template<class T> valarray<T> sinh (const valarray<T>&);
template<class T> valarray<T> sqrt (const valarray<T>&);
template<class T> valarray<T> tan (const valarray<T>&);
template<class T> valarray<T> tanh (const valarray<T>&);

1 Each of these functions may only be instantiated for a typeT to which a unique function with the indicated
name can be applied. This function shall return a value which is of typeT or which can be unambiguously
converted to typeT.

[lib.class.slice] 26.3.4 Classslice

namespace std {
class slice {
public:

slice();
slice(size_t, size_t, size_t);

size_t start() const;
size_t size() const;
size_t stride() const;

};
}

1 Theslice class represents a BLAS-like slice from an array. Such a slice is specified by a starting index,
a length, and a stride.261)

[lib.cons.slice] 26.3.4.1slice constructors

slice();
slice(size_t start , size_t length , size_t stride);
slice(const slice&);

1 The default constructor forslice creates aslice which specifies no elements. A default constructor is
provided only to permit the declaration of arrays of slices. The constructor with arguments for a slice takes
a start, length, and stride parameter.

261)BLAS stands forBasic Linear Algebra Subprograms.C++ programs may instantiate this class. See, for example, Dongarra, Du
Croz, Duff, and Hammerling:A set of Level 3 Basic Linear Algebra Subprograms; Technical Report MCS– P1– 0888, Argonne
National Laboratory (USA), Mathematics and Computer Science Division, August, 1988.

585

ISO/IEC 14882:1998(E) © ISO/IEC

26.3.4.1slice constructors 26 Numerics library

2 [Example:slice(3, 8, 2) constructs a slice which selects elements 3, 5, 7, ... 17 from an array.
—end example]

[lib.slice.access] 26.3.4.2slice access functions

size_t start() const;
size_t size() const;
size_t stride() const;

1 These functions return the start, length, or stride specified by aslice object.

[lib.template.slice.array] 26.3.5 Template classslice_array

namespace std {
template <class T> class slice_array {
public:

typedef T value_type;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

void operator=(const T&);
~slice_array();

private:
slice_array();
slice_array(const slice_array&);
slice_array& operator=(const slice_array&);
// remainder implementation defined

};
}

1 Theslice_array template is a helper template used by theslice subscript operator

slice_array<T> valarray<T>::operator[](slice);

It has reference semantics to a subset of an array specified by aslice object.

2 [Example:The expressiona[slice(1, 5, 3)] = b; has the effect of assigning the elements ofb to
a slice of the elements ina. For the slice shown, the elements selected froma are 1, 4, ..., 13.
—end example]

3 [Note: C++ programs may not instantiateslice_array , since all its constructors are private. It is
intended purely as a helper class and should be transparent to the user.—end note]

586

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library 26.3.5 Template classslice_array

[lib.cons.slice.arr] 26.3.5.1slice_array constructors

slice_array();
slice_array(const slice_array&);

1 The slice_array template has no public constructors. These constructors are declared to be private.
These constructors need not be defined.

[lib.slice.arr.assign] 26.3.5.2slice_array assignment

void operator=(const valarray<T>&) const;
slice_array& operator=(const slice_array&);

1 The second of these two assignment operators is declared private and need not be defined. The first has ref-
erence semantics, assigning the values of the argument array elements to selected elements of the
valarray<T> object to which theslice_array object refers.

[lib.slice.arr.comp.assign] 26.3.5.3slice_array computed assignment

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These computed assignments have reference semantics, applying the indicated operation to the elements of
the argument array and selected elements of thevalarray<T> object to which theslice_array
object refers.

[lib.slice.arr.fill] 26.3.5.4slice_array fill function

void operator=(const T&);

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which theslice_array object refers.

[lib.class.gslice] 26.3.6 Thegslice class

namespace std {
class gslice {
public:

gslice();
gslice(size_t s, const valarray<size_t>& l, const valarray<size_t>& d);

size_t start() const;
valarray<size_t> size() const;
valarray<size_t> stride() const;

};
}

1 This class represents a generalized slice out of an array. Agslice is defined by a starting offset (s), a set
of lengths (l j), and a set of strides (dj). The number of lengths shall equal the number of strides.

587

ISO/IEC 14882:1998(E) © ISO/IEC

26.3.6 Thegslice class 26 Numerics library

2 A gslice represents a mapping from a set of indices (i j), equal in number to the number of strides, to a
single indexk. It is useful for building multidimensional array classes using thevalarray template,
which is one-dimensional. The set of one-dimensional index values specified by agslice are
k = s+

j
Σ i j dj where the multidimensional indicesi j range in value from 0 tol i j − 1.

3 [Example:Thegslice specification

start = 3
length = {2, 4, 3}
stride = {19, 4, 1}

yields the sequence of one-dimensional indices

k = 3+ (0 , 1)×19+ (0 , 1 , 2 , 3)×4+ (0 , 1 , 2)×1

which are ordered as shown in the following table:

(i 0, i 1, i 2, k) =
(0, 0, 0, 3),
(0, 0, 1, 4),
(0, 0, 2, 5),
(0, 1, 0, 7),
(0, 1, 1, 8),
(0, 1, 2, 9),
(0, 2, 0, 11),
(0, 2, 1, 12),
(0, 2, 2, 13),
(0, 3, 0, 15),
(0, 3, 1, 16),
(0, 3, 2, 17),
(1, 0, 0, 22),
(1, 0, 1, 23),
...
(1, 3, 2, 36)

That is, the highest-ordered index turns fastest.—end example]

4 It is possible to have degenerate generalized slices in which an address is repeated.

5 [Example:If the stride parameters in the previous example are changed to {1, 1, 1}, the first few elements
of the resulting sequence of indices will be

(0, 0, 0, 3),
(0, 0, 1, 4),
(0, 0, 2, 5),
(0, 1, 0, 4),
(0, 1, 1, 5),
(0, 1, 2, 6),
...

—end example]

6 If a degenerate slice is used as the argument to the non-const version of operator[](const
gslice&) , the resulting behavior is undefined.

[lib.gslice.cons] 26.3.6.1gslice constructors

gslice();
gslice(size_t start , const valarray<size_t>& lengths ,

const valarray<size_t>& strides);
gslice(const gslice&);

588

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library 26.3.6.1gslice constructors

1 The default constructor creates agslice which specifies no elements. The constructor with arguments
builds agslice based on a specification of start, lengths, and strides, as explained in the previous section.

[lib.gslice.access] 26.3.6.2gslice access functions

size_t start() const;
valarray<size_t> size() const;
valarray<size_t> stride() const;

These access functions return the representation of the start, lengths, or strides specified for thegslice .

[lib.template.gslice.array] 26.3.7 Template classgslice_array

namespace std {
template <class T> class gslice_array {
public:

typedef T value_type;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

void operator=(const T&);
~gslice_array();

private:
gslice_array();
gslice_array(const gslice_array&);
gslice_array& operator=(const gslice_array&);
// remainder implementation defined

};
}

1 This template is a helper template used by theslice subscript operator

gslice_array<T> valarray<T>::operator[](const gslice&);

It has reference semantics to a subset of an array specified by agslice object.

2 Thus, the expressiona[gslice(1, length, stride)] = b has the effect of assigning the ele-
ments ofb to a generalized slice of the elements ina.

3 [Note: C++ programs may not instantiategslice_array , since all its constructors are private. It is
intended purely as a helper class and should be transparent to the user.—end note]

[lib.gslice.array.cons] 26.3.7.1gslice_array constructors

gslice_array();
gslice_array(const gslice_array&);

1 Thegslice_array template has no public constructors. It declares the above constructors to be private.
These constructors need not be defined.

589

ISO/IEC 14882:1998(E) © ISO/IEC

26.3.7.2gslice_array assignment 26 Numerics library

[lib.gslice.array.assign] 26.3.7.2gslice_array assignment

void operator=(const valarray<T>&) const;
gslice_array& operator=(const gslice_array&);

1 The second of these two assignment operators is declared private and need not be defined. The first has ref-
erence semantics, assigning the values of the argument array elements to selected elements of the
valarray<T> object to which thegslice_array refers.

[lib.gslice.array.comp.assign] 26.3.7.3gslice_array computed assignment

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These computed assignments have reference semantics, applying the indicated operation to the elements of
the argument array and selected elements of thevalarray<T> object to which thegslice_array
object refers.

[lib.gslice.array.fill] 26.3.7.4gslice_array fill function

void operator=(const T&);

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which thegslice_array object refers.

[lib.template.mask.array] 26.3.8 Template classmask_array

namespace std {
template <class T> class mask_array {
public:

typedef T value_type;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

590

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library 26.3.8 Template classmask_array

void operator=(const T&);
~mask_array();

private:
mask_array();
mask_array(const mask_array&);
mask_array& operator=(const mask_array&);
// remainder implementation defined

};
}

1 This template is a helper template used by the mask subscript operator:
mask_array<T> valarray<T>::operator[](const valarray<bool>&) .

It has reference semantics to a subset of an array specified by a boolean mask. Thus, the expression
a[mask] = b; has the effect of assigning the elements ofb to the masked elements ina (those for
which the corresponding element inmask is true .)

2 [Note:C++ programs may not declare instances ofmask_array , since all its constructors are private. It
is intended purely as a helper class, and should be transparent to the user.—end note]

[lib.mask.array.cons] 26.3.8.1mask_array constructors

mask_array();
mask_array(const mask_array&);

1 The mask_array template has no public constructors. It declares the above constructors to be private.
These constructors need not be defined.

[lib.mask.array.assign] 26.3.8.2mask_array assignment

void operator=(const valarray<T>&) const;
mask_array& operator=(const mask_array&);

1 The second of these two assignment operators is declared private and need not be defined. The first has ref-
erence semantics, assigning the values of the argument array elements to selected elements of the
valarray<T> object to which it refers.

[lib.mask.array.comp.assign] 26.3.8.3mask_array computed assignment

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These computed assignments have reference semantics, applying the indicated operation to the elements of
the argument array and selected elements of thevalarray<T> object to which the mask object refers.

591

ISO/IEC 14882:1998(E) © ISO/IEC

26.3.8.3mask_array computed assignment 26 Numerics library

[lib.mask.array.fill] 26.3.8.4mask_array fill function

void operator=(const T&);

This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which themask_array object refers.

[lib.template.indirect.array] 26.3.9 Template classindirect_array

namespace std {
template <class T> class indirect_array {
public:

typedef T value_type;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

void operator=(const T&);
~indirect_array();

private:
indirect_array();
indirect_array(const indirect_array&);
indirect_array& operator=(const indirect_array&);
// remainder implementation defined

};
}

1 This template is a helper template used by the indirect subscript operator
indirect_array<T> valarray<T>::operator[](const valarray<size_t>&) .

It has reference semantics to a subset of an array specified by anindirect_array . Thus the expression
a[indirect] = b; has the effect of assigning the elements ofb to the elements ina whose indices
appear inindirect .

2 [Note: C++ programs may not declare instances ofindirect_array , since all its constructors are pri-
vate. It is intended purely as a helper class, and should be transparent to the user.—end note]

[lib.indirect.array.cons] 26.3.9.1 indirect_array constructors

indirect_array();
indirect_array(const indirect_array&);

The indirect_array template has no public constructors. The constructors listed above are private.
These constructors need not be defined.

592

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library 26.3.9.1indirect_array constructors

[lib.indirect.array.assign] 26.3.9.2 indirect_array assignment

void operator=(const valarray<T>&) const;
indirect_array& operator=(const indirect_array&);

1 The second of these two assignment operators is declared private and need not be defined. The first has ref-
erence semantics, assigning the values of the argument array elements to selected elements of the
valarray<T> object to which it refers.

2 If the indirect_array specifies an element in thevalarray<T> object to which it refers more than
once, the behavior is undefined.

3 [Example:

int addr[] = {2, 3, 1, 4, 4};
valarray<size_t> indirect(addr, 5);
valarray<double> a(0., 10), b(1., 5);
a[indirect] = b;

results in undefined behavior since element 4 is specified twice in the indirection.—end example]

[lib.indirect.array.comp.assign] 26.3.9.3 indirect_array computed assignment

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These computed assignments have reference semantics, applying the indicated operation to the elements of
the argument array and selected elements of thevalarray<T> object to which theindirect_array
object refers.

2 If the indirect_array specifies an element in thevalarray<T> object to which it refers more than
once, the behavior is undefined.

[lib.indirect.array.fill] 26.3.9.4 indirect_array fill function

void operator=(const T&);

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which theindirect_array object refers.

[lib.numeric.ops] 26.4 Generalized numeric operations

Header<numeric> synopsis

namespace std {
template <class InputIterator, class T>

T accumulate(InputIterator first , InputIterator last , T init);
template <class InputIterator, class T, class BinaryOperation>

T accumulate(InputIterator first , InputIterator last , T init ,
BinaryOperation binary_op);

593

ISO/IEC 14882:1998(E) © ISO/IEC

26.4 Generalized numeric operations 26 Numerics library

template <class InputIterator1, class InputIterator2, class T>
T inner_product(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , T init);
template <class InputIterator1, class InputIterator2, class T,

class BinaryOperation1, class BinaryOperation2>
T inner_product(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , T init ,
BinaryOperation1 binary_op1 ,
BinaryOperation2 binary_op2);

template <class InputIterator, class OutputIterator>
OutputIterator partial_sum(InputIterator first ,

InputIterator last ,
OutputIterator result);

template <class InputIterator, class OutputIterator,
class BinaryOperation>

OutputIterator partial_sum(InputIterator first ,
InputIterator last ,
OutputIterator result ,
BinaryOperation binary_op);

template <class InputIterator, class OutputIterator>
OutputIterator adjacent_difference(InputIterator first ,

InputIterator last ,
OutputIterator result);

template <class InputIterator, class OutputIterator,
class BinaryOperation>

OutputIterator adjacent_difference(InputIterator first ,
InputIterator last ,
OutputIterator result ,
BinaryOperation binary_op);

}

1 The requirements on the types of algorithms’ arguments that are described in the introduction to clause 25
also apply to the following algorithms.

[lib.accumulate] 26.4.1 Accumulate

template <class InputIterator, class T>
T accumulate(InputIterator first , InputIterator last , T init);

template <class InputIterator, class T, class BinaryOperation>
T accumulate(InputIterator first , InputIterator last , T init ,

BinaryOperation binary_op);

1 Effects: Computes its result by initializing the accumulatoracc with the initial valueinit and then mod-
ifies it with acc = acc + *i or acc = binary_op(acc, *i) for every iteratori in the range
[first, last) in order.262)

2 Requires: T must meet the requirements of CopyConstructible (20.1.3) and Assignable (23.1) types.
binary_op shall not cause side effects.

262)accumulate is similar to the APL reduction operator and Common Lisp reduce function, but it avoids the difficulty of defining
the result of reduction on an empty sequence by always requiring an initial value.

594

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library 26.4.1 Accumulate

[lib.inner.product] 26.4.2 Inner product

template <class InputIterator1, class InputIterator2, class T>
T inner_product(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , T init);
template <class InputIterator1, class InputIterator2, class T,

class BinaryOperation1, class BinaryOperation2>
T inner_product(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , T init ,
BinaryOperation1 binary_op1 ,
BinaryOperation2 binary_op2);

1 Effects: Computes its result by initializing the accumulatoracc with the initial valueinit and then mod-
ifying it with acc = acc + (*i1) * (*i2) or acc = binary_op1(acc,
binary_op2(*i1, *i2)) for every iteratori1 in the range[first, last) and iteratori2 in
the range[first2, first2 + (last - first)) in order.

2 Requires: T must meet the requirements of CopyConstructible (20.1.3) and Assignable (23.1) types.
binary_op1 andbinary_op2 shall not cause side effects.

[lib.partial.sum] 26.4.3 Partial sum

template <class InputIterator, class OutputIterator>
OutputIterator

partial_sum(InputIterator first , InputIterator last ,
OutputIterator result);

template
<class InputIterator, class OutputIterator, class BinaryOperation>

OutputIterator
partial_sum(InputIterator first , InputIterator last ,

OutputIterator result , BinaryOperation binary_op);

1 Effects: Assigns to every element referred to by iteratori in the range[result, result + (last
- first)) a value correspondingly equal to
((...(*first + *(first + 1)) + ...) + *(first + (i - result)))
or
binary_op(binary_op(..., binary_op(*first, *(first + 1)),...),
*(first + (i - result)))

2 Returns: result + (last - first) .
3 Complexity: Exactly(last - first) - 1 applications ofbinary_op .
4 Requires: binary_op is expected not to have any side effects.
5 Notes: result may be equal tofirst .

[lib.adjacent.difference] 26.4.4 Adjacent difference

template <class InputIterator, class OutputIterator>
OutputIterator

adjacent_difference(InputIterator first , InputIterator last ,
OutputIterator result);

template
<class InputIterator, class OutputIterator, class BinaryOperation>

OutputIterator
adjacent_difference(InputIterator first , InputIterator last ,

OutputIterator result ,
BinaryOperation binary_op);

1 Effects: Assigns to every element referred to by iteratori in the range[result + 1, result +
(last - first)) a value correspondingly equal to
*(first + (i - result)) - *(first + (i - result) - 1)
or

595

ISO/IEC 14882:1998(E) © ISO/IEC

26.4.4 Adjacent difference 26 Numerics library

binary_op(*(first + (i - result)), *(first + (i - result) - 1)) .
result gets the value of*first .

2 Requires: binary_op shall not have any side effects.
3 Notes: result may be equal tofirst .
4 Returns: result + (last - first) .
5 Complexity: Exactly(last - first) - 1 applications ofbinary_op .

[lib.c.math] 26.5 C Library

1 Tables 80 and 81 describe headers<cmath> and<cstdlib> (abs() , div() , rand() , srand()),
respectively.

Table 80—Header<cmath> synopsis

Type Name(s)___
Macro: HUGE_VAL___
Functions:
acos cos fmod modf tan

asin cosh frexp pow tanh

atan exp ldexp sin

atan2 fabs log sinh

ceil floor log10 sqrt___

Table 81—Header<cstdlib> synopsis
_ ______________________________

Type Name(s)_ ______________________________
Macros: RAND_MAX_ ______________________________
Types: div_t ldiv_t_ ______________________________
Functions:
abs labs srand

div ldiv rand_ ______________________________

2 The contents of these headers are the same as the Standard C library headers<math.h> and
<stdlib.h> respectively, with the following additions:

3 In addition to theint versions of certain math functions in<cstdlib> , C++ addslong overloaded ver-
sions of these functions, with the same semantics.

4 The added signatures are:

long abs(long); // labs()
ldiv_t div(long, long); // ldiv()

5 In addition to thedouble versions of the math functions in<cmath> , C++ adds float and long
double overloaded versions of these functions, with the same semantics.

596

© ISO/IEC ISO/IEC 14882:1998(E)

26 Numerics library 26.5 C Library

6 The added signatures are:

float abs (float);
float acos (float);
float asin (float);
float atan (float);
float atan2(float, float);
float ceil (float);
float cos (float);
float cosh (float);
float exp (float);
float fabs (float);
float floor(float);
float fmod (float, float);
float frexp(float, int*);
float ldexp(float, int);
float log (float);
float log10(float);
float modf (float, float*);
float pow (float, float);
float pow (float, int);
float sin (float);
float sinh (float);
float sqrt (float);
float tan (float);
float tanh (float);

double abs(double); // fabs()
double pow(double, int);

long double abs (long double);
long double acos (long double);
long double asin (long double);
long double atan (long double);
long double atan2(long double, long double);
long double ceil (long double);
long double cos (long double);
long double cosh (long double);
long double exp (long double);
long double fabs (long double);
long double floor(long double);
long double fmod (long double, long double);
long double frexp(long double, int*);
long double ldexp(long double, int);
long double log (long double);
long double log10(long double);
long double modf (long double, long double*);
long double pow (long double, long double);
long double pow (long double, int);
long double sin (long double);
long double sinh (long double);
long double sqrt (long double);
long double tan (long double);
long double tanh (long double);

SEE ALSO: ISO C subclauses 7.5, 7.10.2, 7.10.6.

597

ISO/IEC 14882:1998(E) © ISO/IEC

598

(Blank page)

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27 Input/output library

27 Input/output library [lib.input.output]

1 This clause describes components that C++ programs may use to perform input/output operations.

2 The following subclauses describe requirements for stream parameters, and components for forward decla-
rations of iostreams, predefined iostreams objects, base iostreams classes, stream buffering, stream format-
ting and manipulators, string streams, and file streams, as summarized in Table 82:

Table 82—Input/output library summary
_ ___

Subclause Header(s)_ __ ___
27.1 Requirements_ ___
27.2 Forward declarations <iosfwd>_ ___
27.3 Standard iostream objects <iostream>_ ___
27.4 Iostreams base classes <ios>_ ___
27.5 Stream buffers <streambuf>_ ___

<istream>
<ostream>27.6 Formatting and manipulators
<iomanip>_ ___
<sstream>

27.7 String streams
<cstdlib>_ ___
<fstream>
<cstdio>27.8 File streams
<cwchar>_ ___

[lib.iostreams.requirements] 27.1 Iostreams requirements

[lib.iostream.limits.imbue] 27.1.1 Imbue Limitations
No function described in clause 27 except forios_base::imbue causes any instance of
basic_ios::imbue or basic_streambuf::imbue to be called. If any user function called from a
function declared in clause 27 or as an overriding virtual function of any class declared in clause 27 calls
imbue , the behavior is undefined.

[lib.iostreams.limits.pos] 27.1.2 Positioning Type Limitations
The classes of clause 27 with template argumentscharT and traits behave as described if
traits::pos_type and traits::off_type are streampos and streamoff respectively.
Except as noted explicitly below, their behavior whentraits::pos_type andtraits::off_type
are other types is implementation-defined.

[lib.iostream.forward] 27.2 Forward declarations

Header<iosfwd> synopsis

namespace std {
template<class charT> class char_traits;
template<> class char_traits<char>;
template<> class char_traits<wchar_t>;

template<class T> class allocator;

599

ISO/IEC 14882:1998(E) © ISO/IEC

27.2 Forward declarations 27 Input/output library

template <class charT, class traits = char_traits<charT> >
class basic_ios;

template <class charT, class traits = char_traits<charT> >
class basic_streambuf;

template <class charT, class traits = char_traits<charT> >
class basic_istream;

template <class charT, class traits = char_traits<charT> >
class basic_ostream;

template <class charT, class traits = char_traits<charT> >
class basic_iostream;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_stringbuf;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_istringstream;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_ostringstream;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_stringstream;

template <class charT, class traits = char_traits<charT> >
class basic_filebuf;

template <class charT, class traits = char_traits<charT> >
class basic_ifstream;

template <class charT, class traits = char_traits<charT> >
class basic_ofstream;

template <class charT, class traits = char_traits<charT> >
class basic_fstream;

template <class charT, class traits = char_traits<charT> >
class istreambuf_iterator;

template <class charT, class traits = char_traits<charT> >
class ostreambuf_iterator;

typedef basic_ios<char> ios;
typedef basic_ios<wchar_t> wios;

typedef basic_streambuf<char> streambuf;
typedef basic_istream<char> istream;
typedef basic_ostream<char> ostream;
typedef basic_iostream<char> iostream;

600

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.2 Forward declarations

typedef basic_stringbuf<char> stringbuf;
typedef basic_istringstream<char> istringstream;
typedef basic_ostringstream<char> ostringstream;
typedef basic_stringstream<char> stringstream;

typedef basic_filebuf<char> filebuf;
typedef basic_ifstream<char> ifstream;
typedef basic_ofstream<char> ofstream;
typedef basic_fstream<char> fstream;

typedef basic_streambuf<wchar_t> wstreambuf;
typedef basic_istream<wchar_t> wistream;
typedef basic_ostream<wchar_t> wostream;
typedef basic_iostream<wchar_t> wiostream;

typedef basic_stringbuf<wchar_t> wstringbuf;
typedef basic_istringstream<wchar_t> wistringstream;
typedef basic_ostringstream<wchar_t> wostringstream;
typedef basic_stringstream<wchar_t> wstringstream;

typedef basic_filebuf<wchar_t> wfilebuf;
typedef basic_ifstream<wchar_t> wifstream;
typedef basic_ofstream<wchar_t> wofstream;
typedef basic_fstream<wchar_t> wfstream;

template <class state> class fpos;
typedef fpos<char_traits<char>::state_type> streampos;
typedef fpos<char_traits<wchar_t>::state_type> wstreampos;

}

1 Default template arguments are described as appearing both in<iosfwd> and in the synopsis of other
headers but it is well-formed to include both<iosfwd> and one or more of the other headers.263)

2 [Note: The template classbasic_ios<charT,traits> serves as a virtual base class for the classes
basic_istream<charT,traits> , basic_ostream<charT,traits> , and classes derived
from them. basic_iostream<charT,traits> is a class derived from bothbasic_istream and
basic_ostream .

3 The template classbasic_streambuf<charT,traits> serves as a base class for template classes
basic_stringbuf andbasic_filebuf .

4 The template class basic_istream serves as a base class for template classes
basic_istringstream andbasic_ifstream

5 The template class basic_ostream serves as a base class for template classes
basic_ostringstream andbasic_ofstream

6 The template class basic_iostream serves as a base class for template classes
basic_stringstream andbasic_fstream .

7 Other typedefs define instances of template classes specialized forchar or wchar_t types.

8 The template classfpos<charT> is a class used for specifying file position information.

9 The typesstreampos and wstreampos are used for positioning streams specialized onchar and
wchar_t respectively.

263)It is the implementation’s responsibility to implement headers so that including<iosfwd> and other headers does not violate the
rules about multiple occurences of default arguments.

601

ISO/IEC 14882:1998(E) © ISO/IEC

27.2 Forward declarations 27 Input/output library

10 This synopsis suggests a circularity betweenstreampos andchar_traits<char> . An implementa-
tion can avoid this circularity by substituting equivalent types. One way to do this might be

template<class stateT> class fpos { ... }; // depends on nothing
typedef ... _STATE; // implementation private declaration ofstateT

typedef fpos<_STATE> streampos;

template<> struct char_traits<char> {
typedef streampos

pos_type;
// ...

}

—end note]

[lib.iostream.objects] 27.3 Standard iostream objects

Header<iostream> synopsis

namespace std {
extern istream cin;
extern ostream cout;
extern ostream cerr;
extern ostream clog;

extern wistream wcin;
extern wostream wcout;
extern wostream wcerr;
extern wostream wclog;

}

1 The header<iostream> declares objects that associate objects with the standard C streams provided for
by the functions declared in<cstdio> (27.8.2).

2 Mixing operations on corresponding wide- and narrow-character streams follows the same semantics as
mixing such operations onFILE s, as specified in Amendment 1 of the ISO C standard. The objects are
constructed, and the associations are established at some time prior to or during first time an object of class
basic_ios<charT,traits>::Init is constructed, and in any case before the body of main begins
execution.264)The objects arenot destroyed during program execution.265)

[lib.narrow.stream.objects] 27.3.1 Narrow stream objects

istream cin;

1 The objectcin controls input from a stream buffer associated with the objectstdin , declared in
<cstdio> .

2 After the objectcin is initialized,cin.tie() returns&cout . Its state is otherwise the same as required
for ios_base::init (27.4.4.1).

264)If it is possible for them to do so, implementations are encouraged to initialize the objects earlier than required.
265)Constructors and destructors for static objects can access these objects to read input fromstdin or write output tostdout or
stderr .

602

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.3.1 Narrow stream objects

ostream cout;

3 The objectcout controls output to a stream buffer associated with the objectstdout , declared in
<cstdio> (27.8.2).

ostream cerr;

4 The objectcerr controls output to a stream buffer associated with the objectstderr , declared in
<cstdio> (27.8.2).

5 After the objectcerr is initialized,cerr.flags() & unitbuf is nonzero. Its state is otherwise the
same as required forios_base::init (27.4.4.1).

ostream clog;

6 The objectclog controls output to a stream buffer associated with the objectstderr , declared in
<cstdio> (27.8.2).

[lib.wide.stream.objects] 27.3.2 Wide stream objects

wistream wcin;

1 The objectwcin controls input from a stream buffer associated with the objectstdin , declared in
<cstdio> .

2 After the objectwcin is initialized, wcin.tie() returns&wcout . Its state is otherwise the same as
required forios_base::init (27.4.4.1).

wostream wcout;

3 The objectwcout controls output to a stream buffer associated with the objectstdout , declared in
<cstdio> (27.8.2).

wostream wcerr;

4 The objectwcerr controls output to a stream buffer associated with the objectstderr , declared in
<cstdio> (27.8.2).

5 After the objectwcerr is initialized,wcerr.flags() & unitbuf is nonzero. Its state is otherwise
the same as required forios_base::init (27.4.4.1).

wostream wclog;

6 The objectwclog controls output to a stream buffer associated with the objectstderr , declared in
<cstdio> (27.8.2).

603

ISO/IEC 14882:1998(E) © ISO/IEC

27.3.2 Wide stream objects 27 Input/output library

[lib.iostreams.base] 27.4 Iostreams base classes

Header<ios> synopsis

#include <iosfwd>

namespace std {
typedef OFF_T streamoff;
typedef SZ_T streamsize;
template <class stateT> class fpos;

class ios_base;
template <class charT, class traits = char_traits<charT> >

class basic_ios;

// 27.4.5, manipulators:
ios_base& boolalpha (ios_base& str);
ios_base& noboolalpha(ios_base& str);

ios_base& showbase (ios_base& str);
ios_base& noshowbase (ios_base& str);

ios_base& showpoint (ios_base& str);
ios_base& noshowpoint(ios_base& str);

ios_base& showpos (ios_base& str);
ios_base& noshowpos (ios_base& str);

ios_base& skipws (ios_base& str);
ios_base& noskipws (ios_base& str);

ios_base& uppercase (ios_base& str);
ios_base& nouppercase(ios_base& str);

// 27.4.5.2 adjustfield:
ios_base& internal (ios_base& str);
ios_base& left (ios_base& str);
ios_base& right (ios_base& str);

// 27.4.5.3 basefield:
ios_base& dec (ios_base& str);
ios_base& hex (ios_base& str);
ios_base& oct (ios_base& str);

// 27.4.5.4 floatfield:
ios_base& fixed (ios_base& str);
ios_base& scientific (ios_base& str);

}

[lib.stream.types] 27.4.1 Types

typedef OFF_T streamoff;

1 The typestreamoff is an implementation-defined type that satisfies the requirements of 27.4.3.2.

604

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.4.1 Types

typedef SZ_T streamsize;

2 The typestreamsize is a synonym for one of the signed basic integral types. It is used to represent the
number of characters transferred in an I/O operation, or the size of I/O buffers.266)

[lib.ios.base] 27.4.2 Classios_base

namespace std {
class ios_base {
public:

class failure;

typedef T1 fmtflags;
static const fmtflags boolalpha;
static const fmtflags dec;
static const fmtflags fixed;
static const fmtflags hex;
static const fmtflags internal;
static const fmtflags left;
static const fmtflags oct;
static const fmtflags right;
static const fmtflags scientific;
static const fmtflags showbase;
static const fmtflags showpoint;
static const fmtflags showpos;
static const fmtflags skipws;
static const fmtflags unitbuf;
static const fmtflags uppercase;
static const fmtflags adjustfield;
static const fmtflags basefield;
static const fmtflags floatfield;

typedef T2 iostate;
static const iostate badbit;
static const iostate eofbit;
static const iostate failbit;
static const iostate goodbit;

typedef T3 openmode;
static const openmode app;
static const openmode ate;
static const openmode binary;
static const openmode in;
static const openmode out;
static const openmode trunc;

typedef T4 seekdir;
static const seekdir beg;
static const seekdir cur;
static const seekdir end;

class Init;

266)streamsize is used in most places where ISO C would usesize_t . Most of the uses ofstreamsize could usesize_t ,
except for thestrstreambuf constructors, which require negative values. It should probably be the signed type corresponding to
size_t (which is what Posix.2 callsssize_t).

605

ISO/IEC 14882:1998(E) © ISO/IEC

27.4.2 Classios_base 27 Input/output library

// 27.4.2.2 fmtflags state:
fmtflags flags() const;
fmtflags flags(fmtflags fmtfl);
fmtflags setf(fmtflags fmtfl);
fmtflags setf(fmtflags fmtfl , fmtflags mask);
void unsetf(fmtflags mask);

streamsize precision() const;
streamsize precision(streamsize prec);
streamsize width() const;
streamsize width(streamsize wide);

// 27.4.2.3 locales:
locale imbue(const locale& loc);
locale getloc() const;

// 27.4.2.5 storage:
static int xalloc();
long& iword(int index);
void*& pword(int index);

// destructor
virtual ~ios_base();

// 27.4.2.6 callbacks;
enum event { erase_event, imbue_event, copyfmt_event };
typedef void (*event_callback)(event, ios_base&, int index);
void register_callback(event_call_back fn , int index);

static bool sync_with_stdio(bool sync = true);

protected:
ios_base();

private:
// static int index ; exposition only
// long* iarray ; exposition only
// void** parray ; exposition only

};
}

1 ios_base defines several member types:

— a classfailure derived fromexception ;

— a classInit ;

— three bitmask types,fmtflags , iostate , andopenmode;

— an enumerated type,seekdir .

2 It maintains several kinds of data:

— state information that reflects the integrity of the stream buffer;

— control information that influences how to interpret (format) input sequences and how to generate (for-
mat) output sequences;

— additional information that is stored by the program for its private use.

3 [Note:For the sake of exposition, the maintained data is presented here as:

— static int index , specifies the next available unique index for the integer or pointer arrays

606

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.4.2 Classios_base

maintained for the private use of the program, initialized to an unspecified value;

— long* iarray , points to the first element of an arbitrary-lengthlong array maintained for the pri-
vate use of the program;

— void** parray , points to the first element of an arbitrary-length pointer array maintained for the
private use of the program.—end note]

[lib.ios.types] 27.4.2.1 Types

[lib.ios::failure] 27.4.2.1.1 Classios_base::failure

namespace std {
class ios_base::failure : public exception {
public:

explicit failure(const string& msg);
virtual ~failure();
virtual const char* what() const throw();

};
}

1 The classfailure defines the base class for the types of all objects thrown as exceptions, by functions in
the iostreams library, to report errors detected during stream buffer operations.

explicit failure(const string& msg);

2 Effects: Constructs an object of classfailure , initializing the base class withexception(msg) .
3 Postcondition: strcmp(what(), msg.c_str()) == 0

const char* what() const;

4 Returns: The messagemsg with which the exception was created.

[lib.ios::fmtflags] 27.4.2.1.2 Typeios_base::fmtflags

typedef T1 fmtflags;

1 The typefmtflags is a bitmask type (17.3.2.1.2). Setting its elements has the effects indicated in Table
83:

607

ISO/IEC 14882:1998(E) © ISO/IEC

27.4.2.1.2 Typeios_base::fmtflags 27 Input/output library

Table 83—fmtflags effects
_ ___

Element Effect(s) if set_ __ ___
boolalpha insert and extractbool type in alphabetic format
dec converts integer input or generates integer output in decimal base
fixed generate floating-point output in fixed-point notation;
hex converts integer input or generates integer output in hexadecimal base;
internal adds fill characters at a designated internal point in certain generated output, or

identical toright if no such point is designated;
left adds fill characters on the right (final positions) of certain generated output;
oct converts integer input or generates integer output in octal base;
right adds fill characters on the left (initial positions) of certain generated output;
scientific generates floating-point output in scientific notation;
showbase generates a prefix indicating the numeric base of generated integer output;
showpoint generates a decimal-point character unconditionally in generated floating-point

output;
showpos generates a+ sign in non-negative generated numeric output;
skipws skips leading white space before certain input operations;
unitbuf flushes output after each output operation;
uppercase replaces certain lowercase letters with their uppercase equivalents in generated

output._ ___

2 Typefmtflags also defines the constants indicated in Table 84:

Table 84—fmtflags constants
_ ___

Constant Allowable values_ __ ___
adjustfield left | right | internal

basefield dec | oct | hex

floatfield scientific | fixed_ ___

[lib.ios::iostate] 27.4.2.1.3 Typeios_base::iostate

typedef T2 iostate;

1 The typeiostate is a bitmask type (17.3.2.1.2) that contains the elements indicated in Table 85:

Table 85—iostate effects
_ ___

Element Effect(s) if set_ __ ___
badbit indicates a loss of integrity in an input or output sequence (such as an irrecover-

able read error from a file);
eofbit indicates that an input operation reached the end of an input sequence;
failbit indicates that an input operation failed to read the expected characters, or that an

output operation failed to generate the desired characters._ ___

2 Type iostate also defines the constant:

— goodbit , the value zero.

608

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.4.2.1.4 Typeios_base::openmode

[lib.ios::openmode] 27.4.2.1.4 Typeios_base::openmode

typedef T3 openmode;

1 The typeopenmode is a bitmask type (17.3.2.1.2). It contains the elements indicated in Table 86:

Table 86—openmode effects
_ ___

Element Effect(s) if set_ __ ___
app seek to end before each write
ate open and seek to end immediately after opening
binary perform input and output in binary mode (as opposed to text mode)
in open for input
out open for output
trunc truncate an existing stream when opening_ ___

[lib.ios::seekdir] 27.4.2.1.5 Typeios_base::seekdir

typedef T4 seekdir;

1 The typeseekdir is an enumerated type (17.3.2.1.1) that contains the elements indicated in Table 87:

Table 87—seekdir effects
_ __
Element Meaning_ ___ __
beg request a seek (for subsequent input or output) relative to the beginning of the stream
cur request a seek relative to the current position within the sequence
end request a seek relative to the current end of the sequence_ __

[lib.ios::Init] 27.4.2.1.6 Classios_base::Init

namespace std {
class ios_base::Init {
public:

Init();
~Init();

private:
// static int init_cnt ; exposition only

};
}

1 The classInit describes an object whose construction ensures the construction of the eight objects
declared in<iostream> (27.3) that associate file stream buffers with the standard C streams provided for
by the functions declared in<cstdio> (27.8.2).

2 For the sake of exposition, the maintained data is presented here as:

— static int init_cnt , counts the number of constructor and destructor calls for classInit , ini-
tialized to zero.

609

ISO/IEC 14882:1998(E) © ISO/IEC

27.4.2.1.6 Classios_base::Init 27 Input/output library

Init();

3 Effects: Constructs an object of classInit . If init_cnt is zero, the function stores the value one in
init_cnt , then constructs and initializes the objectscin , cout , cerr , clog (27.3.1), wcin ,
wcout , wcerr , andwclog (27.3.2). In any case, the function then adds one to the value stored in
init_cnt .

~Init();

4 Effects: Destroys an object of classInit . The function subtracts one from the value stored in
init_cnt and, if the resulting stored value is one, callscout.flush() , cerr.flush() ,
clog.flush() , wcout.flush() , wcerr.flush() , wclog.flush() .

[lib.fmtflags.state] 27.4.2.2 ios_base fmtflags state functions

fmtflags flags() const;

1 Returns: The format control information for both input and output.

fmtflags flags(fmtflags fmtfl);

2 Postcondition: fmtfl == flags() .
3 Returns: The previous value offlags() .

fmtflags setf(fmtflags fmtfl);

4 Effects: Setsfmtfl in flags() .
5 Returns: The previous value offlags() .

fmtflags setf(fmtflags fmtfl , fmtflags mask);

6 Effects: Clearsmask in flags() , setsfmtfl & mask in flags() .
7 Returns: The previous value offlags() .

void unsetf(fmtflags mask);

8 Effects: Clearsmask in flags() .

streamsize precision() const;

9 Returns: The precision (number of digits after the decimal point) to generate on certain output conver-
sions.

streamsize precision(streamsize prec);

10 Postcondition: prec == precision() .
11 Returns: The previous value ofprecision() .

streamsize width() const;

12 Returns: The minimum field width (number of characters) to generate on certain output conversions.

streamsize width(streamsize wide);

13 Postcondition: wide == width() .
14 Returns: The previous value ofwidth() .

610

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.4.2.3 ios_base locale functions

[lib.ios.base.locales] 27.4.2.3 ios_base locale functions

locale imbue(const locale loc);

1 Effects: Calls each registered callback pair (fn , index) (27.4.2.6) as
(* fn)(imbue_event,*this, index) at such a time that a call toios_base::getloc()
from within fn returns the new locale valueloc.

2 Returns: If no locale has been imbued, a copy of the global C++ locale,locale() , in effect at the time
of construction. Otherwise, returns the imbued locale, to be used to perform locale-dependent input and
output operations

3 Postcondition: loc == getloc() .

locale getloc() const;

4 Returns: The previous value ofgetloc() .

[lib.ios.members.static] 27.4.2.4 ios_base static members

bool sync_with_stdio(bool sync = true);

1 Returns: true if the standard iostream objects (27.3) are synchronized and otherwise returnsfalse.
The first time it is called, the function returnstrue .

2 Effects: If any input or output operation has occurred using the standard streams prior to the call, the effect
is implementation-defined. Otherwise, called with a false argument, it allows the standard streams to
operate independently of the standard C streams.

[lib.ios.base.storage] 27.4.2.5 ios_base storage functions

static int xalloc();

1 Returns: index ++.

long& iword(int idx);

2 Effects: If iarray is a null pointer, allocates an array oflong of unspecified size and stores a pointer to
its first element iniarray . The function then extends the array pointed at byiarray as necessary to
include the elementiarray [idx] . Each newly allocated element of the array is initialized to zero.
The reference returned may become invalid after another call to the object’siword member with a dif-
ferent index, after a call to itscopyfmt member, or when the object is destroyed.267) If the function
fails268) it setsbadbit , which may throw an exception.

3 Returns: On successiarray [idx] . On failure, a validlong& initialized to 0.

void* & pword(int idx);

4 Effects: If parray is a null pointer, allocates an array of pointers tovoid of unspecified size and stores a
pointer to its first element inparray . The function then extends the array pointed at byparray as
necessary to include the elementparray [idx] . Each newly allocated element of the array is initial-
ized to a null pointer. The reference returned may become invalid after another call to the object’s
pword member with a different index, after call to itscopyfmt member, or when the object is
destroyed. If the function fails269) it setsbadbit , which may throw an exception.

5 Returns: On successparray [idx] . On failure a validvoid*& initialized to 0.

267)An implementation is free to implement both the integer array pointed at byiarray and the pointer array pointed at byparray
as sparse data structures, possibly with a one-element cache for each.
268)for example, because it cannot allocate space.
269)for example, because it cannot allocate space.

611

ISO/IEC 14882:1998(E) © ISO/IEC

27.4.2.5ios_base storage functions 27 Input/output library

6 Notes: After a subsequent call topword(int) for the same object, the earlier return value may no longer
be valid.

[lib.ios.base.callback] 27.4.2.6 ios_base callbacks

void register_callback(event_callback fn, int index);

1 Effects: Registers the pair(fn , index) such that during calls toimbue() (27.4.2.3),copyfmt() , or
~ios_base() (27.4.2.7), the functionfn is called with argumentindex. Functions registered are
called when an event occurs, in opposite order of registration. Functions registered while a callback
function is active are not called until the next event.

2 Requires: The functionfn shall not throw exceptions.
3 Notes: Identical pairs are not merged. A function registered twice will be called twice.

[lib.ios.base.cons] 27.4.2.7 ios_base constructors/destructors

ios_base();

1 Effects: Eachios_base member has an indeterminate value after construction.

~ios_base()

2 Effects: Destroys an object of classios_base . Calls each registered callback pair(fn , index)
(27.4.2.6) as(* fn)(erase_event,*this, index) at such time that anyios_base member
function called from withinfn has well defined results.

[lib.fpos] 27.4.3 Template classfpos

namespace std {
template <class stateT> class fpos {
public:

// 27.4.3.1 Members
stateT state() const;
void state(stateT);

private;
stateT st; // exposition only

};
}

[lib.fpos.members] 27.4.3.1 fpos Members

void state(stateT s);

1 Effects: Assigns to st .

stateT state();

2 Returns: Current value ofst .

[lib.fpos.operations] 27.4.3.2 fpos requirements

1 Operations specified in Table 88 are permitted. In that table,

— P refers to an instance offpos ,

— p andq refer to an values of typeP,

— Orefers to typestreamoff ,

— o refers to a value of typestreamoff ,

— sz refers to a value of typestreamsize and

612

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.4.3.2 fpos requirements

— i refers to a value of typeint .

Table 88—Position type requirements
_ __

operational assertion/note
expression return type

semantics pre/post-condition_ ___ __
P(i) p == P(i)

note: a destructor is assumed._ __
P p(i);

P p = i; post:p == P(i) ._ __
P(o) fpos converts from

offset_ __
O(p) OFF_T P(O(p)) == pconverts to

offset_ __
p == q convertible tobool == is an equivalence relation_ __
p != q convertible tobool !(p==q)_ __
q = p + o fpos + offset q-o == p
p += o_ __
q = p - o fpos - offset q+o == p
p -= o_ __
o = p - q OFF_T distance q+o == p_ __
streamsize(o) streamsize converts streamsize(O(sz)) == sz
O(sz) OFF_T converts streamsize(O(sz)) == sz_ __

[Note:Every implementation is required to supply overloaded operators onfpos objects to satisfy the
requirements of 27.4.3.2. It is unspecified whether these operators are members offpos , global opera-
tors, or provided in some other way.—end note]

2 Stream operations that return a value of typetraits::pos_type returnP(O(-1)) as an invalid value
to signal an error. If this value is used as an argument to anyistream , ostream , or
streambuf member that accepts a value of typetraits::pos_type then the behavior of that function
is undefined.

[lib.ios] 27.4.4 Template classbasic_ios

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_ios : public ios_base {
public:

// Types:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

613

ISO/IEC 14882:1998(E) © ISO/IEC

27.4.4 Template classbasic_ios 27 Input/output library

operator void*() const
bool operator!() const
iostate rdstate() const;
void clear(iostate state = goodbit);
void setstate(iostate state);
bool good() const;
bool eof() const;
bool fail() const;
bool bad() const;

iostate exceptions() const;
void exceptions(iostate except);

// 27.4.4.1 Constructor/destructor:
explicit basic_ios(basic_streambuf<charT,traits>* sb);
virtual ~basic_ios();

// 27.4.4.2 Members:
basic_ostream<charT,traits>* tie() const;
basic_ostream<charT,traits>* tie(basic_ostream<charT,traits>* tiestr);

basic_streambuf<charT,traits>* rdbuf() const;
basic_streambuf<charT,traits>* rdbuf(basic_streambuf<charT,traits>* sb);

basic_ios& copyfmt(const basic_ios& rhs);

char_type fill() const;
char_type fill(char_type ch);

// 27.4.2.3 locales:
locale imbue(const locale& loc);

char narrow(char_type c, char dfault) const;
char_type widen(char c) const;

protected:
basic_ios();
void init(basic_streambuf<charT,traits>* sb);

private:
basic_ios(const basic_ios&); // not defined
basic_ios& operator=(const basic_ios&); // not defined

};
}

[lib.basic.ios.cons] 27.4.4.1basic_ios constructors

explicit basic_ios(basic_streambuf<charT,traits>* sb);

1 Effects: Constructs an object of classbasic_ios , assigning initial values to its member objects by call-
ing init(sb) .

basic_ios();

2 Effects: Constructs an object of classbasic_ios (27.4.2.7) leaving its member objects uninitialized.
The object must be initialized by calling itsinit member function. If it is destroyed before it has been
initialized the behavior is undefined.

614

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.4.4.1 basic_ios constructors

void init(basic_streambuf<charT,traits>* sb);

3 Postconditions: The postconditions of this function are indicated in Table 89:

Table 89—ios_base() effects
_ __

Element Value_ ___ __
rdbuf() sb
tie() 0
rdstate() goodbit if sb is not a null pointer, otherwisebadbit .
exceptions() goodbit
flags() skipws | dec
width() 0
precision() 6
fill() widen(’ ’);
getloc() a copy of the value returned bylocale()
iarray a null pointer
parray a null pointer_ __

[lib.basic.ios.members] 27.4.4.2 Member functions

basic_ostream<charT,traits>* tie() const;

1 Returns: An output sequence that istied to (synchronized with) the sequence controlled by the stream
buffer.

basic_ostream<charT,traits>* tie(basic_ostream<charT,traits>* tiestr);

2 Postcondition: tiestr == tie() .
3 Returns: The previous value oftie() .

basic_streambuf<charT,traits>* rdbuf() const;

4 Returns: A pointer to thestreambuf associated with the stream.

basic_streambuf<charT,traits>* rdbuf(basic_streambuf<charT,traits>* sb);

5 Postcondition: sb == rdbuf() .
6 Effects: Callsclear() .
7 Returns: The previous value ofrdbuf() .

// 27.4.2.3 locales:
locale imbue(const locale& loc);

8 Effects: Calls ios_base::imbue(loc) (27.4.2.3) and if rdbuf()!=0 then rdbuf()-
>pubimbue(loc) (27.5.2.2.1).

9 Returns: The prior value ofios_base::imbue() .

char narrow(char_type c, char dfault) const;

10 Returns: use_facet< ctype<char_type> >(getloc()).narrow(c,dfault)

615

ISO/IEC 14882:1998(E) © ISO/IEC

27.4.4.2 Member functions 27 Input/output library

char_type widen(char c) const;

11 Returns: use_facet< ctype<char_type> >(getloc()).widen(c)

char_type fill() const

12 Returns: The character used to pad (fill) an output conversion to the specified field width.

char_type fill(char_type fillch);

13 Postcondition: fillch == fill()
14 Returns: The previous value offill() .

basic_ios& copyfmt(const basic_ios& rhs);

15 Effects: Assigns to the member objects of*this the corresponding member objects ofrhs , except that:

— rdstate() andrdbuf() are left unchanged;

— exceptions() is altered last by callingexceptions(rhs.except) .

— The contents of arrays pointed at bypword andiword are copied not the pointers themselves.270)

16 If any newly stored pointer values in*this point at objects stored outside the objectrhs , and those
objects are destroyed whenrhs is destroyed, the newly stored pointer values are altered to point at newly
constructed copies of the objects.

17 Before copying any parts ofrhs, calls each registered callback pair(fn , index) as
(* fn)(erase_event,*this, index) . After all parts butexceptions() have been replaced,
calls each callback pair that was copied fromrhs as(* fn)(copy_event,*this, index) .

18 Notes: The second pass permits a copiedpword value to be zeroed, or its referent deep copied or refer-
ence counted or have other special action taken.

19 Returns: *this .

[lib.iostate.flags] 27.4.4.3basic_ios iostate flags functions

operator void*() const

1 Returns: If fail() then a null pointer; otherwise some non-null pointer to indicate success.

bool operator!() const

2 Returns: fail() .

iostate rdstate() const;

3 Returns: The error state of the stream buffer.

void clear(iostate state = goodbit);

4 Postcondition: If rdbuf()!=0 then state == rdstate() ; otherwise
rdstate()==state|ios_base::badbit .

5 Effects: If (rdstate() & exceptions()) == 0 , returns. Otherwise, the function throws an
objectfail of classbasic_ios::failure (27.4.2.1.1), constructed with implementation-defined
argument values.

270)This suggests an infinite amount of copying, but the implementation can keep track of the maximum element of the arrays that is
non-zero.

616

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.4.4.3 basic_ios iostate flags functions

void setstate(iostate state);

6 Effects: Calls clear(rdstate() | state) (which may throw basic_ios::failure
(27.4.2.1.1)).

bool good() const;

7 Returns: rdstate() == 0

bool eof() const;

8 Returns: true if eofbit is set inrdstate() .

bool fail() const;

9 Returns: true if failbit or badbit is set inrdstate() .271)

bool bad() const;

10 Returns: true if badbit is set inrdstate() .

iostate exceptions() const;

11 Returns: A mask that determines what elements set inrdstate() cause exceptions to be thrown.

void exceptions(iostate except);

12 Postcondition: except == exceptions() .
13 Effects: Callsclear(rdstate()) .

[lib.std.ios.manip] 27.4.5 ios_base manipulators

[lib.fmtflags.manip] 27.4.5.1 fmtflags manipulators

ios_base& boolalpha(ios_base& str);

1 Effects: Callsstr .setf(ios_base::boolalpha) .
2 Returns: str .

ios_base& noboolalpha(ios_base& str);

3 Effects: Callsstr .unsetf(ios_base::boolalpha) .
4 Returns: str .

ios_base& showbase(ios_base& str);

5 Effects: Callsstr .setf(ios_base::showbase) .
6 Returns: str .

ios_base& noshowbase(ios_base& str);

7 Effects: Callsstr .unsetf(ios_base::showbase) .
8 Returns: str .

271)Checkingbadbit also forfail() is historical practice.

617

ISO/IEC 14882:1998(E) © ISO/IEC

27.4.5.1fmtflags manipulators 27 Input/output library

ios_base& showpoint(ios_base& str);

9 Effects: Callsstr .setf(ios_base::showpoint) .
10 Returns: str .

ios_base& noshowpoint(ios_base& str);

11 Effects: Callsstr .unsetf(ios_base::showpoint) .
12 Returns: str .

ios_base& showpos(ios_base& str);

13 Effects: Callsstr .setf(ios_base::showpos) .
14 Returns: str .

ios_base& noshowpos(ios_base& str);

15 Effects: Callsstr .unsetf(ios_base::showpos) .
16 Returns: str .

ios_base& skipws(ios_base& str);

17 Effects: Callsstr .setf(ios_base::skipws) .
18 Returns: str .

ios_base& noskipws(ios_base& str);

19 Effects: Callsstr .unsetf(ios_base::skipws) .
20 Returns: str .

ios_base& uppercase(ios_base& str);

21 Effects: Callsstr .setf(ios_base::uppercase) .
22 Returns: str .

ios_base& nouppercase(ios_base& str);

23 Effects: Callsstr .unsetf(ios_base::uppercase) .
24 Returns: str .

ios_base& unitbuf(ios_base& str);

25 Effects: Callsstr .setf(ios_base::unitbuf) .
26 Returns: str .

ios_base& nounitbuf(ios_base& str);

27 Effects: Callsstr .unsetf(ios_base::unitbuf) .
28 Returns: str .

[lib.adjustfield.manip] 27.4.5.2adjustfield manipulators

ios_base& internal(ios_base& str);

1 Effects: Callsstr .setf(ios_base::internal, ios_base::adjustfield) .
2 Returns: str .

618

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.4.5.2 adjustfield manipulators

ios_base& left(ios_base& str);

3 Effects: Callsstr .setf(ios_base::left, ios_base::adjustfield) .
4 Returns: str .

ios_base& right(ios_base& str);

5 Effects: Callsstr .setf(ios_base::right, ios_base::adjustfield) .
6 Returns: str .

[lib.basefield.manip] 27.4.5.3basefield manipulators

ios_base& dec(ios_base& str);

1 Effects: Callsstr .setf(ios_base::dec, ios_base::basefield) .
2 Returns: str .

ios_base& hex(ios_base& str);

3 Effects: Callsstr .setf(ios_base::hex, ios_base::basefield) .
4 Returns: str .

ios_base& oct(ios_base& str);

5 Effects: Callsstr .setf(ios_base::oct, ios_base::basefield) .
6 Returns: str .

[lib.floatfield.manip] 27.4.5.4 floatfield manipulators

ios_base& fixed(ios_base& str);

1 Effects: Callsstr .setf(ios_base::fixed, ios_base::floatfield) .
2 Returns: str .

ios_base& scientific(ios_base& str);

3 Effects: Callsstr .setf(ios_base::scientific, ios_base::floatfield) .
4 Returns: str .

[lib.stream.buffers] 27.5 Stream buffers

Header<streambuf> synopsis

namespace std {
template <class charT, class traits = char_traits<charT> >

class basic_streambuf;
typedef basic_streambuf<char> streambuf;
typedef basic_streambuf<wchar_t> wstreambuf;

}

1 The header<streambuf> defines types that control input from and output tocharactersequences.

272) The function signature dec(ios_base&) can be called by the function signaturebasic_ostream&
stream::operator<<(ios_base& (*)(ios_base&)) to permit expressions of the formcout << dec to change the for-
mat flags stored incout .

619

ISO/IEC 14882:1998(E) © ISO/IEC

27.5.1 Stream buffer requirements 27 Input/output library

[lib.streambuf.reqts] 27.5.1 Stream buffer requirements

1 Stream buffers can impose various constraints on the sequences they control. Some constraints are:

— The controlled input sequence can be not readable.

— The controlled output sequence can be not writable.

— The controlled sequences can be associated with the contents of other representations for character
sequences, such as external files.

— The controlled sequences can support operationsdirectly to or from associated sequences.

— The controlled sequences can impose limitations on how the program can read characters from a
sequence, write characters to a sequence, put characters back into an input sequence, or alter the stream
position.

2 Each sequence is characterized by three pointers which, if non-null, all point into the samecharT array
object. The array object represents, at any moment, a (sub)sequence of characters from the sequence.
Operations performed on a sequence alter the values stored in these pointers, perform reads and writes
directly to or from associated sequences, and alter ‘‘the stream position’’ and conversion state as needed to
maintain this subsequence relationship. The three pointers are:

— thebeginning pointer,or lowest element address in the array (calledxbeg here);

— the next pointer,or next element address that is a current candidate for reading or writing (called
xnext here);

— theend pointer,or first element address beyond the end of the array (calledxend here).

3 The following semantic constraints shall always apply for any set of three pointers for a sequence, using the
pointer names given immediately above:

— If xnext is not a null pointer, thenxbeg and xend shall also be non-null pointers into the same
charT array, as described above; otherwise,xbeg andxend shall also be null.

— If xnext is not a null pointer andxnext < xend for an output sequence, then awrite positionis
available. In this case,* xnext shall be assignable as the next element to write (to put, or to store a
character value, into the sequence).

— If xnext is not a null pointer andxbeg < xnext for an input sequence, then aputback positionis
available. In this case,xnext [-1] shall have a defined value and is the next (preceding) element to
store a character that is put back into the input sequence.

— If xnext is not a null pointer andxnext < xend for an input sequence, then aread positionis avail-
able. In this case,* xnext shall have a defined value and is the next element to read (to get, or to
obtain a character value, from the sequence).

[lib.streambuf] 27.5.2 Template classbasic_streambuf<charT,traits>

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_streambuf {
public:

// Types:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

virtual ~basic_streambuf();

620

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.5.2 Template classbasic_streambuf<charT,traits>

// 27.5.2.2.1 locales:
locale pubimbue(const locale & loc);
locale getloc() const;

// 27.5.2.2.2 buffer and positioning:
basic_streambuf<char_type,traits>*

pubsetbuf(char_type* s, streamsize n);
pos_type pubseekoff(off_type off , ios_base::seekdir way,

ios_base::openmode which =
ios_base::in | ios_base::out);

pos_type pubseekpos(pos_type sp ,
ios_base::openmode which =

ios_base::in | ios_base::out);
int pubsync();

// Get and put areas:
// 27.5.2.2.3 Get area:
streamsize in_avail();
int_type snextc();
int_type sbumpc();
int_type sgetc();
streamsize sgetn(char_type* s, streamsize n);

// 27.5.2.2.4 Putback:
int_type sputbackc(char_type c);
int_type sungetc();

// 27.5.2.2.5 Put area:
int_type sputc(char_type c);
streamsize sputn(const char_type* s, streamsize n);

protected:
basic_streambuf();

// 27.5.2.3.1 Get area:
char_type* eback() const;
char_type* gptr() const;
char_type* egptr() const;
void gbump(int n);
void setg(char_type* gbeg , char_type* gnext , char_type* gend);

// 27.5.2.3.2 Put area:
char_type* pbase() const;
char_type* pptr() const;
char_type* epptr() const;
void pbump(int n);
void setp(char_type* pbeg , char_type* pend);

// 27.5.2.4 virtual functions:
// 27.5.2.4.1 Locales:
virtual void imbue(const locale & loc);

621

ISO/IEC 14882:1998(E) © ISO/IEC

27.5.2 Template classbasic_streambuf<charT,traits> 27 Input/output library

// 27.5.2.4.2 Buffer management and positioning:
virtual basic_streambuf<char_type,traits>*

setbuf(char_type* s, streamsize n);
virtual pos_type seekoff(off_type off , ios_base::seekdir way,

ios_base::openmode which = ios_base::in | ios_base::out);
virtual pos_type seekpos(pos_type sp ,

ios_base::openmode which = ios_base::in | ios_base::out);
virtual int sync();

// 27.5.2.4.3 Get area:
virtual int showmanyc();
virtual streamsize xsgetn(char_type* s, streamsize n);
virtual int_type underflow();
virtual int_type uflow();

// 27.5.2.4.4 Putback:
virtual int_type pbackfail(int_type c = traits::eof());

// 27.5.2.4.5 Put area:
virtual streamsize xsputn(const char_type* s, streamsize n);
virtual int_type overflow (int_type c = traits::eof());

};
}

1 The class templatebasic_streambuf<charT,traits> serves as an abstract base class for deriving
variousstream bufferswhose objects each control twocharacter sequences:

— a characterinput sequence;

— a characteroutput sequence.

2 The classstreambuf is a specialization of the template classbasic_streambuf specialized for the
typechar .

3 The classwstreambuf is a specialization of the template classbasic_streambuf specialized for the
typewchar_t .

[lib.streambuf.cons] 27.5.2.1basic_streambuf constructors

basic_streambuf();

1 Effects: Constructs an object of classbasic_streambuf<charT,traits> and initializes:273)

— all its pointer member objects to null pointers,

— thegetloc() member to a copy the global locale,locale() , at the time of construction.
2 Notes: Once thegetloc() member is initialized, results of calling locale member functions, and of

members of facets so obtained, can safely be cached until the next time the memberimbue is called.

273)The default constructor is protected for classbasic_streambuf to assure that only objects for classes derived from this class
may be constructed.

622

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.5.2.1 basic_streambuf constructors

[lib.streambuf.members] 27.5.2.2basic_streambuf public member functions

[lib.streambuf.locales] 27.5.2.2.1 Locales

locale pubimbue(const locale& loc);

1 Postcondition: loc == getloc() .
2 Effects: Calls imbue(loc) .
3 Returns: Previous value ofgetloc() .

locale getloc() const;

4 Returns: If pubimbue() has ever been called, then the last value ofloc supplied, otherwise the current
global locale,locale() , in effect at the time of construction. If called afterpubimbue() has been
called but beforepubimbue has returned (i.e. from within the call ofimbue()) then it returns the
previous value.

[lib.streambuf.buffer] 27.5.2.2.2 Buffer management and positioning

basic_streambuf<char_type,traits>* pubsetbuf(char_type* s, streamsize n);

1 Returns: setbuf(s, n) .

pos_type pubseekoff(off_type off , ios_base::seekdir way,
ios_base::openmode which = ios_base::in | ios_base::out);

2 Returns: seekoff(off , way, which) .

pos_type pubseekpos(pos_type sp ,
ios_base::openmode which = ios_base::in | ios_base::out);

3 Returns: seekpos(sp , which) .

int pubsync();

4 Returns: sync() .

[lib.streambuf.pub.get] 27.5.2.2.3 Get area

streamsize in_avail();

1 Returns: If a read position is available, returnsegptr() - gptr() . Otherwise returns
showmanyc() (27.5.2.4.3).

int_type snextc();

2 Effects: Callssbumpc() .
3 Returns: if that function returnstraits::eof() , returns traits::eof() . Otherwise, returns

sgetc() .

int_type sbumpc();

4 Returns: If the input sequence read position is not available, returnsuflow() . Otherwise, returns
traits::to_int_type(*gptr()) and increments the next pointer for the input sequence.

623

ISO/IEC 14882:1998(E) © ISO/IEC

27.5.2.2.3 Get area 27 Input/output library

int_type sgetc();

5 Returns: If the input sequence read position is not available, returnsunderflow() . Otherwise, returns
traits::to_int_type(*gptr()) .

streamsize sgetn(char_type* s, streamsize n);

6 Returns: xsgetn(s, n) .

[lib.streambuf.pub.pback] 27.5.2.2.4 Putback

int_type sputbackc(char_type c);

1 Returns: If the input sequence putback position is not available, or iftraits::eq(c,gptr()[-1])
is false, returnspbackfail(traits::to_int_type(c)) . Otherwise, decrements the next
pointer for the input sequence and returnstraits::to_int_type(*gptr()) .

int_type sungetc();

2 Returns: If the input sequence putback position is not available, returnspbackfail() . Otherwise,
decrements the next pointer for the input sequence and returns
traits::to_int_type(*gptr()) .

[lib.streambuf.pub.put] 27.5.2.2.5 Put area

int_type sputc(char_type c);

1 Returns: If the output sequence write position is not available, returns
overflow(traits::to_int_type(c)) . Otherwise, storesc at the next pointer for the output
sequence, increments the pointer, and returnstraits::to_int_type(c) .

streamsize sputn(const char_type* s, streamsize n);

2 Returns: xsputn(s, n) .

[lib.streambuf.protected] 27.5.2.3basic_streambuf protected member functions

[lib.streambuf.get.area] 27.5.2.3.1 Get area access

char_type* eback() const;

1 Returns: The beginning pointer for the input sequence.

char_type* gptr() const;

2 Returns: The next pointer for the input sequence.

char_type* egptr() const;

3 Returns: The end pointer for the input sequence.

void gbump(int n);

4 Effects: Advances the next pointer for the input sequence byn.

624

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.5.2.3.1 Get area access

void setg(char_type* gbeg , char_type* gnext , char_type* gend);

5 Postconditions: gbeg == eback() , gnext == gptr() , andgend == egptr() .

[lib.streambuf.put.area] 27.5.2.3.2 Put area access

char_type* pbase() const;

1 Returns: The beginning pointer for the output sequence.

char_type* pptr() const;

2 Returns: The next pointer for the output sequence.

char_type* epptr() const;

3 Returns: The end pointer for the output sequence.

void pbump(int n);

4 Effects: Advances the next pointer for the output sequence byn.

void setp(char_type* pbeg , char_type* pend);

5 Postconditions: pbeg == pbase() , pbeg == pptr() , andpend == epptr() .

[lib.streambuf.virtuals] 27.5.2.4basic_streambuf virtual functions

[lib.streambuf.virt.locales] 27.5.2.4.1 Locales

void imbue(const locale&)

1 Effects: Change any translations based on locale.
2 Notes: Allows the derived class to be informed of changes in locale at the time they occur. Between invo-

cations of this function a class derived from streambuf can safely cache results of calls to locale func-
tions and to members of facets so obtained.

3 Default behavior: Does nothing.

[lib.streambuf.virt.buffer] 27.5.2.4.2 Buffer management and positioning

basic_streambuf* setbuf(char_type* s, streamsize n);

1 Effects: Performs an operation that is defined separately for each class derived frombasic_streambuf
in this clause (27.7.1.3, 27.8.1.4).

2 Default behavior: If gptr() is non-null andgptr()!=egptr() then do nothing. Returnsthis .

pos_type seekoff(off_type off , ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out);

3 Effects: Alters the stream positions within one or more of the controlled sequences in a way that is defined
separately for each class derived frombasic_streambuf in this clause (27.7.1.3, 27.8.1.4).

4 Default behavior: Returns an object of classpos_type that stores aninvalid stream position
(_lib.iostreams.definitions_).

625

ISO/IEC 14882:1998(E) © ISO/IEC

27.5.2.4.2 Buffer management and positioning 27 Input/output library

pos_type seekpos(pos_type sp ,
ios_base::openmode which = in | out);

5 Effects: Alters the stream positions within one or more of the controlled sequences in a way that is defined
separately for each class derived frombasic_streambuf in this clause (27.7.1, 27.8.1.1).

6 Default behavior: Returns an object of classpos_type that stores aninvalid stream position.

int sync();

7 Effects: Synchronizes the controlled sequences with the arrays. That is, ifpbase() is non-null the char-
acters betweenpbase() andpptr() are written to the controlled sequence. The pointers may then
be reset as appropriate.

8 Returns: -1 on failure. What constitutes failure is determined by each derived class (27.8.1.4).
9 Default behavior: Returns zero.

[lib.streambuf.virt.get] 27.5.2.4.3 Get area

streamsize showmanyc(); 274)

1 Returns: an estimate of the number of characters available in the sequence, or -1. If it returns a positive
value, then successive calls tounderflow() will not return traits::eof() until at least that
number of characters have been supplied. Ifshowmanyc() returns -1, then calls tounderflow()
or uflow() will fail. 275)

2 Default behavior: Returns zero.
3 Notes: Usestraits::eof() .

streamsize xsgetn(char_type* s, streamsize n);

4 Effects: Assigns up ton characters to successive elements of the array whose first element is designated
by s . The characters assigned are read from the input sequence as if by repeated calls tosbumpc() .
Assigning stops when eithern characters have been assigned or a call tosbumpc() would return
traits::eof() .

5 Returns: The number of characters assigned.276)

6 Notes: Usestraits::eof() .

int_type underflow();

7 Notes: The public members ofbasic_streambuf call this virtual function only ifgptr() is null or
gptr() >= egptr()

8 Returns: traits::to_int_type(c) , wherec is the firstcharacterof thepending sequence, without
moving the input sequence position past it. If the pending sequence is null then the function returns
traits::eof() to indicate failure.

9 Thepending sequenceof characters is defined as the concatenation of:

a) If gptr() is non-NULL, then theegptr() - gptr() characters starting atgptr() , otherwise
the empty sequence.

b) Some sequence (possibly empty) of characters read from the input sequence.

10 Theresult characteris

a) If the pending sequence is non-empty, the first character of the sequence.

274)The morphemes ofshowmanyc are "es-how-many-see", not "show-manic".
275)underflow or uflow might fail by throwing an exception prematurely. The intention is not only that the calls will not return
eof() but that they will return ‘‘immediately.’’
276)Classes derived frombasic_streambuf can provide more efficient ways to implementxsgetn() andxsputn() by over-
riding these definitions from the base class.

626

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.5.2.4.3 Get area

b) If the pending sequence empty then the next character that would be read from the input sequence.

11 Thebackup sequenceis defined as the concatenation of:

a) If eback() is null then empty,

b) Otherwise thegptr() - eback() characters beginning ateback() .
12 Effects: The function sets up thegptr() andegptr() satisfying one of:

a) If the pending sequence is non-empty,egptr() is non-null andegptr() - gptr() characters
starting atgptr() are the characters in the pending sequence

b) If the pending sequence is empty, eithergptr() is null orgptr() andegptr() are set to the same
non-NULLpointer.

13 If eback() and gptr() are non-null then the function is not constrained as to their contents, but the
‘‘usual backup condition’’ is that either:

a) If the backup sequence contains at leastgptr() - eback() characters, then thegptr() -
eback() characters starting ateback() agree with the lastgptr() - eback() characters of the
backup sequence.

b) Or then characters starting atgptr() - n agree with the backup sequence (wheren is the length of
the backup sequence)

14 Default behavior: Returnstraits::eof() .

int_type uflow();

15 Requires: The constraints are the same as forunderflow() , except that the result character is trans-
ferred from the pending sequence to the backup sequence, and the pending sequence may not be empty
before the transfer.

16 Default behavior: Calls underflow() . If underflow() returns traits::eof() , returns
traits::eof() . Otherwise, returns the value oftraits::to_int_type(*gptr()) and
increment the value of the next pointer for the input sequence.

17 Returns: traits::eof() to indicate failure.

[lib.streambuf.virt.pback] 27.5.2.4.4 Putback

int_type pbackfail(int_type c = traits::eof());

1 Notes: The public functions ofbasic_streambuf call this virtual function only whengptr() is null,
gptr() == eback() , or traits::eq(*gptr(),traits::to_char_type(c)) returns
false. Other calls shall also satisfy that constraint.
Thepending sequenceis defined as forunderflow() , with the modifications that

— If traits::eq_int_type(c,traits::eof()) returns true, then the input sequence is backed
up one character before the pending sequence is determined.

— If traits::eq_int_type(c,traits::eof()) return false, thenc is prepended. Whether the
input sequence is backed up or modified in any other way is unspecified.

2 Postcondition: On return, the constraints ofgptr() , eback() , and pptr() are the same as for
underflow() .

3 Returns: traits::eof() to indicate failure. Failure may occur because the input sequence could not
be backed up, or if for some other reason the pointers could not be set consistent with the constraints.
pbackfail() is called only when put back has really failed.
Returns some value other thantraits::eof() to indicate success.

4 Default behavior: Returnstraits::eof() .

627

ISO/IEC 14882:1998(E) © ISO/IEC

27.5.2.4.5 Put area 27 Input/output library

[lib.streambuf.virt.put] 27.5.2.4.5 Put area

streamsize xsputn(const char_type* s, streamsize n);

1 Effects: Writes up ton characters to the output sequence as if by repeated calls tosputc(c) . The char-
acters written are obtained from successive elements of the array whose first element is designated bys .
Writing stops when eithern characters have been written or a call tosputc(c) would return
traits::eof() .

2 Returns: The number of characters written.

int_type overflow(int_type c = traits::eof());

3 Effects: Consumes some initial subsequence of the characters of thepending sequence. The pending
sequence is defined as the concatenation of

a) if pbase() is NULL then the empty sequence otherwise,pptr() - pbase() characters beginning
atpbase() .

b) if traits::eq_int_type(c,traits::eof()) returns true, then the empty sequence other-
wise, the sequence consisting ofc .

4 Notes: The member functionssputc() and sputn() call this function in case that no room can be
found in the put buffer enough to accomodate the argument character sequence.

5 Requires: Every overriding definition of this virtual function shall obey the following constraints:

1) The effect of consuming a character on the associated output sequence is specified277)

2) Let r be the number of characters in the pending sequence not consumed. Ifr is non-zero then
pbase() andpptr() must be set so that:pptr() - pbase() == r and ther characters start-
ing at pbase() are the associated output stream. In caser is zero (all characters of the pending
sequence have been consumed) then eitherpbase() is set toNULL, or pbase() andpptr() are
both set to the same non-NULLvalue.

3) The function may fail if either appending some character to the associated output stream fails or if it is
unable to establishpbase() andpptr() according to the above rules.

6 Returns: traits::eof() or throws an exception if the function fails.
Otherwise, returns some value other thantraits::eof() to indicate success.278)

7 Default behavior: Returnstraits::eof() .

277)That is, for each class derived from an instance ofbasic_streambuf in this clause (27.7.1, 27.8.1.1), a specification of how
consuming a character effects the associated output sequence is given. There is no requirement on a program-defined class.
278) Typically, overflow returnsc to indicate success, except whentraits::eq_int_type(c,traits::eof()) returns
true, in which case it returnstraits::not_eof(c) .

628

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.5.2.4.5 Put area

[lib.iostream.format] 27.6 Formatting and manipulators

Header<istream> synopsis

namespace std {
template <class charT, class traits = char_traits<charT> >

class basic_istream;
typedef basic_istream<char> istream;
typedef basic_istream<wchar_t> wistream;

template <class charT, class traits = char_traits<charT> >
class basic_iostream;

typedef basic_iostream<char> iostream;
typedef basic_iostream<wchar_t> wiostream;

template <class charT, class traits>
basic_istream<charT,traits>& ws(basic_istream<charT,traits>& is);

}

Header<ostream> synopsis

namespace std {
template <class charT, class traits = char_traits<charT> >

class basic_ostream;
typedef basic_ostream<char> ostream;
typedef basic_ostream<wchar_t> wostream;

template <class charT, class traits>
basic_ostream<charT,traits>& endl(basic_ostream<charT,traits>& os);

template <class charT, class traits>
basic_ostream<charT,traits>& ends(basic_ostream<charT,traits>& os);

template <class charT, class traits>
basic_ostream<charT,traits>& flush(basic_ostream<charT,traits>& os);

}

Header<iomanip> synopsis

namespace std {
// TypesT1, T2, ... are unspecified implementation types
T1 resetiosflags(ios_base::fmtflags mask);
T2 setiosflags (ios_base::fmtflags mask);
T3 setbase(int base);
template<charT> T4 setfill(charT c);
T5 setprecision(int n);
T6 setw(int n);

}

629

ISO/IEC 14882:1998(E) © ISO/IEC

27.6 Formatting and manipulators 27 Input/output library

[lib.input.streams] 27.6.1 Input streams

1 The header<istream> defines two types and a function signature that control input from a stream buffer.

[lib.istream] 27.6.1.1 Template classbasic_istream

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_istream : virtual public basic_ios<charT,traits> {
public:
// Types (inherited frombasic_ios (27.4.4)):

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.6.1.1.1 Constructor/destructor:
explicit basic_istream(basic_streambuf<charT,traits>* sb);
virtual ~basic_istream();

// 27.6.1.1.2 Prefix/suffix:
class sentry;

// 27.6.1.2 Formatted input:
basic_istream<charT,traits>& operator>>

(basic_istream<charT,traits>& (* pf)(basic_istream<charT,traits>&))
basic_istream<charT,traits>& operator>>

(basic_ios<charT,traits>& (* pf)(basic_ios<charT,traits>&))
basic_istream<charT,traits>& operator>>

(ios_base& (* pf)(ios_base&))

basic_istream<charT,traits>& operator>>(bool& n);
basic_istream<charT,traits>& operator>>(short& n);
basic_istream<charT,traits>& operator>>(unsigned short& n);
basic_istream<charT,traits>& operator>>(int& n);
basic_istream<charT,traits>& operator>>(unsigned int& n);
basic_istream<charT,traits>& operator>>(long& n);
basic_istream<charT,traits>& operator>>(unsigned long& n);
basic_istream<charT,traits>& operator>>(float& f);
basic_istream<charT,traits>& operator>>(double& f);
basic_istream<charT,traits>& operator>>(long double& f);

basic_istream<charT,traits>& operator>>(void*& p);
basic_istream<charT,traits>& operator>>

(basic_streambuf<char_type,traits>* sb);

// 27.6.1.3 Unformatted input:
streamsize gcount() const;
int_type get();
basic_istream<charT,traits>& get(char_type& c);
basic_istream<charT,traits>& get(char_type* s, streamsize n);
basic_istream<charT,traits>& get(char_type* s, streamsize n,

char_type delim);
basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb);
basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb ,

char_type delim);

basic_istream<charT,traits>& getline(char_type* s, streamsize n);
basic_istream<charT,traits>& getline(char_type* s, streamsize n,

char_type delim);

630

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.6.1.1 Template classbasic_istream

basic_istream<charT,traits>& ignore
(streamsize n = 1, int_type delim = traits::eof());

int_type peek();
basic_istream<charT,traits>& read (char_type* s, streamsize n);
streamsize readsome(char_type* s, streamsize n);

basic_istream<charT,traits>& putback(char_type c);
basic_istream<charT,traits>& unget();
int sync();

pos_type tellg();
basic_istream<charT,traits>& seekg(pos_type);
basic_istream<charT,traits>& seekg(off_type, ios_base::seekdir);

};

// 27.6.1.2.3 character extraction templates:
template<class charT, class traits>

basic_istream<charT,traits>& operator>>(basic_istream<charT,traits>&,
charT&);

template<class traits>
basic_istream<char,traits>& operator>>(basic_istream<char,traits>&,

unsigned char&);
template<class traits>

basic_istream<char,traits>& operator>>(basic_istream<char,traits>&,
signed char&);

template<class charT, class traits>
basic_istream<charT,traits>& operator>>(basic_istream<charT,traits>&,

charT*);
template<class traits>

basic_istream<char,traits>& operator>>(basic_istream<char,traits>&,
unsigned char*);

template<class traits>
basic_istream<char,traits>& operator>>(basic_istream<char,traits>&,

signed char*);
}

1 The classbasic_istream defines a number of member function signatures that assist in reading and
interpreting input from sequences controlled by a stream buffer.

2 Two groups of member function signatures share common properties: theformatted input functions(or
extractors) and theunformatted input functions.Both groups of input functions are described as if they
obtain (orextract) input charactersby calling rdbuf()->sbumpc() or rdbuf()->sgetc() . They
may use other public members ofistream .

3 If rdbuf()->sbumpc() or rdbuf()->sgetc() returnstraits::eof() , then the input function,
except as explicitly noted otherwise, completes its actions and doessetstate(eofbit) , which may
throw ios_base::failure (27.4.4.3), before returning.

4 If one of these called functions throws an exception, then unless explicitly noted otherwise, the input func-
tion setsbadbit in error state. Ifbadbit is on in exception() , the input function rethrows the
exception without completing its actions, otherwise it does not throw anything and proceeds as if the called
function had returned a failure indication.

631

ISO/IEC 14882:1998(E) © ISO/IEC

27.6.1.1 Template classbasic_istream 27 Input/output library

[lib.istream.cons] 27.6.1.1.1basic_istream constructors

explicit basic_istream(basic_streambuf<charT,traits>* sb);

1 Effects: Constructs an object of classbasic_istream , assigning initial values to the base class by call-
ing basic_ios::init(sb) (27.4.4.1).

2 Postcondition: gcount() == 0

virtual ~basic_istream();

3 Effects: Destroys an object of classbasic_istream .
4 Notes: Does not perform any operations ofrdbuf() .

[lib.istream::sentry] 27.6.1.1.2 Classbasic_istream::sentry

namespace std {
template <class charT,class traits = char_traits<charT> >
class basic_istream<charT,traits>::sentry {

typedef traits traits_type;
bool ok_; // exposition only

public:
explicit sentry(basic_istream<charT,traits>& is, bool noskipws = false);
~sentry();
operator bool() const { return ok_; }

private:
sentry(const sentry&); // not defined
sentry& operator=(const sentry&); // not defined

};
}

1 The classsentry defines a class that is responsible for doing exception safe prefix and suffix operations.

explicit sentry(basic_istream<charT,traits>& is, bool noskipws = false);

2 Effects: If is.good() is true , prepares for formatted or unformatted input. First, ifis.tie() is not
a null pointer, the function callsis.tie()->flush() to synchronize the output sequence with any
associated external C stream. Except that this call can be suppressed if the put area ofis.tie() is
empty. Further an implementation is allowed to defer the call to flush until a call ofis->rdbuf()-
>underflow occurs. If no such call occurs before thesentry object is destroyed, the call toflush
may be eliminated entirely279) If noskipws is zero andis.flags() & ios_base::skipws is
nonzero, the function extracts and discards each character as long as the next available input characterc
is a whitespace character.

3 Notes: The constructorexplicit sentry(basic_istream<charT,traits>& is, bool
noskipws = false) uses the currently imbued locale inis , to determine whether the next input
character is whitespace or not.

4 To decide if the characterc is a whitespace character, the constructor performs ‘‘as if’’ it executes the
following code fragment:

const ctype<charT>& ctype = use_facet<ctype<charT> >(is.getloc());
if (ctype.is(ctype.space,c)!=0)

// c is a whitespace character.

5 If, after any preparation is completed,is.good() is true , ok_ != false otherwise,ok_ ==
false . During preparation, the constructor may callsetstate(failbit) (which may throw
ios_base::failure (27.4.4.3))280)

279)This will be possible only in functions that are part of the library. The semantics of the constructor used in user code is as speci-
fied.
280)The sentry constructor and destructor can also perform additional implementation-dependent operations.

632

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.6.1.1.2 Classbasic_istream::sentry

6 [Example:A typical implementation of thesentry constructor might include code such as:

template <class charT, class traits = char_traits<charT> >
basic_istream<charT,traits>::sentry(

basic_istream<charT,traits>& is, bool noskipws = false) {
...
int_type c;
typedef ctype<charT> ctype_type;
const ctype_type& ctype = use_facet<ctype_type>(is.getloc());
while ((c = is.rdbuf()->snextc()) != traits::eof()) {

if (ctype.is(ctype.space,c)==0) {
is.rdbuf()->sputbackc (c);
break;

}
}
...

}

—end example]

~sentry();

7 Effects: None.

operator bool() const;

8 Effects: Returnsok_ .

[lib.istream.formatted] 27.6.1.2 Formatted input functions

[lib.istream.formatted.reqmts] 27.6.1.2.1 Common requirements

1 Each formatted input function begins execution by constructing an object of classsentry with the
noskipws (second) argumentfalse . If thesentry object returnstrue , when converted to a value of
type bool , the function endeavors to obtain the requested input. If an exception is thrown during input
then ios::badbit is turned on281) in *this ’s error state. If(exception()&badbit)!= 0 then
the exception is rethrown. In any case, the formatted input function destroys thesentry object. If no
exception has been thrown, it returns*this .

[lib.istream.formatted.arithmetic] 27.6.1.2.2 Arithmetic Extractors

operator>>(short& val);
operator>>(unsigned short& val);
operator>>(int& val);
operator>>(unsigned int& val);
operator>>(long& val);
operator>>(unsigned long& val);
operator>>(float& val);
operator>>(double& val);
operator>>(long double& val);
operator>>(bool& val);
operator>>(void*& val);

As in the case of the inserters, these extractors depend on the locale’snum_get<> (22.2.2.1) object to per-
form parsing the input stream data. The conversion occurs as if performed by the following code fragment:

281)This is done without causing anios::failure to be thrown.

633

ISO/IEC 14882:1998(E) © ISO/IEC

27.6.1.2.2 Arithmetic Extractors 27 Input/output library

typedef num_get< charT,istreambuf_iterator<charT,traits> > numget;
iostate err = 0;
use_facet< numget >(loc).get(*this, 0, *this, err, val);
setstate(err);

In the above fragment,loc stands for the private member of thebasic_ios class. [Note:The first argu-
ment provides an object of theistream_iterator class which is an iterator pointed to an input stream.
It bypasses istreams and uses streambufs directly.—end note] Class locale relies on this type as its
interface toistream , so that it does not need to depend directly onistream .

[lib.istream::extractors] 27.6.1.2.3basic_istream::operator>>

basic_istream<charT,traits>& operator>>
(basic_istream<charT,traits>& (* pf)(basic_istream<charT,traits>&))

1 Returns: pf (*this) .282)

basic_istream<charT,traits>& operator>>
(basic_ios<charT,traits>& (* pf)(basic_ios<charT,traits>&));

2 Effects: Callspf (*this) .
3 Returns: *this .

basic_istream<charT,traits>& operator>>
(ios_base& (* pf)(ios_base&));

4 Effects: Callspf (*this) .283)

5 Returns: *this .

template<class charT, class traits>
basic_istream<charT,traits>& operator>>(basic_istream<charT,traits>& in ,

charT* s);
template<class traits>

basic_istream<char,traits>& operator>>(basic_istream<char,traits>& in ,
unsigned char* s);

template<class traits>
basic_istream<char,traits>& operator>>(basic_istream<char,traits>& in ,

signed char* s);

6 Effects: Behaves like a formatted input member (as described in 27.6.1.2.1) ofin . After a sentry
object is constructed,operator>> extracts characters and stores them into successive locations of an
array whose first element is designated bys . If width() is greater than zero,n is width() . Other-
wise n is the the number of elements of the largest array ofchar_type that can store a terminating
eos . n is the maximum number of characters stored.

7 Characters are extracted and stored until any of the following occurs:

— n-1 characters are stored;

— end of file occurs on the input sequence;

— ct.is(ct.space,c) is true for the next available input characterc , where ct is
use_facet<ctype<charT> >(in.getloc()) .

— A null byte (charT()) in the next position, which may be the first position if no characters were
extracted.

282)See, for example, the function signaturews(basic_istream&) (27.6.1.4).
283)See, for example, the function signaturedec(ios_base&) (27.4.5.3).

634

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.6.1.2.3basic_istream::operator>>

operator>> then callswidth(0) .

8 If the function extracted no characters, it callssetstate(failbit) , which may throw
ios_base::failure (27.4.4.3).

9 Returns: in .

template<class charT, class traits>
basic_istream<charT,traits>& operator>>(basic_istream<charT,traits>& in ,

charT& c);
template<class traits>

basic_istream<char,traits>& operator>>(basic_istream<char,traits>& in ,
unsigned char& c);

template<class traits>
basic_istream<char,traits>& operator>>(basic_istream<char,traits>& in ,

signed char& c);

10 Effects: Behaves like a formatted input member (as described in 27.6.1.2.1) ofin . After a sentry
object is constructed a character is extracted fromin , if one is available, and stored inc . Otherwise,
the function callsin .setstate(failbit) .

11 Returns: in .

basic_istream<charT,traits>& operator>>
(basic_streambuf<charT,traits>* sb);

12 Effects: If sb is null, calls setstate(failbit) , which may throw ios_base::failure
(27.4.4.3).
Extracts characters from*this and inserts them in the output sequence controlled bysb . Characters
are extracted and inserted until any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— an exception occurs (in which case the exception is caught).
13 If the function inserts no characters, it callssetstate(failbit) , which may throw

ios_base::failure (27.4.4.3). If failure was due to catching an exception thrown while extract-
ing characters fromsb andfailbit is on inexceptions() (27.4.4.3), then the caught exception
is rethrown.

14 Returns: *this .

[lib.istream.unformatted] 27.6.1.3 Unformatted input functions

1 Each unformatted input function begins execution by constructing an object of classsentry with the
default argumentnoskipws (second) argumenttrue . If the sentry object returnstrue , when con-
verted to a value of typebool , the function endeavors to obtain the requested input. If an exception is
thrown during input then ios::badbit is turned on284) in *this ’s error state. If
(exception()&badbit)!= 0 then the exception is rethrown. It also counts the number of characters
extracted. If no exception has been thrown it ends by storing the count in a member object and returning
the value specified. In any event thesentry object is destroyed before leaving the unformatted input
function.

284)This is done without causing anios::failure to be thrown.

635

ISO/IEC 14882:1998(E) © ISO/IEC

27.6.1.3 Unformatted input functions 27 Input/output library

streamsize gcount() const;

2 Returns: The number of characters extracted by the last unformatted input member function called for the
object.

int_type get();

3 Effects: Extracts a characterc , if one is available. Otherwise, the function callssetstate(failbit) ,
which may throwios_base::failure (27.4.4.3),

4 Returns: c if available, otherwisetraits::eof() .

basic_istream<charT,traits>& get(char_type& c);

5 Effects: Extracts a character, if one is available, and assigns it toc .285) Otherwise, the function calls
setstate(failbit) (which may throwios_base::failure (27.4.4.3)).

6 Returns: *this .

basic_istream<charT,traits>& get(char_type* s, streamsize n,
char_type delim);

7 Effects: Extracts characters and stores them into successive locations of an array whose first element is
designated bys .286)Characters are extracted and stored until any of the following occurs:

— n - 1 characters are stored;

— end-of-file occurs on the input sequence (in which case the function callssetstate(eofbit));

— c == delim for the next available input characterc (in which casec is not extracted).

8 If the function stores no characters, it callssetstate(failbit) (which may throw
ios_base::failure (27.4.4.3)). In any case, it then stores a null character into the next successive
location of the array.

9 Returns: *this .

basic_istream<charT,traits>& get(char_type* s, streamsize n)

10 Effects: Callsget(s,n,widen(’\n’))
11 Returns: Value returned by the call.

basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb ,
char_type delim);

12 Effects: Extracts characters and inserts them in the output sequence controlled bysb . Characters are
extracted and inserted until any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— c == delim for the next available input characterc (in which casec is not extracted);

— an exception occurs (in which case, the exception is caught but not rethrown).

13 If the function inserts no characters, it callssetstate(failbit) , which may throw
ios_base::failure (27.4.4.3).

14 Returns: *this .

285)Note that this function is not overloaded on typessigned char andunsigned char .
286)Note that this function is not overloaded on typessigned char andunsigned char .

636

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.6.1.3 Unformatted input functions

basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb);

15 Effects: Callsget(s,n,widen(’\n’))
16 Returns: Value returned by the call.

basic_istream<charT,traits>& getline(char_type* s, streamsize n,
char_type delim);

17 Effects: Extracts characters and stores them into successive locations of an array whose first element is
designated bys .287)Characters are extracted and stored until one of the following occurs:

1) end-of-file occurs on the input sequence (in which case the function callssetstate(eofbit));

2) c == delim for the next available input characterc (in which case the input character is extracted but
not stored);288)

3) n - 1 characters are stored (in which case the function callssetstate(failbit)).

18 These conditions are tested in the order shown.289)

19 If the function extracts no characters, it callssetstate(failbit) (which may throw
ios_base::failure (27.4.4.3)).290)

20 In any case, it then stores a null character (usingcharT()) into the next successive location of the array.
21 Returns: *this .

22 [Example:

#include <iostream>

int main()
{

using namespace std;
const int line_buffer_size = 100;

char buffer[line_buffer_size];
int line_number = 0;
while (cin.getline(buffer, line_buffer_size, ’\n’) || cin.gcount()) {

int count = cin.gcount();
if (cin.eof())

cout << "Partial final line"; // cin.fail() is false
else if (cin.fail()) {

cout << "Partial long line";
cin.clear(cin.rdstate() & ~ios::failbit);

} else {
count--; // Don’t include newline incount
cout << "Line " << ++line_number;

}
cout << " (" << count << " chars): " << buffer << endl;

}
}

—end example]

287)Note that this function is not overloaded on typessigned char andunsigned char .
288)Since the final input character is ‘‘extracted,’’ it is counted in thegcount() , even though it is not stored.
289)This allows an input line which exactly fills the buffer, without settingfailbit . This is different behavior than the historical
AT&T implementation.
290)This implies an empty input line will not causefailbit to be set.

637

ISO/IEC 14882:1998(E) © ISO/IEC

27.6.1.3 Unformatted input functions 27 Input/output library

basic_istream<charT,traits>& getline(char_type* s, streamsize n);

23 Returns: getline(s,n,widen(’\n’))

basic_istream<charT,traits>&
ignore(int n = 1, int_type delim = traits::eof());

24 Effects: Extracts characters and discards them. Characters are extracted until any of the following occurs:

— if n != numeric_limits<int>::max() (18.2.1),n characters are extracted

— end-of-file occurs on the input sequence (in which case the function callssetstate(eofbit) ,
which may throwios_base::failure (27.4.4.3));

— c == delim for the next available input characterc (in which casec is extracted).
25 Notes: The last condition will never occur ifdelim == traits::eof() .
26 Returns: *this .

int_type peek();

27 Returns: traits::eof() if good() is false. Otherwise, returnsrdbuf()->sgetc() .

basic_istream<charT,traits>& read(char_type* s, streamsize n);

28 Effects: If !good() calls setstate(failbit) which may throw an exception, and return. Other-
wise extracts characters and stores them into successive locations of an array whose first element is des-
ignated bys .291)Characters are extracted and stored until either of the following occurs:

— n characters are stored;

— end-of-file occurs on the input sequence (in which case the function calls
setstate(failbit|eofbit) , which may throwios_base::failure (27.4.4.3)).

29 Returns: *this .

streamsize readsome(char_type* s, streamsize n);

30 Effects: If !good() calls setstate(failbit) which may throw an exception, and return. Other-
wise extracts characters and stores them into successive locations of an array whose first element is des-
ignated bys . If rdbuf()->in_avail() == -1 , callssetstate(eofbit) (which may throw
ios_base::failure (27.4.4.3)), and extracts no characters;

— If rdbuf()->in_avail() == 0 , extracts no characters

— If rdbuf()->in_avail() > 0 , extractsmin(rdbuf()->in_avail(), n)) .
31 Returns: The number of characters extracted.

basic_istream<charT,traits>& putback(char_type c);

32 Effects: If !good() calls setstate(failbit) which may throw an exception, and return. If
rdbuf() is not null, callsrdbuf->sputbackc() . If rdbuf() is null, or if sputback()
returnstraits::eof() , callssetstate(badbit) (which may throwios_base::failure
(27.4.4.3)).

33 Returns: *this .

291)Note that this function is not overloaded on typessigned char andunsigned char .

638

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.6.1.3 Unformatted input functions

basic_istream<charT,traits>& unget();

34 Effects: If !good() calls setstate(failbit) which may throw an exception, and return. If
rdbuf() is not null, callsrdbuf()->sungetc() . If rdbuf() is null, or if sungetc() returns
traits::eof() , calls setstate(badbit) (which may throw ios_base::failure
(27.4.4.3)).

35 Returns: *this .

int sync();

36 Effects: If rdbuf() is a null pointer, returns -1 . Otherwise, callsrdbuf()->pubsync() and, if that
function returns -1 callssetstate(badbit) (which may throw ios_base::failure
(27.4.4.3), and returnstraits::eof() . Otherwise, returns zero.

pos_type tellg();

37 Returns: if fail() != false , returnspos_type(-1) to indicate failure. Otherwise, returns
rdbuf()->pubseekoff(0, cur, in) .

basic_istream<charT,traits>& seekg(pos_type pos);

38 Effects: If fail() != true , executesrdbuf()->pubseekpos(pos) .
39 Returns: *this .

basic_istream<charT,traits>& seekg(off_type& off , ios_base::seekdir dir);

40 Effects: If fail() != true , executesrdbuf()->pubseekoff(off , dir) .
41 Returns: *this .

[lib.istream.manip] 27.6.1.4 Standardbasic_istream manipulators

namespace std {
template <class charT, class traits>

basic_istream<charT,traits>& ws(basic_istream<charT,traits>& is);
}

1 Effects: Extracts characters as long as the next available characterc is whitespace or until there are no
more characters in the sequence. Whitespace characters are distinguished with the same criterion as
used bysentry::sentry (27.6.1.1.2). Ifws stops extracting characters because there are no more
available it setseofbit , but notfailbit .

2 Returns: is .

[lib.iostreamclass] 27.6.1.5 Template classbasic_iostream

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_iostream :

public basic_istream<charT,traits>,
public basic_ostream<charT,traits> {

public:
// constructor/destructor
explicit basic_iostream(basic_streambuf<charT,traits>* sb);
virtual ~basic_iostream();

};
}

1 The classbasic_iostream inherits a number of functions that allow reading input and writing output to
sequences controlled by a stream buffer.

639

ISO/IEC 14882:1998(E) © ISO/IEC

27.6.1.5.1basic_iostream constructors 27 Input/output library

[lib.iostream.cons] 27.6.1.5.1basic_iostream constructors

explicit basic_iostream(basic_streambuf<charT,traits>* sb);

1 Effects Constructs an object of classbasic_iostream , assigning initial values to the base classes by
calling basic_istream<charT,traits>(sb) (27.6.1.1) and
basic_ostream<charT,traits>(sb) (27.6.2.1)

2 Postcondition: rdbuf()==sb andgcount()==0 .

[lib.iostream.dest] 27.6.1.5.2basic_iostream destructor

virtual ~basic_iostream();

1 Effects: Destroys an object of classbasic_iostream .
2 Notes: Does not perform any operations onrdbuf() .

[lib.output.streams] 27.6.2 Output streams

1 The header<ostream> defines a type and several function signatures that control output to a stream
buffer.

[lib.ostream] 27.6.2.1 Template classbasic_ostream

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_ostream : virtual public basic_ios<charT,traits> {
public:
// Types (inherited frombasic_ios (27.4.4)):

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.6.2.2 Constructor/destructor:
explicit basic_ostream(basic_streambuf<char_type,traits>* sb);
virtual ~basic_ostream();

// 27.6.2.3 Prefix/suffix:
class sentry;

// 27.6.2.5 Formatted output:
basic_ostream<charT,traits>& operator<<

(basic_ostream<charT,traits>& (* pf)(basic_ostream<charT,traits>&));
basic_ostream<charT,traits>& operator<<

(basic_ios<charT,traits>& (* pf)(basic_ios<charT,traits>&));
basic_ostream<charT,traits>& operator<<

(ios_base& (* pf)(ios_base&));

basic_ostream<charT,traits>& operator<<(bool n);
basic_ostream<charT,traits>& operator<<(short n);
basic_ostream<charT,traits>& operator<<(unsigned short n);
basic_ostream<charT,traits>& operator<<(int n);
basic_ostream<charT,traits>& operator<<(unsigned int n);
basic_ostream<charT,traits>& operator<<(long n);
basic_ostream<charT,traits>& operator<<(unsigned long n);
basic_ostream<charT,traits>& operator<<(float f);
basic_ostream<charT,traits>& operator<<(double f);
basic_ostream<charT,traits>& operator<<(long double f);

640

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.6.2.1 Template classbasic_ostream

basic_ostream<charT,traits>& operator<<(const void* p);
basic_ostream<charT,traits>& operator<<

(basic_streambuf<char_type,traits>* sb);

// 27.6.2.6 Unformatted output:
basic_ostream<charT,traits>& put(char_type c);
basic_ostream<charT,traits>& write(const char_type* s, streamsize n);

basic_ostream<charT,traits>& flush();

// 27.6.2.4 seeks:
pos_type tellp();
basic_ostream<charT,traits>& seekp(pos_type);
basic_ostream<charT,traits>& seekp(off_type, ios_base::seekdir);

};

// 27.6.2.5.4 character inserters
template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&,

charT);
template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&,

char);
// specialization
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
char);

// signed and unsigned
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
signed char);

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,

unsigned char)

template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&,

const charT*);
template<class charT, class traits>

basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&,
const char*);

// partial specializationss
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
const char*);

// signed and unsigned
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
const signed char*);

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,

const unsigned char*);

}

1 The classbasic_ostream defines a number of member function signatures that assist in formatting and
writing output to output sequences controlled by a stream buffer.

2 Two groups of member function signatures share common properties: theformatted output functions(or
inserters) and theunformatted output functions.Both groups of output functions generate (orinsert) output

641

ISO/IEC 14882:1998(E) © ISO/IEC

27.6.2.1 Template classbasic_ostream 27 Input/output library

charactersby actions equivalent to callingrdbuf().sputc(int_type) . They may use other public
members ofbasic_ostream except that they do not invoke any virtual members ofrdbuf() except
overflow() .

3 If one of these called functions throws an exception, then unless explicitly noted otherwise the output func-
tion setbadbit in error state. Ifbadbit is on in exception() , the output function rethrows the
exception without completing its actions, otherwise it does not throw anything and treat as an error.

[lib.ostream.cons] 27.6.2.2basic_ostream constructors

explicit basic_ostream(basic_streambuf<charT,traits>* sb);

1 Effects: Constructs an object of classbasic_ostream , assigning initial values to the base class by call-
ing basic_ios<charT,traits>::init(sb) (27.4.4.1).

2 Postcondition: rdbuf() == sb .

virtual ~basic_ostream();

3 Effects: Destroys an object of classbasic_ostream .
4 Notes: Does not perform any operations onrdbuf() .

[lib.ostream::sentry] 27.6.2.3 Classbasic_ostream::sentry

namespace std {
template <class charT,class traits = char_traits<charT> >
class basic_ostream<charT,traits>::sentry {

bool ok_; // exposition only
public:

explicit sentry(basic_ostream<charT,traits>& os);
~sentry();
operator bool() const { return ok_; }

private
sentry(const sentry&); // not defined
sentry& operator=(const sentry&); // not defined

};
}

1 The classsentry defines a class that is responsible for doing exception safe prefix and suffix operations.

explicit sentry(basic_ostream<charT,traits>& os);

2 If os.good() is nonzero, prepares for formatted or unformatted output. Ifos.tie() is not a null
pointer, callsos.tie()->flush() .292)

3 If, after any preparation is completed,os.good() is true , ok_ == true otherwise,ok_ ==
false . During preparation, the constructor may callsetstate(failbit) (which may throw
ios_base::failure (27.4.4.3))293)

~sentry();

4 If ((os.flags() & ios_base::unitbuf) && !uncaught_exception()) is true , calls
os.flush() .

292)The callos.tie()->flush() does not necessarily occur if the function can determine that no synchronization is necessary.
293)Thesentry constructor and destructor can also perform additional implementation-dependent operations.

642

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.6.2.3 Classbasic_ostream::sentry

operator bool();

5 Effects: Returnsok_ .

[lib.ostream.seeks] 27.6.2.4basic_ostream seek members

pos_type tellp();

1 Returns: if fail() != false , returnspos_type(-1) to indicate failure. Otherwise, returns
rdbuf()->pubseekoff(0, cur, out) .

basic_ostream<charT,traits>& seekp(pos_type& pos);

2 Effects: If fail() != true , executesrdbuf()->pubseekpos(pos) .
3 Returns: *this .

basic_ostream<charT,traits>& seekp(off_type& off , ios_base::seekdir dir);

4 Effects: If fail() != true , executesrdbuf()->pubseekoff(off , dir) .
5 Returns: *this .

[lib.ostream.formatted] 27.6.2.5 Formatted output functions

[lib.ostream.formatted.reqmts] 27.6.2.5.1 Common requirements

1 Each formatted output function begins execution by constructing an object of classsentry . If this object
returnstrue when converted to a value of typebool , the function endeavors to generate the requested
output. If the generation fails, then the formatted output function doessetstate(ios::failbit) ,
which might throw an exception. If an exception is thrown during output, thenios::badbit is turned
on294) in *this ’s error state. If(exception()&badbit) != 0 then the exception is rethrown.
Whether or not an exception is thrown, thesentry object is destroyed before leaving the formatted output
function. If no exception is thrown, the result of the formattted output function is*this .

2 The descriptions of the individual formatted output operations describe how they perform output and do not
mention thesentry object.

[lib.ostream.inserters.arithmetic] 27.6.2.5.2 Arithmetic Inserters

operator<<(bool val);
operator<<(short val);
operator<<(unsigned short val);
operator<<(int val);
operator<<(unsigned int val);
operator<<(long val);
operator<<(unsigned long val);
operator<<(float val);
operator<<(double val);
operator<<(long double val);
operator<<(const void* val);

1 Effects: The classesnum_get<> and num_put<> handle locale-dependent numeric formatting and
parsing. These inserter functions use the imbuedlocale value to perform numeric formatting. The
formatting conversion occurs as if it performed the following code fragment:

bool failed =
use_facet< num_put<charT,ostreambuf_iterator<charT,traits> > >(getloc()).

put(*this, *this, fill(), val). failed();

294)without causing anios::failure to be thrown.

643

ISO/IEC 14882:1998(E) © ISO/IEC

27.6.2.5.2 Arithmetic Inserters 27 Input/output library

The first argument provides an object of theostreambuf_iterator<> class which is an iterator
for class basic_ostream<>. It bypassesostream s and usesstreambuf s directly. Classlocale
relies on these types as its interface to iostreams, since for flexibility it has been abstracted away from
direct dependence onostream . The second parameter is a reference to the base subobject of type
ios_base . It provides formatting specifications such as field width, and a locale from which to obtain
other facets. Iffailed is true then doessetstate(badbit) , which may throw an exception, and
returns.

2 Returns: *this .

[lib.ostream.inserters] 27.6.2.5.3basic_ostream::operator<<

basic_ostream<charT,traits>& operator<<
(basic_ostream<charT,traits>& (* pf)(basic_ostream<charT,traits>&))

1 Returns: pf (*this) .295)

basic_ostream<charT,traits>& operator<<
(basic_ios<charT,traits>& (* pf)(basic_ios<charT,traits>&))

2 Effects: Callspf (*this) .
3 Returns: *this .296)

basic_ostream<charT,traits>& operator<<
(ios_base& (* pf)(ios_base&))

4 Effects: Callspf (*this) .
5 Returns: *this .

basic_ostream<charT,traits>& operator<<
(basic_streambuf<charT,traits>* sb);

6 Effects: If sb is null callssetstate(badbit) (which may throwios_base::failure).

7 Gets characters fromsb and inserts them in*this . Characters are read fromsb and inserted until any of
the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— an exception occurs while getting a character fromsb .

8 If the function inserts no characters, it callssetstate(failbit) (which may throw
ios_base::failure (27.4.4.3)). If an exception was thrown while extracting a character, the function
setfailbit in error state, and iffailbit is on inexceptions() the caught exception is rethrown.

9 Returns: *this .

295)See, for example, the function signatureendl(basic_ostream&) (27.6.2.7) .
296)See, for example, the function signaturedec(ios_base&) (27.4.5.3).

644

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.6.2.5.3basic_ostream::operator<<

[lib.ostream.inserters.character] 27.6.2.5.4 Character inserter template functions

template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out ,

charT c);
template<class charT, class traits>

basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out ,
char c);

// specialization
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out ,
char c);

// signed and unsigned
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out ,
signed char c);

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out ,

unsigned char c);

1 Effects: Behaves like an formatted inserter (as described in 27.6.2.5.1) ofout . After asentry object is
constructed it inserts characters. In casec has typechar and the character type of the stream is not
char , then the character to be inserted isout.widen(c) ; otherwise the character isc297) Padding is
determined as described in 22.2.2.2.2.width(0) is called. The insertion character and any required
padding are inserted intoout .

2 Returns: out

template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out ,

const charT* s);
template<class charT, class traits>

basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out ,
const char* s);

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out ,

const char* s);
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out ,
const signed char* s);

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out ,

const unsigned char* s);

3 Requires: s is non-null.
4 Effects: Behaves like an formatted inserter (as described in 27.6.2.5.1) ofout . After asentry object is

constructed it inserts characters. The number of characters starting ats to be inserted is
traits::length(s) . Padding is determined as described in 22.2.2.2.2. The
traits::length(s) characters starting ats are widened usingout.widen (27.4.4.2). The
widened characters and any required padding are inserted intoout . Callswidth(0) .

5 Returns: out

[lib.ostream.unformatted] 27.6.2.6 Unformatted output functions

1 Each formatted output function begins execution by constructing an object of classsentry . If this object
returnstrue , while converting to a value of typebool , the function endeavors to generate the requested
output. In any case, the unformatted output function ends by destroying thesentry object, then returning
the value specified for the formatted output function.

297)In case the insertion is into achar stream,widen(c) will usually bec .

645

ISO/IEC 14882:1998(E) © ISO/IEC

27.6.2.6 Unformatted output functions 27 Input/output library

basic_ostream<charT,traits>& put(char_type c);

2 Effects: Inserts the characterc , if possible.298)

3 Otherwise, callssetstate(badbit) (which may throwios_base::failure (27.4.4.3)).
4 Returns: *this .

basic_ostream& write(const char_type* s, streamsize n);

5 Effects: Obtains characters to insert from successive locations of an array whose first element is desig-
nated bys .299)Characters are inserted until either of the following occurs:

— n characters are inserted;

— inserting in the output sequence fails (in which case the function callssetstate(badbit) , which
may throwios_base::failure (27.4.4.3)).

6 Returns: *this .

basic_ostream& flush();

7 If rdbuf() is not a null pointer, callsrdbuf()->pubsync() . If that function returns -1 calls
setstate(badbit) (which may throwios_base::failure (27.4.4.3)).

8 Returns: *this .

[lib.ostream.manip] 27.6.2.7 Standardbasic_ostream manipulators

namespace std {
template <class charT, class traits>

basic_ostream<charT,traits>& endl(basic_ostream<charT,traits>& os);
}

1 Effects: Callsos .put(os.widen(’\n’)) , thenos .flush() .
2 Returns: os .300)

namespace std {
template <class charT, class traits>

basic_ostream<charT,traits>& ends(basic_ostream<charT,traits>& os);
}

3 Effects: Inserts a null character into the output sequence: callsos .put(charT()) .
4 Returns: os .

namespace std {
template <class charT, class traits>

basic_ostream<charT,traits>& flush(basic_ostream<charT,traits>& os);
}

5 Effects: Callsos .flush() .
6 Returns: os .

[lib.std.manip] 27.6.3 Standard manipulators

1 The header<iomanip> defines a type and several related functions that use this type to provide extractors
and inserters that alter information maintained by classios_base and its derived classes.

298)Note that this function is not overloaded on typessigned char andunsigned char .
299)Note that this function is not overloaded on typessigned char andunsigned char .
300)The effect of executingcout << endl is to insert a newline character in the output sequence controlled bycout , then syn-
chronize it with any external file with which it might be associated.

646

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.6.3 Standard manipulators

2 The type designatedsmanipin each of the following function descriptions is implementation-specified and
may be different for each function.

smanip resetiosflags(ios_base::fmtflags mask);

3 Returns: An objects of unspecified type such that ifout is an (instance of)basic_ostream then the
expressionout<<s behaves as iff(s) were called, and ifin is an (instance of)basic_istream
then the expressionin>>s behaves as iff(s) were called. Wheref can be defined as:301)

ios_base& f (ios_base& str , ios_base::fmtflags mask)
{

// reset specified flags
str .setf(ios_base::fmtflags(0), mask);
return str ;

}

The expressionout<<s has typeostream& and valueout . The expressionin>>s has type
istream& and valuein .

smanip setiosflags(ios_base::fmtflags mask);

4 Returns: An objects of unspecified type such that ifout is an (instance of)basic_ostream then the
expressionout<<s behaves as iff(s) were called,in is an (instance of)basic_istream then the
expressionin>>s behaves as iff(s) were called. Wheref can be defined as:

ios_base& f (ios_base& str , ios_base::fmtflags mask)
{

// set specified flags
str .setf(mask);
return str ;

}

The expressionout<<s has typeostream& and valueout . The expressionin>>s has type
istream& and valuein .

smanip setbase(int base);

5 Returns: An objects of unspecified type such that ifout is an (instance of)basic_ostream then the
expressionout<<s behaves as iff(s) were called,in is an (instance of)basic_istream then the
expressionin>>s behaves as iff(s) were called. Wheref can be defined as:

ios_base& f (ios_base& str , int base)
{

// setbasefield
str .setf(n == 8 ? ios_base::oct :

n == 10 ? ios_base::dec :
n == 16 ? ios_base::hex :

ios_base::fmtflags(0), ios_base::basefield);
return str ;

}

The expressionout<<s has typeostream& and valueout . The expressionin>>s has type
istream& and valuein .

301)The expressioncin >> resetiosflags(ios_base::skipws) clearsios_base::skipws in the format flags stored
in the istream object cin (the same as cin >> noskipws), and the expression cout <<
resetiosflags(ios_base::showbase) clearsios_base::showbase in the format flags stored in theostream object
cout (the same ascout << noshowbase).

647

ISO/IEC 14882:1998(E) © ISO/IEC

27.6.3 Standard manipulators 27 Input/output library

smanip setfill(char_type c);

6 Returns: An object s of unspecified type such that ifout is (or is derived from)
basic_ostream<charT,traits> andc has typecharT then the expressionout<<s behaves
as if f(s) were called, wheref can be defined as:

template<class charT, class traits>
basic_ios<charT,traits>& f (basic_ios<charT,traits>& str , charT c)
{

// set fill character
str .fill(c);
return str ;

}

The expressionout<<s has typeostream& and valueout .

smanip setprecision(int n);

7 Returns: An objects of unspecified type such that ifout is an (instance of)basic_ostream then the
expressionout<<s behaves as iff(s) were called,in is an (instance of)basic_istream then the
expressionin>>s behaves as iff(s) were called. Wheref can be defined as:

ios_base& f (ios_base& str , int n)
{

// set precision
str .precision(n);
return str ;

}

The expressionout<<s has typeostream& and valueout . The expressionin>>s has type
istream& and valuein .

smanip setw(int n);

8 Returns: An objects of unspecified type such that ifout is an (instance of)basic_ostream then the
expressionout<<s behaves as iff(s) were called,in is an (instance of)basic_istream then the
expressionin>>s behaves as iff(s) were called. Wheref can be defined as:

ios_base& f (ios_base& str , int n)
{

// set width
str .width(n);
return str ;

}

The expressionout<<s has typeostream& and valueout . The expressionin>>s has type
istream& and valuein .

[lib.string.streams] 27.7 String-based streams

1 The header<sstream> defines four template classes, and six types, that associate stream buffers with
objects of classbasic_string , as described in 21.2.

648

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.7 String-based streams

Header<sstream> synopsis

namespace std {
template <class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_stringbuf;

typedef basic_stringbuf<char> stringbuf;
typedef basic_stringbuf<wchar_t> wstringbuf;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_istringstream;

typedef basic_istringstream<char> istringstream;
typedef basic_istringstream<wchar_t> wistringstream;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_ostringstream;
typedef basic_ostringstream<char> ostringstream;
typedef basic_ostringstream<wchar_t> wostringstream;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_stringstream;
typedef basic_stringstream<char> stringstream;
typedef basic_stringstream<wchar_t> wstringstream;

}

[lib.stringbuf] 27.7.1 Template classbasic_stringbuf

namespace std {
template <class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_stringbuf : public basic_streambuf<charT,traits> {
public:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.7.1.1 Constructors:
explicit basic_stringbuf(ios_base::openmode which

= ios_base::in | ios_base::out);
explicit basic_stringbuf

(const basic_string<charT,traits,Allocator>& str ,
ios_base::openmode which = ios_base::in | ios_base::out);

// 27.7.1.2 Get and set:
basic_string<charT,traits,Allocator> str() const;
void str(const basic_string<charT,traits,Allocator>& s);

649

ISO/IEC 14882:1998(E) © ISO/IEC

27.7.1 Template classbasic_stringbuf 27 Input/output library

protected:
// 27.7.1.3 Overridden virtual functions:
virtual int_type underflow();
virtual int_type pbackfail(int_type c = traits::eof());
virtual int_type overflow (int_type c = traits::eof());
virtual basic_streambuf<charT,traits>* setbuf(charT*, streamsize);

virtual pos_type seekoff(off_type off , ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out);
virtual pos_type seekpos(pos_type sp ,

ios_base::openmode which
= ios_base::in | ios_base::out);

private:
// ios_base::openmode mode; exposition only

};
}

1 The classbasic_stringbuf is derived frombasic_streambuf to associate possibly the input
sequence and possibly the output sequence with a sequence of arbitrarycharacters. The sequence can be
initialized from, or made available as, an object of classbasic_string .

2 For the sake of exposition, the maintained data is presented here as:

— ios_base::openmode mode, hasin set if the input sequence can be read, andout set if the out-
put sequence can be written.

[lib.stringbuf.cons] 27.7.1.1basic_stringbuf constructors

explicit basic_stringbuf(ios_base::openmode which =
ios_base::in | ios_base::out);

1 Effects: Constructs an object of classbasic_stringbuf , initializing the base class with
basic_streambuf() (27.5.2.1), and initializingmodewith which .

2 Notes: The function allocates no array object.

explicit basic_stringbuf(const basic_string<charT,traits,Allocator>& str ,
ios_base::openmode which = ios_base::in | ios_base::out);

3 Effects: Constructs an object of classbasic_stringbuf , initializing the base class with
basic_streambuf() (27.5.2.1), and initializingmodewith which . Then copies the content ofstr
into the basic_stringbuf underlying character sequence and initializes the input and output
sequences according towhich. If which & ios_base::out is true, initializes the output sequence
with the underlying sequence. Ifwhich & ios_base::in is true, initializes the input sequence
with the underlying sequence.

4 Postconditions: str() == str .

[lib.stringbuf.members] 27.7.1.2 Member functions

basic_string<charT,traits,Allocator> str() const;

1 Returns: A basic_string object whose content is equal to thebasic_stringbuf underlying char-
acter sequence. If the buffer is only created in input mode, the underlying character sequence is equal to
the input sequence; otherwise, it is equal to the output sequence. In case of an empty underlying charac-
ter sequence, the function returnsbasic_string<charT,traits,Allocator>() .

650

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.7.1.2 Member functions

void str(const basic_string<charT,traits,Allocator>& s);

2 Effects: If the basic_stringbuf ’s underlying character sequence is not empty, deallocates it. Then
copies the content ofs into thebasic_stringbuf underlying character sequence and initializes the
input and output sequences according to the mode stored when creating thebasic_stringbuf
object. If (mode&ios_base::out) is true, then initializes the output sequence with the underlying
sequence. If(mode&ios_base::in) is true, then initializes the input sequence with the underlying
sequence.

3 Postcondition: str() == s .

[lib.stringbuf.virtuals] 27.7.1.3 Overridden virtual functions

int_type underflow();

1 Returns: If the input sequence has a read position available, returns
traits::to_int_type(*gptr()) .
Otherwise, returnstraits::eof() .

int_type pbackfail(int_type c = traits::eof());

2 Effects: Puts back the character designated byc to the input sequence, if possible, in one of three ways:

— If traits::eq_int_type(c,traits::eof()) returns false and if the input sequence has a
putback position available, and iftraits::eq(to_char_type(c),gptr()[-1]) returns true,
assignsgptr() - 1 to gptr() .
Returns:c .

— If traits::eq_int_type(c,traits::eof()) returns false and if the input sequence has a
putback position available, and ifmode & ios_base::out is nonzero, assignsc to *--gptr() .
Returns: c .

— If traits::eq_int_type(c,traits::eof()) returns true and if the input sequence has a put-
back position available, assignsgptr() - 1 to gptr() .
Returns:traits::not_eof(c) .

3 Returns: traits::eof() to indicate failure.
4 Notes: If the function can succeed in more than one of these ways, it is unspecified which way is chosen.

int_type overflow(int_type c = traits::eof());

5 Effects: Appends the character designated byc to the output sequence, if possible, in one of two ways:

— If traits::eq_int_type(c,traits::eof()) returns false and if either the output sequence
has a write position available or the function makes a write position available (as described below), the
function callssputc(c) .
Signals success by returningc .

— If traits::eq_int_type(c,traits::eof()) returns true, there is no character to append.
Signals success by returning a value other thantraits::eof() .

6 Notes: The function can alter the number of write positions available as a result of any call.
7 Returns: traits::eof() to indicate failure.

8 9 Notes: The function can make a write position available only if(mode & ios_base::out) != 0 .
To make a write position available, the function reallocates (or initially allocates) an array object with a
sufficient number of elements to hold the current array object (if any), plus one additional write posi-
tion. If (mode & ios_base::in) != 0 , the function alters the read end pointeregptr() to
point just past the new write position (as does the write end pointerepptr()).

651

ISO/IEC 14882:1998(E) © ISO/IEC

27.7.1.3 Overridden virtual functions 27 Input/output library

pos_type seekoff(off_type off , ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out);

10 Effects: Alters the stream position within one of the controlled sequences, if possible, as indicated in Table
90:

Table 90—seekoff positioning
_ ___

Conditions Result_ __ ___
(which & basic_ios::in) != 0 positions the input sequence_ ___
(which & basic_ios::out) != 0 positions the output sequence_ ___

positions both the input and the output sequences(which & (basic_ios::in |
basic_ios::out)) ==
(basic_ios::in |
basic_ios::out))
and way == either
basic_ios::beg or
basic_ios::end_ ___
Otherwise the positioning operation fails._ ___

11 For a sequence to be positioned, if its next pointer (eithergptr() or pptr()) is a null pointer, the posi-
tioning operation fails. Otherwise, the function determinesnewoff as indicated in Table 91:

Table 91—newoff values
_ __

Condition newoff Value_ ___ __
way == basic_ios::beg 0_ __
way == basic_ios::cur the next pointer minus the begin-

ning pointer (xnext - xbeg)._ __
way == basic_ios::end the end pointer minus the begin-

ning pointer (xend - xbeg)_ __

12 _ If (newoff + off) < 0 , or (xend - xbeg) < (newoff + off) , the positioning operation
fails. Otherwise, the function assignsxbeg + newoff + off to the next pointerxnext .

13 Returns: pos_type(newoff) , constructed from the resultant offsetnewoff (of type off_type),
that stores the resultant stream position, if possible. If the positioning operation fails, or if the con-
structed object cannot represent the resultant stream position, the object stores an invalid stream posi-
tion.

pos_type seekpos(pos_type sp , ios_base::openmode which
= ios_base::in | ios_base::out);

14 Effects: Alters the stream position within the controlled sequences, if possible, to correspond to the stream
position stored insp (as described below).

— If (which & basic_ios::in) != 0 , positions the input sequence.

— If (which & basic_ios::out) != 0 , positions the output sequence.

— If sp is an invalid stream position, of if the function positions neither sequence, the positioning opera-
tion fails. If sp has not been obtained by a previous successful call to one of the positioning functions(
seekoff , seekpos , tellg , tellp) the effect is undefined.

652

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.7.1.3 Overridden virtual functions

15 Returns: sp to indicate success, orpos_type(off_type(-1)) to indicate failure.

basic_streambuf<charT,traits>* setbuf(charT* s, streamsize n);

16 Effects: implementation-defined, except thatsetbuf(0,0) has no effect.
17 Returns: this .

[lib.istringstream] 27.7.2 Template classbasic_istringstream

namespace std {
template <class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_istringstream : public basic_istream<charT,traits> {
public:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.7.2.1 Constructors:
explicit basic_istringstream(ios_base::openmode which = ios_base::in);
explicit basic_istringstream(

const basic_string<charT,traits,Allocator>& str ,
ios_base::openmode which = ios_base::in);

// 27.7.2.2 Members:
basic_stringbuf<charT,traits,Allocator>* rdbuf() const;

basic_string<charT,traits,Allocator> str() const;
void str(const basic_string<charT,traits,Allocator>& s);

private:
// basic_stringbuf<charT,traits,Allocator> sb ; exposition only

};
}

1 The classbasic_istringstream<charT,traits,Allocator> supports reading objects of class
basic_string<charT,traits,Allocator> . It uses a
basic_stringbuf<charT,traits,Allocator> object to control the associated storage. For the
sake of exposition, the maintained data is presented here as:

— sb , thestringbuf object.

[lib.istringstream.cons] 27.7.2.1basic_istringstream constructors

explicit basic_istringstream(ios_base::openmode which = ios_base::in);

1 Effects: Constructs an object of classbasic_istringstream<charT,traits> , initializing the
base class with basic_istream(& sb) and initializing sb with
basic_stringbuf<charT,traits,Allocator>(which |ios_base::in)) (27.7.1.1).

explicit basic_istringstream(
const basic_string<charT,traits,allocator>& str ,
ios_base::openmode which = ios_base::in);

2 Effects: Constructs an object of classbasic_istringstream<charT,traits> , initializing the
base class with basic_istream(& sb) and initializing sb with
basic_stringbuf<charT,traits,Allocator>(str , which | ios_base::in))
(27.7.1.1).

653

ISO/IEC 14882:1998(E) © ISO/IEC

27.7.2.2 Member functions 27 Input/output library

[lib.istringstream.members] 27.7.2.2 Member functions

basic_stringbuf<charT,traits,Allocator>* rdbuf() const;

1 Returns: (basic_stringbuf<charT,traits,Allocator>*)& sb .

basic_string<charT,traits,Allocator> str() const;

2 Returns: rdbuf()->str() .302)

void str(const basic_string<charT,traits,Allocator>& s);

3 Effects: Callsrdbuf()->str(s) .

[lib.ostringstream] 27.7.3 Classbasic_ostringstream

namespace std {
template <class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_ostringstream : public basic_ostream<charT,traits> {
public:

// Types:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;

// 27.7.3.1 Constructors/destructor:
explicit basic_ostringstream(ios_base::openmode which = ios_base::out);
explicit basic_ostringstream(

const basic_string<charT,traits,Allocator>& str ,
ios_base::openmode which = ios_base::out);

// 27.7.3.2 Members:
basic_stringbuf<charT,traits,Allocator>* rdbuf() const;

basic_string<charT,traits,Allocator> str() const;
void str(const basic_string<charT,traits,Allocator>& s);

private:
// basic_stringbuf<charT,traits,Allocator> sb ; exposition only

};
}

1 The classbasic_ostringstream<charT,traits,Allocator> supports writing objects of class
basic_string<charT,traits,Allocator> . It uses abasic_stringbuf object to control the
associated storage. For the sake of exposition, the maintained data is presented here as:

— sb , thestringbuf object.

302)rdbuf() is never NULL because it always returns the privateobject .

654

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.7.3 Classbasic_ostringstream

[lib.ostringstream.cons] 27.7.3.1basic_ostringstream constructors

explicit basic_ostringstream(ios_base::openmode which = ios_base::out);

1 Effects: Constructs an object of classbasic_ostringstream , initializing the base class with
basic_ostream(& sb) and initializing sb with
basic_stringbuf<charT,traits,Allocator>(which | ios_base::out))
(27.7.1.1).

explicit basic_ostringstream(
const basic_string<charT,traits,Allocator>& str ,
ios_base::openmode which = ios_base::out);

2 Effects: Constructs an object of classbasic_ostringstream<charT,traits> , initializing the
base class with basic_ostream(& sb) and initializing sb with
basic_stringbuf<charT,traits,Allocator>(str , which | ios_base::out))
(27.7.1.1).

[lib.ostringstream.members] 27.7.3.2 Member functions

basic_stringbuf<charT,traits,Allocator>* rdbuf() const;

1 Returns: (basic_stringbuf<charT,traits,Allocator>*)& sb .

basic_string<charT,traits,Allocator> str() const;

2 Returns: rdbuf()->str() .303)

void str(const basic_string<charT,traits,Allocator>& s);

3 Effects: Callsrdbuf()->str(s) .

[lib.stringstream] 27.7.4 Template classbasic_stringstream

namespace std {
template <class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_stringstream

: public basic_iostream<charT,traits> {
public:

// Types
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;

// constructors/destructors
explicit basic_stringstream(

ios_base::openmode which = ios_base::out|ios_base::in);
explicit basic_stringstream(

const basic_string<charT,traits,Allocator>& str,
ios_base::openmode which = ios_base::out|ios_base::in);

303)rdbuf() is never NULL because it always returns the privateobject .

655

ISO/IEC 14882:1998(E) © ISO/IEC

27.7.4 Template classbasic_stringstream 27 Input/output library

// Members:
basic_stringbuf<charT,traits,Allocator>* rdbuf() const;
basic_string<charT,traits,Allocator> str() const;
void str(const basic_string<charT,traits,Allocator>& str);

private:
// basic_stringbuf<charT, traits> sb ; exposition only

};
}

1 The template classbasic_stringstream<charT,traits> supports reading and writing from
objects of class basic_string<charT,traits,Allocator> . It uses a
basic_stringbuf<charT,traits,Allocator> object to control the associated sequence. For
the sake of exposition, the maintained data is presented here as

— sb , thestringbuf object.

[lib.stringstream.cons] 27.7.5 basic_stringstream constructors

explicit basic_stringstream(
ios_base::openmode which = ios_base::out|iosbase::in);

1 Effects: Constructs an object of classbasic_stringstream<charT,traits> , initializing the base
class with basic_iostream(&sb) and initializing sb with
basic_stringbuf<charT,traits,Allocator>(which) .

explicit basic_stringstream(
const basic_string<charT,traits,Allocator>& str,
ios_base::openmode which = ios_base::out|iosbase::in);

2 Effects: Constructs an object of classbasic_stringstream<charT,traits> , initializing the base
class with basic_iostream(&sb) and initializing sb with
basic_stringbuf<charT,traits,Allocator>(str,which) .

[lib.stringstream.members] 27.7.6 Member functions

basic_stringbuf<charT,traits,Allocator>* rdbuf() const;

1 Returns: &sb

basic_string<charT,traits,Allocator> str() const;

2 Returns: rdbuf()->str() .304)

void str(const basic_string<charT,traits,Allocator>& str);

3 Effects: Callsrdbuf()->str(str) .

304)rdbuf() is never NULL because it always returns the privateobject .

656

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.7.6 Member functions

[lib.file.streams] 27.8 File-based streams

[lib.fstreams] 27.8.1 File streams

1 The header<fstream> defines four class templates and six types that associate stream buffers with files
and assist reading and writing files.

Header<fstream> synopsis

namespace std {
template <class charT, class traits = char_traits<charT> >

class basic_filebuf;
typedef basic_filebuf<char> filebuf;
typedef basic_filebuf<wchar_t> wfilebuf;

template <class charT, class traits = char_traits<charT> >
class basic_ifstream;

typedef basic_ifstream<char> ifstream;
typedef basic_ifstream<wchar_t> wifstream;

template <class charT, class traits = char_traits<charT> >
class basic_ofstream;

typedef basic_ofstream<char> ofstream;
typedef basic_ofstream<wchar_t> wofstream;

template <class charT, class traits = char_traits<charT> >
class basic_fstream;

typedef basic_fstream<char> fstream;
typedef basic_fstream<wchar_t> wfstream;

}

2 In this subclause, the type nameFILE refers to the typeFILE defined in<cstdio> (27.8.2).305)

— File A File provides an external source/sink stream whoseunderlaid character typeis char (byte).306)

— Multibyte character and Files A File provides byte sequences. So the streambuf (or its derived
classes) treats a file as the external source/sink byte sequence. In a large character set environment,
multibyte character sequences are held in files. In order to provide the contents of a file as wide charac-
ter sequences, wide-oriented filebuf, namely wfilebuf should convert wide character sequences.

[lib.filebuf] 27.8.1.1 Template classbasic_filebuf

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_filebuf : public basic_streambuf<charT,traits> {
public:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.8.1.2 Constructors/destructor:
basic_filebuf();
virtual ~basic_filebuf();

305)In C FILE must be atypedef . In C++ it may be atypedef or other type name.
306) A File is a sequence of multibyte characters. In order to provide the contents as a wide character sequence,filebuf should
convert between wide character sequences and multibyte character sequences.

657

ISO/IEC 14882:1998(E) © ISO/IEC

27.8.1.1 Template classbasic_filebuf 27 Input/output library

// 27.8.1.3 Members:
bool is_open() const;
basic_filebuf<charT,traits>* open

(const char* s, ios_base::openmode mode);
basic_filebuf<charT,traits>* close();

protected:
// 27.8.1.4 Overridden virtual functions:
virtual streamsize showmanyc();
virtual int_type underflow();
virtual int_type uflow();
virtual int_type pbackfail(int_type c = traits::eof());
virtual int_type overflow (int_type c = traits::eof());

virtual basic_streambuf<charT,traits>*
setbuf(char_type* s, streamsize n);

virtual pos_type seekoff(off_type off , ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out);
virtual pos_type seekpos(pos_type sp , ios_base::openmode which

= ios_base::in | ios_base::out);
virtual int sync();
virtual void imbue(const locale& loc);

};
}

1 The classbasic_filebuf<charT,traits> associates both the input sequence and the output
sequence with a file.

2 The restrictions on reading and writing a sequence controlled by an object of class
basic_filebuf<charT,traits> are the same as for reading and writing with the Standard C library
FILE s.

3 In particular:

— If the file is not open for reading the input sequence cannot be read.

— If the file is not open for writing the output sequence cannot be written.

— A joint file position is maintained for both the input sequence and the output sequence.

4 An instance ofbasic_filebuf behaves as described in 27.8.1.1 providedtraits::pos_type is
fpos<traits::state_type> . Otherwise the behavior is undefined.

5 In order to support file I/O and multibyte/wide character conversion, conversions are performed using
members of a facet, referred to asa_codecvt in following sections, obtained ‘‘as if’’ by

codecvt<charT,char,typename traits::state_type> a_codecvt =
use_facet<codecvt<charT,char,typename traits::state_type> >(getloc());

[lib.filebuf.cons] 27.8.1.2basic_filebuf constructors

basic_filebuf();

1 Effects: Constructs an object of classbasic_filebuf<charT,traits> , initializing the base class
with basic_streambuf<charT,traits>() (27.5.2.1).

2 Postcondition: is_open() == false .

658

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.8.1.2 basic_filebuf constructors

virtual ~basic_filebuf();

3 Effects: Destroys an object of classbasic_filebuf<charT,traits> . Callsclose() .

[lib.filebuf.members] 27.8.1.3 Member functions

bool is_open() const;

1 Returns: true if a previous call toopen succeeded (returned a non-null value) and there has been no
intervening call to close.

basic_filebuf<charT,traits>* open(
const char* s,
ios_base::openmode mode);

2 Effects: If is_open() != false , returns a null pointer. Otherwise, initializes thefilebuf as
required.
It then opens a file, if possible, whose name is theNTBS s (‘‘as if’’ by calling
std::fopen(s, modstr)).
TheNTBS modstr is determined frommode & ~ios_base::ate as indicated in Table 92:

Table 92—File open modes
_ __

ios_base Flag combination
binary in out trunc app

stdio equivalent
_ ___ __

+ "w"_ __
+ + "a"_ __
+ + "w"_ __

+ "r"_ __
+ + "r+"_ __
+ + + "w+"_ ___ __

+ + "wb"_ __
+ + + "ab"_ __
+ + + "wb"_ __
+ + "rb"_ __
+ + + "r+b"_ __
+ + + + "w+b"_ __

If mode is not some combination of flags shown in the table then the open fails.

3 If the open operation succeeds and(mode & ios_base::ate) != 0 , positions the file to the end
(‘‘as if’’ by calling std::fseek(file ,0,SEEK_END)).307)

4 If the repositioning operation fails, callsclose() and returns a null pointer to indicate failure.
5 Returns: this if successful, a null pointer otherwise.

307)The macroSEEK_ENDis defined, and the function signaturesfopen(const char_type*, const char_type*) and
fseek(FILE*, long, int) are declared, in<cstdio> (27.8.2).

659

ISO/IEC 14882:1998(E) © ISO/IEC

27.8.1.3 Member functions 27 Input/output library

basic_filebuf<charT,traits>* close();

6 Effects: If is_open() == false , returns a null pointer. If a put area exists, callsoverflow(EOF)
to flush characters. If the last virtual member function called on*this (betweenunderflow ,
overflow , seekoff , andseekpos) wasoverflow then callsa_codecvt.unshift (possibly
several times) to determine a termination sequence, inserts those characters and calls
overflow(EOF) again. Finally it closes the file (‘‘as if’’ by callingstd::fclose(file)).308) If
any of the calls tooverflow or std::fclose fails thenclose fails.

7 Returns: this on success, a null pointer otherwise.
8 Postcondition: is_open() == false .

[lib.filebuf.virtuals] 27.8.1.4 Overridden virtual functions

streamsize showmanyc();

1 Effects: Behaves the same asbasic_streambuf::showmanyc() (27.5.2.4).
2 Notes: An implementation might well provide an overriding definition for this function signature if it can

determine that more characters can be read from the input sequence.

int_type underflow();

3 Effects: Behaves according to the description ofbasic_streambuf<charT,traits>::
underflow() , with the specialization that a sequence of characters is read from the input sequence
‘‘as if’’ by reading from the associated file into an internal buffer (extern_buf) and then ‘‘as if’’
doing

char extern_buf[XSIZE];
char* extern_end;
charT intern_buf[ISIZE];
charT* intern_end;
codecvt_base::result r =

a_codecvt.in(st, extern_buf, extern_buf+XSIZE, extern_end,
intern_buf, intern_buf+ISIZE, intern_end);

This must be done in such a way that the class can recover the position (fpos_t) corresponding to
each character betweenintern_buf and intern_end . If the value of r indicates that
a_codecvt.in() ran out of space inintern_buf , retry with a largerintern_buf .

int_type uflow();

4 Effects: Behaves according to the description ofbasic_streambuf<charT,traits>::
uflow() , with the specialization that a sequence of characters is read from the input with the same
method as used byunderflow .

int_type pbackfail(int_type c = traits::eof());

5 Effects: Puts back the character designated byc to the input sequence, if possible, in one of three ways:

— If traits::eq_int_type(c,traits::eof()) returns false and if the function makes a put-
back position available and iftraits::eq(to_char_type(c),gptr()[-1]) returns true,
decrements the next pointer for the input sequence,gptr() .
Returns:c .

— If traits::eq_int_type(c,traits::eof()) returns false and if the function makes a put-
back position available, and if the function is permitted to assign to the putback position, decrements the
next pointer for the input sequence, and storesc there.
Returns:c .

308)The function signaturefclose(FILE*) is declared in<cstdio> (27.8.2).

660

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.8.1.4 Overridden virtual functions

— If traits::eq_int_type(c,traits::eof()) returns true and if either the input sequence has
a putback position available or the function makes a putback position available, decrements the next
pointer for the input sequence,gptr() .
Returns:traits::not_eof(c) .

6 Returns: traits::eof() to indicate failure.
7 Notes: If is_open() == false , the function always fails.

The function does not put back a character directly to the input sequence.
If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of putback positions available as a result of any call.

int_type overflow(int_type c = traits::eof());

8 Effects: Behaves according to the description of
basic_streambuf<charT,traits>::overflow(c) , except that the behavior of ‘‘consuming
characters’’ is performed by first coverting ‘‘as if’’ by:

charT* b = pbase();
charT* p = pptr();
charT* end;
char xbuf[XSIZE];
char* xbuf_end;
codecvt_base::result r =

a_codecvt.out(st, b, p, end, xbuf, xbuf+XSIZE, xbuf_end);

and then

— If r == codecvt_base::error then fail.

— If r == codecvt_base::noconv then output characters fromb upto (and not including)p.

— If r == codecvt_base::partial then output to the file characters fromxbuf upto
xbuf_end , and repeat using characters fromend to p. If output fails, fail (without repeating).

— Otherwise output fromxbuf to xbuf_end , and fail if output fails. At this point ifb != p andb
== end (buf isn’t large enough) then increaseBSIZE and repeat from the beginning.

9 Returns: traits::not_eof(c) to indicate success, andtraits::eof() to indicate failure. If
is_open() == false , the function always fails.

basic_streambuf* setbuf(char_type* s, int n);

10 Effects: If setbuf(0,0) is called on a stream before any I/O has occured on that stream, the stream
becomes unbuffered. Otherwise the results are implementation-defined. "Unbuffered" means that
pbase() andpptr() always return null and output to the file should appear as soon as possible.

pos_type seekoff(off_type off , ios_base::seekdir way,
ios_base::openmode

= ios_base::in | ios_base::out);

11 Effects: Let width denotea_codecvt.encoding() . If is_open() == false , or off != 0
&& width <= 0 , then the positioning operation fails. Otherwise, ifway != basic_ios::cur or
off != 0 , and if the last operation was output, then update the output sequence and write any unshift
sequence. Next, seek to the new position: ifwidth > 0 , call std::fseek(file, width *
off, whence) , otherwise callstd::fseek(file, 0, whence) .

12 Notes: ‘‘The last operation was output’’ means either the last virtual operation was overflow or the put
buffer is non-empty. ‘‘Write any unshift sequence’’ means, ifwidth if less than zero then call
a_codecvt.unshift(st, xbuf, xbuf+XSIZE, xbuf_end) and output the resulting
unshift sequence. The function determines one of three values for the argumentwhence , of typeint ,
as indicated in Table 93:

661

ISO/IEC 14882:1998(E) © ISO/IEC

27.8.1.4 Overridden virtual functions 27 Input/output library

Table 93—seekoff effects
_ _____________________________________

way Value stdio Equivalent_ ______________________________________ _____________________________________
basic_ios::beg SEEK_SET

basic_ios::cur SEEK_CUR

basic_ios::end SEEK_END_ _____________________________________

13 Returns: a newly constructedpos_type object that stores the resultant stream position, if possible. If
the positioning operation fails, or if the object cannot represent the resultant stream position, returns an
invalid stream position (27.4.3).

pos_type seekpos(pos_type sp , ios_base::openmode
= ios_base::in | ios_base::out);

Alters the file position, if possible, to correspond to the position stored insp (as described below).

— if (which&ios_base::in)!=0 , set the file position tosp , then update the input sequence

— if (which&ios_base::out)!=0 , then update the output sequence, write any unshift sequence, and
set the file position tosp .

14 If sp is an invalid stream position, or if the function positions neither sequence, the positioning operation
fails. If sp has not been obtained by a previous successful call to one of the positioning functions
(seekoff or seekpos) on the same file the effects are undefined.

15 Returns: spon success. Otherwise returns an invalid stream position (_lib.iostreams.definitions_).

int sync();

16 Effects: If a put area exists, callsfilebuf::overflow to write the characters to the file. If a get area
exists, the effect is implementation-defined.

void imbue(const locale& loc);

17 Precondition: If the file is not positioned at its beginning and the encoding of the current locale as deter-
mined bya_codecvt.encoding() is state-dependent (22.2.1.5.2) then that facet is the same as the
corresponding facet ofloc .

18 Effects: Causes characters inserted or extracted after this call to be converted according toloc until
another call ofimbue .

19 Note: This may require reconversion of previously converted characters. This in turn may require the
implementation to be able to reconstruct the original contents of the file.

[lib.ifstream] 27.8.1.5 Template classbasic_ifstream

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_ifstream : public basic_istream<charT,traits> {
public:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.8.1.6 Constructors:
basic_ifstream();
explicit basic_ifstream(const char* s,

ios_base::openmode mode = ios_base::in);

662

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.8.1.5 Template classbasic_ifstream

// 27.8.1.7 Members:
basic_filebuf<charT,traits>* rdbuf() const;

bool is_open();
void open(const char* s, ios_base::openmode mode = ios_base::in);
void close();

private:
// basic_filebuf<charT,traits> sb ; exposition only

};
}

1 The class basic_ifstream<charT,traits> supports reading from named files. It uses a
basic_filebuf<charT,traits> object to control the associated sequence. For the sake of exposi-
tion, the maintained data is presented here as:

— sb , thefilebuf object.

[lib.ifstream.cons] 27.8.1.6basic_ifstream constructors

basic_ifstream();

1 Effects: Constructs an object of classbasic_ifstream<charT,traits> , initializing the base class
with basic_istream(& sb) and initializing sb with basic_filebuf<charT,traits>())
(27.6.1.1.1, 27.8.1.2).

explicit basic_ifstream
(const char* s, ios_base::openmode mode = ios_base::in);

2 Effects: Constructs an object of classbasic_ifstream , initializing the base class with
basic_istream(& sb) and initializing sb with basic_filebuf<charT,traits>())
(27.6.1.1.1, 27.8.1.2), then callsrdbuf()->open(s, mode|in) .309) If that function returns a null
pointer, callssetstate(failbit) , (which may throwios_base::failure).

[lib.ifstream.members] 27.8.1.7 Member functions

basic_filebuf<charT,traits>* rdbuf() const;

1 Returns: (basic_filebuf<charT,traits>*)& sb .

bool is_open();

2 Returns: rdbuf()->is_open() .310)

void open(const char* s, ios_base::openmode mode = ios_base::in);

3 Effects: Calls rdbuf()->open(s, mode|in) . If that function returns a null pointer, calls
setstate(failbit) (which may throwios_base::failure (27.4.4.3)).

void close();

4 Effects: Calls rdbuf()->close() and, if that function returnsfalse , callssetstate(failbit)
(which may throwios_base::failure (27.4.4.3)).

309)rdbuf() is never NULL because it always returns the privateobject .
310)rdbuf() is never NULL because it always returns the privateobject .

663

ISO/IEC 14882:1998(E) © ISO/IEC

27.8.1.8 Template classbasic_ofstream 27 Input/output library

[lib.ofstream] 27.8.1.8 Template classbasic_ofstream

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_ofstream : public basic_ostream<charT,traits> {
public:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.8.1.9 Constructors:
basic_ofstream();
explicit basic_ofstream(const char* s,

ios_base::openmode mode
= ios_base::out);

// 27.8.1.10 Members:
basic_filebuf<charT,traits>* rdbuf() const;

bool is_open();
void open(const char* s, ios_base::openmode mode = ios_base::out);
void close();

private:
// basic_filebuf<charT,traits> sb ; exposition only

};
}

1 The class basic_ofstream<charT,traits> supports writing to named files. It uses a
basic_filebuf<charT,traits> object to control the associated sequence. For the sake of exposi-
tion, the maintained data is presented here as:

— sb , thefilebuf object.

[lib.ofstream.cons] 27.8.1.9basic_ofstream constructors

basic_ofstream();

1 Effects: Constructs an object of classbasic_ofstream<charT,traits> , initializing the base class
with basic_ostream(& sb) and initializing sb with basic_filebuf<charT,traits>())
(27.6.2.2, 27.8.1.2).

explicit basic_ofstream
(const char* s, ios_base::openmode mode = ios_base::out);

2 Effects: Constructs an object of classbasic_ofstream<charT,traits> , initializing the base class
with basic_ostream(& sb) and initializing sb with basic_filebuf<charT,traits>())
(27.6.2.2, 27.8.1.2), then callsrdbuf()->open(s, mode|out) .311) If that function returns a null
pointer, callssetstate(failbit) , (which may throwios_base::failure).

311)rdbuf() is never NULL because it always returns the privatefilebuf object.

664

© ISO/IEC ISO/IEC 14882:1998(E)

27 Input/output library 27.8.1.9 basic_ofstream constructors

[lib.ofstream.members] 27.8.1.10 Member functions

basic_filebuf<charT,traits>* rdbuf() const;

1 Returns: (basic_filebuf<charT,traits>*)& sb .

bool is_open();

2 Returns: rdbuf()->is_open() .

void open(const char* s, ios_base::openmode mode = ios_base::out);

3 Effects: Calls rdbuf()->open(s, mode|out) . If that function returns a null pointer, calls
setstate(failbit) (which may throwios_base::failure (27.4.4.3)).

void close();

4 Effects: Calls rdbuf()->close() and, if that function fails (returns a null pointer), calls
setstate(failbit) (which may throwios_base::failure (27.4.4.3)).

[lib.fstream] 27.8.1.11 Template classbasic_fstream

namespace std {
template <class charT, class traits=char_traits<charT> >
class basic_fstream

: public basic_iostream<charT,traits> {

public:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// constructors/destructor
basic_fstream();
explicit basic_fstream(

const char* s,
ios_base::openmode mode = ios_base::in|ios_base::out);

// Members:
basic_filebuf<charT,traits>* rdbuf() const;
bool is_open();
void open(

const char* s,
ios_base::openmode mode = ios_base::in|ios_base::out);

void close();

private:
// basic_filebuf<charT,traits> sb ; exposition only

};
}

1 The template classbasic_fstream<charT, traits> supports reading and writing from named files. It
uses abasic_filebuf<charT,traits> object to control the associated sequences. For the sake of
exposition, the maintained data is presented here as:

— sb , thebasic_filebuf object.

665

ISO/IEC 14882:1998(E) © ISO/IEC

27.8.1.12basic_fstream constructors 27 Input/output library

[lib.fstream.cons] 27.8.1.12basic_fstream constructors

basic_fstream();

1 Effects: Constructs an object of classbasic_fstream<charT,traits> , initializing the base class
with basic_iostream(&sb) and initializingsbwith basic_filebuf<charT,traits>() .

explicit basic_fstream(const char* s, ios_base::openmode mode);

2 Effects: Constructs an object of classbasic_fstream<charT,traits> , initializing the base class
with basic_iostream(&sb) and initializing sb with basic_filebuf<charT,traits>() .
Then calls rdbuf()->open(s,mode) . If that function returns a null pointer, calls
setstate(failbit) (which may throwios_base::failure).

[lib.fstream.members] 27.8.1.13 Member functions

basic_filebuf<charT,traits>* rdbuf() const;

1 Returns: &sb

bool is_open();

2 Returns: rdbuf()->is_open() .

void open(const char* s, ios_base::openmode mode);

3 Effects: Calls rdbuf()->open(s,mode) , If that function returns a null pointer, calls
setstate(failbit) , (which may throwios_base::failure). (27.4.4.3))

void close();

4 Effects: Calls rdbuf()->close() and, if that function returns false, calls
setstate(failbit) (27.4.4.3) (which may throwios_base::failure).

[lib.c.files] 27.8.2 C Library files

1 Table 94 describes header<cstdio> .

Table 94—Header<cstdio> synopsis
_ ___

Type Name(s)_ ___
Macros:
BUFSIZ FOPEN_MAX SEEK_CUR TMP_MAX _IONBF stdout

EOF L_tmpnam SEEK_END _IOFBF stderr

FILENAME_MAX NULL <cstdio> SEEK_SET _IOLBF stdin_ ___
Types: FILE fpos_t size_t <cstdio>_ ___
Functions:
clearerr fgets fscanf gets rename tmpfile

fclose fopen fseek perror rewind tmpnam

feof fprintf fsetpos printf scanf ungetc

ferror fputc ftell putc setbuf vfprintf

fflush fputs fwrite putchar setvbuf vprintf

fgetc fread getc puts sprintf vsprintf

fgetpos freopen getchar remove sscanf_ ___

SEE ALSO: ISO C subclause 7.9, Amendment 1 subclause 4.6.2.

666

© ISO/IEC ISO/IEC 14882:1998(E)

Annex A [gram]
(informative)

Grammar summary

1 This summary of C++ syntax is intended to be an aid to comprehension. It is not an exact statement of the
language. In particular, the grammar described here accepts a superset of valid C++ constructs. Disam-
biguation rules (6.8, 7.1, 10.2) must be applied to distinguish expressions from declarations. Further,
access control, ambiguity, and type rules must be used to weed out syntactically valid but meaningless con-
structs.

[gram.key] A.1 Keywords

1 New context-dependent keywords are introduced into a program bytypedef (7.1.3), namespace (7.3.1),
class (clause 9), enumeration (7.2), andtemplate (clause 14) declarations.

typedef-name:
identifier

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-alias:
identifier

class-name:
identifier
template-id

enum-name:
identifier

template-name:
identifier

Note that atypedef-namenaming a class is also aclass-name(9.1).

[gram.lex] A.2 Lexical conventions

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

667

ISO/IEC 14882:1998(E) © ISO/IEC

A.2 Lexical conventions Annex A Grammar summary

preprocessing-token:
header-name
identifier
pp-number
character-literal
string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

token:
identifier
keyword
literal
operator
punctuator

header-name:
<h-char-sequence>
" q-char-sequence"

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except

new-line and>

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member of the source character set except

new-line and"

pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-numbere sign
pp-numberE sign
pp-number.

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
universal-character-name
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

668

© ISO/IEC ISO/IEC 14882:1998(E)

Annex A Grammar summary A.2 Lexical conventions

preprocessing-op-or-punc: one of
{ } [] # ## ()
<: :> <% %> %: %:%: ; : ...
new delete ? :: . .*
+ - * / % ^ & | ~
! = < > += -= *= /= %=
^= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
and and_eq bitand bitor compl not not_eq
or or_eq xor xor_eq

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal

integer-literal:
decimal-literal integer-suffixopt

octal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit:one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

unsigned-suffix:one of
u U

long-suffix: one of
l L

669

ISO/IEC 14882:1998(E) © ISO/IEC

A.2 Lexical conventions Annex A Grammar summary

character-literal:
’ c-char-sequence’
L’ c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote’ , backslash\ , or new-line character
escape-sequence
universal-character-name

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence:one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

floating-literal:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

string-literal:
" s-char-sequenceopt"
L" s-char-sequenceopt"

670

© ISO/IEC ISO/IEC 14882:1998(E)

Annex A Grammar summary A.2 Lexical conventions

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote" , backslash\ , or new-line character
escape-sequence
universal-character-name

boolean-literal:
false
true

[gram.basic] A.3 Basic concepts

translation-unit:
declaration-seqopt

[gram.expr] A.4 Expressions

primary-expression:
literal
this
(expression)
id-expression

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
˜ class-name
template-id

qualified-id:
:: opt nested-name-specifiertemplate opt unqualified-id
:: identifier
:: operator-function-id
:: template-id

nested-name-specifier:
class-or-namespace-name:: nested-name-specifieropt

class-or-namespace-name:: template nested-name-specifier

class-or-namespace-name:
class-name
namespace-name

671

ISO/IEC 14882:1998(E) © ISO/IEC

A.4 Expressions Annex A Grammar summary

postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(expression-listopt)
simple-type-specifier(expression-listopt)
typename :: opt nested-name-specifier identifier(expression-listopt)
typename :: opt nested-name-specifiertemplate opt template-id (expression-listopt)
postfix-expression. template opt id-expression
postfix-expression-> template opt id-expression
postfix-expression. pseudo-destructor-name
postfix-expression-> pseudo-destructor-name
postfix-expression++
postfix-expression--
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list:
assignment-expression
expression-list, assignment-expression

pseudo-destructor-name:
:: opt nested-name-specifieropt type-name:: ~ type-name
:: opt nested-name-specifiertemplate template-id :: ~ type-name
:: opt nested-name-specifieropt ~ type-name

unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & + - ! ~

new-expression:
:: opt new new-placementopt new-type-id new-initializeropt

:: opt new new-placementopt (type-id) new-initializeropt

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaratoropt

new-declarator:
ptr-operator new-declaratoropt

direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator[constant-expression]

672

© ISO/IEC ISO/IEC 14882:1998(E)

Annex A Grammar summary A.4 Expressions

new-initializer:
(expression-listopt)

delete-expression:
:: opt delete cast-expression
:: opt delete [] cast-expression

cast-expression:
unary-expression
(type-id) cast-expression

pm-expression:
cast-expression
pm-expression.* cast-expression
pm-expression->* cast-expression

multiplicative-expression:
pm-expression
multiplicative-expression* pm-expression
multiplicative-expression/ pm-expression
multiplicative-expression% pm-expression

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<= shift-expression
relational-expression>= shift-expression

equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression!= relational-expression

and-expression:
equality-expression
and-expression& equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression̂ and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression| exclusive-or-expression

logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

673

ISO/IEC 14882:1998(E) © ISO/IEC

A.4 Expressions Annex A Grammar summary

logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

assignment-expression:
conditional-expression
logical-or-expression assignment-operator assignment-expression
throw-expression

assignment-operator: one of
= *= /= %= += -= >>= <<= &= ^= |=

expression:
assignment-expression
expression, assignment-expression

constant-expression:
conditional-expression

[gram.stmt.stmt] A.5 Statements

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

labeled-statement:
identifier : statement
case constant-expression: statement
default : statement

expression-statement:
expressionopt ;

compound-statement:
{ statement-seqopt }

statement-seq:
statement
statement-seq statement

selection-statement:
if (condition) statement
if (condition) statementelse statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator= assignment-expression

674

© ISO/IEC ISO/IEC 14882:1998(E)

Annex A Grammar summary A.5 Statements

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt ; expressionopt) statement

for-init-statement:
expression-statement
simple-declaration

jump-statement:
break ;
continue ;
return expressionopt ;
goto identifier ;

declaration-statement:
block-declaration

[gram.dcl.dcl] A.6 Declarations

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive

simple-declaration:
decl-specifier-seqopt init-declarator-listopt ;

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-seqopt decl-specifier

storage-class-specifier:
auto
register
static
extern
mutable

675

ISO/IEC 14882:1998(E) © ISO/IEC

A.6 Declarations Annex A Grammar summary

function-specifier:
inline
virtual
explicit

typedef-name:
identifier

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

simple-type-specifier:
:: opt nested-name-specifieropt type-name
:: opt nested-name-specifiertemplate template-id
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

elaborated-type-specifier:
class-key :: opt nested-name-specifieropt identifier
enum :: opt nested-name-specifieropt identifier
typename :: opt nested-name-specifier identifier
typename :: opt nested-name-specifiertemplate opt template-id

enum-name:
identifier

enum-specifier:
enum identifieropt { enumerator-listopt }

enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition:
enumerator
enumerator = constant-expression

enumerator:
identifier

676

© ISO/IEC ISO/IEC 14882:1998(E)

Annex A Grammar summary A.6 Declarations

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-definition:
named-namespace-definition
unnamed-namespace-definition

named-namespace-definition:
original-namespace-definition
extension-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body}

extension-namespace-definition:
namespace original-namespace-name{ namespace-body}

unnamed-namespace-definition:
namespace { namespace-body}

namespace-body:
declaration-seqopt

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
:: opt nested-name-specifieropt namespace-name

using-declaration:
using typename opt :: opt nested-name-specifier unqualified-id;
using :: unqualified-id;

using-directive:
using namespace :: opt nested-name-specifieropt namespace-name ;

asm-definition:
asm (string-literal) ;

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

[gram.dcl.decl] A.7 Declarators

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

677

ISO/IEC 14882:1998(E) © ISO/IEC

A.7 Declarators Annex A Grammar summary

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-declarator [constant-expressionopt]
(declarator)

ptr-operator:
* cv-qualifier-seqopt

&
:: opt nested-name-specifier* cv-qualifier-seqopt

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

declarator-id:
id-expression
:: opt nested-name-specifieropt type-name

type-id:
type-specifier-seq abstract-declaratoropt

type-specifier-seq:
type-specifier type-specifier-seqopt

abstract-declarator:
ptr-operator abstract-declaratoropt

direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratoropt

(parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-abstract-declaratoropt [constant-expressionopt]
(abstract-declarator)

parameter-declaration-clause:
parameter-declaration-listopt ... opt

parameter-declaration-list, ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator= assignment-expression
decl-specifier-seq abstract-declaratoropt

decl-specifier-seq abstract-declaratoropt = assignment-expression

678

© ISO/IEC ISO/IEC 14882:1998(E)

Annex A Grammar summary A.7 Declarators

function-definition:
decl-specifier-seqopt declarator ctor-initializeropt function-body
decl-specifier-seqopt declarator function-try-block

function-body:
compound-statement

initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , opt }
{ }

initializer-list:
initializer-clause
initializer-list , initializer-clause

[gram.class] A.8 Classes

class-name:
identifier
template-id

class-specifier:
class-head{ member-specificationopt }

class-head:
class-key identifieropt base-clauseopt

class-key nested-name-specifier identifier base-clauseopt

class-key nested-name-specifieropt template-id base-clauseopt

class-key:
class
struct
union

member-specification:
member-declaration member-specificationopt

access-specifier: member-specificationopt

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;
function-definition ; opt

:: opt nested-name-specifiertemplate opt unqualified-id ;
using-declaration
template-declaration

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifieropt

declarator constant-initializeropt

identifieropt : constant-expression

679

ISO/IEC 14882:1998(E) © ISO/IEC

A.8 Classes Annex A Grammar summary

pure-specifier:
= 0

constant-initializer:
= constant-expression

[gram.class.derived] A.9 Derived classes

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
:: opt nested-name-specifieropt class-name
virtual access-specifieropt :: opt nested-name-specifieropt class-name
access-specifier virtualopt :: opt nested-name-specifieropt class-name

access-specifier:
private
protected
public

[gram.special] A.10 Special member functions

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declaratoropt

conversion-declarator:
ptr-operator conversion-declaratoropt

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
mem-initializer-id (expression-listopt)

mem-initializer-id:
:: opt nested-name-specifieropt class-name
identifier

[gram.over] A.11 Overloading

operator-function-id:
operator operator

680

© ISO/IEC ISO/IEC 14882:1998(E)

Annex A Grammar summary A.11 Overloading

operator: one of
new delete new[] delete[]
+ - * / % ^ & | ~
! = < > += -= *= /= %=
^= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
() []

[gram.temp] A.12 Templates

template-declaration:
export opt template < template-parameter-list> declaration

template-parameter-list:
template-parameter
template-parameter-list, template-parameter

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifieropt

class identifieropt = type-id
typename identifieropt

typename identifieropt = type-id
template < template-parameter-list> class identifieropt

template < template-parameter-list> class identifieropt = id-expression

template-id:
template-name< template-argument-listopt >

template-name:
identifier

template-argument-list:
template-argument
template-argument-list, template-argument

template-argument:
assignment-expression
type-id
id-expression

explicit-instantiation:
template declaration

explicit-specialization:
template < > declaration

[gram.except] A.13 Exception handling

try-block:
try compound-statement handler-seq

function-try-block:
try ctor-initializeropt function-body handler-seq

681

ISO/IEC 14882:1998(E) © ISO/IEC

A.13 Exception handling Annex A Grammar summary

handler-seq:
handler handler-seqopt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq
...

throw-expression:
throw assignment-expressionopt

exception-specification:
throw (type-id-listopt)

type-id-list:
type-id
type-id-list , type-id

[gram.cpp] A.14 Preprocessing directives

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

682

© ISO/IEC ISO/IEC 14882:1998(E)

Annex A Grammar summary A.14 Preprocessing directives

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

lparen:
the left-parenthesis character without preceding white-space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

683

ISO/IEC 14882:1998(E) © ISO/IEC

684

(Blank page)

© ISO/IEC ISO/IEC 14882:1998(E)

Annex B Implementation quantities B Implementation quantities

Annex B [limits]
(informative)

Implementation quantities

1 Because computers are finite, C++ implementations are inevitably limited in the size of the programs they
can successfully process. Every implementation shall document those limitations where known. This doc-
umentation may cite fixed limits where they exist, say how to compute variable limits as a function of
available resources, or say that fixed limits do not exist or are unknown.

2 The limits may constrain quantities that include those described below or others. The bracketed number
following each quantity is recommended as the minimum for that quantity. However, these quantities are
only guidelines and do not determine compliance.

— Nesting levels of compound statements, iteration control structures, and selection control structures
[256].

— Nesting levels of conditional inclusion [256].

— Pointer, array, and function declarators (in any combination) modifying an arithmetic, structure, union,
or incomplete type in a declaration [256].

— Nesting levels of parenthesized expressions within a full expression [256].

— Number of initial characters in an internal identifier or macro name [1 024].

— Number of initial characters in an external identifier [1 024].

— External identifiers in one translation unit [65 536].

— Identifiers with block scope declared in one block [1 024].

— Macro identifiers simultaneously defined in one transation unit [65 536].

— Parameters in one function definition [256].

— Arguments in one function call [256].

— Parameters in one macro definition [256].

— Arguments in one macro invocation [256].

— Characters in one logical source line [65 536].

— Characters in a character string literal or wide string literal (after concatenation) [65 536].

— Size of an object [262 144].

— Nesting levels for#include files [256].

— Case labels for aswitch statement (excluding those for any nestedswitch statements) [16 384].

— Data members in a single class, structure, or union [16 384].

— Enumeration constants in a single enumeration [4 096].

— Levels of nested class, structure, or union definitions in a singlestruct-declaration-list[256].

— Functions registered byatexit() [32].

— Direct and indirect base classes [16 384].

— Direct base classes for a single class [1 024].

685

ISO/IEC 14882:1998(E) © ISO/IEC

B Implementation quantities Annex B Implementation quantities

— Members declared in a single class [4 096].

— Final overriding virtual functions in a class, accessible or not [16 384].

— Direct and indirect virtual bases of a class [1 024].

— Static members of a class [1 024].

— Friend declarations in a class [4 096].

— Access control declarations in a class [4 096].

— Member initializers in a constructor definition [6 144].

— Scope qualifications of one identifier [256].

— Nested external specifications [1 024].

— Template arguments in a template declaration [1 024].

— Recursively nested template instantiations [17].

— Handlers pertry block [256].

— Throw specifications on a single function declaration [256].

686

© ISO/IEC ISO/IEC 14882:1998(E)

Annex C [diff]
(informative)

Compatibility

[diff.iso] C.1 C++ and ISO C

1 The subclauses of this subclause list the differences between C++ and ISO C, by the chapters of this docu-
ment.

[diff.lex] C.1.1 Clause 2: lexical conventions

2.3

1 Change:C++ style comments (//) are added
A pair of slashes now introduce a one-line comment.
Rationale: This style of comments is a useful addition to the language.
Effect on original feature: Change to semantics of well-defined feature. A valid ISO C expression con-
taining a division operator followed immediately by a C-style comment will now be treated as a C++ style
comment. For example:

{
int a = 4;
int b = 8 //* divide by a*/ a;
+a;

}

Difficulty of converting: Syntactic transformation. Just add white space after the division operator.
How widely used:The token sequence//* probably occurs very seldom.

2.11

2 Change:New Keywords
New keywords are added to C++; see 2.11.
Rationale: These keywords were added in order to implement the new semantics of C++.
Effect on original feature: Change to semantics of well-defined feature. Any ISO C programs that used
any of these keywords as identifiers are not valid C++ programs.
Difficulty of converting: Syntactic transformation. Converting one specific program is easy. Converting a
large collection of related programs takes more work.
How widely used:Common.

2.13.2

3 Change:Type of character literal is changed fromint to char
Rationale: This is needed for improved overloaded function argument type matching. For example:

int function(int i);
int function(char c);

function(’x’);

It is preferable that this call match the second version of function rather than the first.

687

ISO/IEC 14882:1998(E) © ISO/IEC

C.1.1 Clause 2: lexical conventions Annex C Compatibility

Effect on original feature: Change to semantics of well-defined feature. ISO C programs which depend
on

sizeof(’x’) == sizeof(int)

will not work the same as C++ programs.
Difficulty of converting: Simple.
How widely used:Programs which depend uponsizeof(’x’) are probably rare.

Subclause_lex.string:

4 Change:String literals made const
The type of a string literal is changed from“array ofchar ” to “array ofconst char .” The type of a
wide string literal is changed from“array ofwchar_t ” to “array ofconst wchar_t .”
Rationale: This avoids calling an inappropriate overloaded function, which might expect to be able to
modify its argument.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Simple syntactic transformation, because string literals can be converted to
char* ; (4.2). The most common cases are handled by a new but deprecated standard conversion:

char* p = "abc"; // valid in C, deprecated in C++
char* q = expr ? "abc" : "de"; // valid in C, invalid in C++

How widely used:Programs that have a legitimate reason to treat string literals as pointers to potentially
modifiable memory are probably rare.

[diff.basic] C.1.2 Clause 3: basic concepts

3.1

1 Change:C++ does not have“tentative definitions” as in C
E.g., at file scope,

int i;
int i;

is valid in C, invalid in C++. This makes it impossible to define mutually referential file-local static
objects, if initializers are restricted to the syntactic forms of C. For example,

struct X { int i; struct X *next; };

static struct X a;
static struct X b = { 0, &a };
static struct X a = { 1, &b };

Rationale: This avoids having different initialization rules for built-in types and user-defined types.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. In C++, the initializer for one of a set of mutually-
referential file-local static objects must invoke a function call to achieve the initialization.
How widely used:Seldom.

3.3

2 Change:A struct is a scope in C++, not in C
Rationale: Class scope is crucial to C++, and a struct is a class.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used:C programs usestruct extremely frequently, but the change is only noticeable when

688

© ISO/IEC ISO/IEC 14882:1998(E)

Annex C Compatibility C.1.2 Clause 3: basic concepts

struct , enumeration, or enumerator names are referred to outside thestruct . The latter is probably
rare.

3.5 [also 7.1.5]

3 Change:A name of file scope that is explicitly declaredconst , and not explicitly declaredextern , has
internal linkage, while in C it would have external linkage
Rationale: Becauseconst objects can be used as compile-time values in C++, this feature urges program-
mers to provide explicit initializer values for eachconst . This feature allows the user to putconst
objects in header files that are included in many compilation units.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation
How widely used:Seldom

3.6

4 Change:Main cannot be called recursively and cannot have its address taken
Rationale: The main function may require special actions.
Effect on original feature: Deletion of semantically well-defined feature
Difficulty of converting: Trivial: create an intermediary function such asmymain(argc, argv) .
How widely used:Seldom

3.9

5 Change:C allows“compatible types” in several places, C++ does not
For example, otherwise-identicalstruct types with different tag names are“compatible” in C but are dis-
tinctly different types in C++.
Rationale: Stricter type checking is essential for C++.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The“typesafe linkage” mechanism will find many, but
not all, of such problems. Those problems not found by typesafe linkage will continue to function properly,
according to the“layout compatibility rules” of this International Standard.
How widely used:Common.

4.10

6 Change:Convertingvoid* to a pointer-to-object type requires casting

char a[10];
void *b=a;
void foo() {
char *c=b;
}

ISO C will accept this usage of pointer to void being assigned to a pointer to object type. C++ will not.
Rationale: C++ tries harder than C to enforce compile-time type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Could be automated. Violations will be diagnosed by the C++ translator. The fix
is to add a cast For example:

char *c = (char *) b;

How widely used: This is fairly widely used but it is good programming practice to add the cast when
assigning pointer-to-void to pointer-to-object. Some ISO C translators will give a warning if the cast is not
used.

689

ISO/IEC 14882:1998(E) © ISO/IEC

C.1.2 Clause 3: basic concepts Annex C Compatibility

4.10

7 Change:Only pointers to non-const and non-volatile objects may be implicitly converted tovoid*
Rationale: This improves type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Could be automated. A C program containing such an implicit conversion from
(e.g.) pointer-to-const-object to void* will receive a diagnostic message. The correction is to add an
explicit cast.
How widely used:Seldom.

[diff.expr] C.1.3 Clause 5: expressions

5.2.2

1 Change:Implicit declaration of functions is not allowed
Rationale: The type-safe nature of C++.
Effect on original feature: Deletion of semantically well-defined feature. Note: the original feature was
labeled as“obsolescent” in ISO C.
Difficulty of converting: Syntactic transformation. Facilities for producing explicit function declarations
are fairly widespread commercially.
How widely used:Common.

5.3.3, 5.4

2 Change:Types must be declared in declarations, not in expressions
In C, a sizeof expression or cast expression may create a new type. For example,

p = (void*)(struct x {int i;} *)0;

declares a new type, struct x .
Rationale: This prohibition helps to clarify the location of declarations in the source code.
Effect on original feature: Deletion of a semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used:Seldom.

[diff.stat] C.1.4 Clause 6: statements

6.4.2, 6.6.4 (switch and goto statements)

1 Change: It is now invalid to jump past a declaration with explicit or implicit initializer (except across
entire block not entered)
Rationale: Constructors used in initializers may allocate resources which need to be de-allocated upon
leaving the block. Allowing jump past initializers would require complicated run-time determination of
allocation. Furthermore, any use of the uninitialized object could be a disaster. With this simple compile-
time rule, C++ assures that if an initialized variable is in scope, then it has assuredly been initialized.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used:Seldom.

6.6.3

690

© ISO/IEC ISO/IEC 14882:1998(E)

Annex C Compatibility C.1.4 Clause 6: statements

2 Change: It is now invalid to return (explicitly or implicitly) from a function which is declared to return a
value without actually returning a value
Rationale: The caller and callee may assume fairly elaborate return-value mechanisms for the return of
class objects. If some flow paths execute a return without specifying any value, the implementation must
embody many more complications. Besides, promising to return a value of a given type, and then not
returning such a value, has always been recognized to be a questionable practice, tolerated only because
very-old C had no distinction between void functions and int functions.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Add an appropriate return value to the source code,
e.g. zero.
How widely used:Seldom. For several years, many existing C implementations have produced warnings
in this case.

[diff.dcl] C.1.5 Clause 7: declarations

7.1.1

1 Change:In C++, thestatic or extern specifiers can only be applied to names of objects or functions
Using these specifiers with type declarations is illegal in C++. In C, these specifiers are ignored when used
on type declarations. Example:

static struct S { // valid C, invalid in C++
int i;
// ...
};

Rationale: Storage class specifiers don’t have any meaning when associated with a type. In C++, class
members can be defined with thestatic storage class specifier. Allowing storage class specifiers on
type declarations could render the code confusing for users.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used:Seldom.

7.1.3

2 Change: A C++ typedef name must be different from any class type name declared in the same scope
(except if the typedef is a synonym of the class name with the same name). In C, a typedef name and a
struct tag name declared in the same scope can have the same name (because they have different name
spaces)
Example:

typedef struct name1 { /*...*/ } name1; // valid C and C++
struct name { /*...*/ };
typedef int name; // valid C, invalid C++

Rationale: For ease of use, C++ doesn’t require that a type name be prefixed with the keywordsclass ,
struct or union when used in object declarations or type casts. Example:

class name { /*...*/ };
name i; // i has typeclass name

Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. One of the 2 types has to be renamed.
How widely used:Seldom.

7.1.5 [see also 3.5]

691

ISO/IEC 14882:1998(E) © ISO/IEC

C.1.5 Clause 7: declarations Annex C Compatibility

3 Change:const objects must be initialized in C++ but can be left uninitialized in C
Rationale: A const object cannot be assigned to so it must be initialized to hold a useful value.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used:Seldom.

7.1.5 (type specifiers)

4 Change:Banning implicit int
In C++ a decl-specifier-seqmust contain atype-specifier. In the following example, the left-hand column
presents valid C; the right-hand column presents equivalent C++:

void f(const parm); void f(const int parm);
const n = 3; const int n = 3;
main() int main()

/* ... */ /* ... */

Rationale: In C++, implicit int creates several opportunities for ambiguity between expressions involving
function-like casts and declarations. Explicit declaration is increasingly considered to be proper style.
Liaison with WG14 (C) indicated support for (at least) deprecating implicit int in the next revision of C.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation. Could be automated.
How widely used:Common.

7.2

5 Change:C++ objects of enumeration type can only be assigned values of the same enumeration type. In C,
objects of enumeration type can be assigned values of any integral type
Example:

enum color { red, blue, green };
color c = 1; // valid C, invalid C++

Rationale: The type-safe nature of C++.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation. (The type error produced by the assignment can be
automatically corrected by applying an explicit cast.)
How widely used:Common.

7.2

6 Change:In C++, the type of an enumerator is its enumeration. In C, the type of an enumerator isint .
Example:

enum e { A };
sizeof(A) == sizeof(int) // in C
sizeof(A) == sizeof(e) // in C++
/* and sizeof(int) is not necessary equal to sizeof(e) */

Rationale: In C++, an enumeration is a distinct type.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used:Seldom. The only time this affects existing C code is when the size of an enumerator is
taken. Taking the size of an enumerator is not a common C coding practice.

692

© ISO/IEC ISO/IEC 14882:1998(E)

Annex C Compatibility C.1.6 Clause 8: declarators

[diff.decl] C.1.6 Clause 8: declarators

8.3.5

1 Change:In C++, a function declared with an empty parameter list takes no arguments.
In C, an empty parameter list means that the number and type of the function arguments are unknown"
Example:

int f(); // means int f(void) in C++
// int f(unknown) in C

Rationale: This is to avoid erroneous function calls (i.e. function calls with the wrong number or type of
arguments).
Effect on original feature: Change to semantics of well-defined feature. This feature was marked as
“obsolescent” in C.
Difficulty of converting: Syntactic transformation. The function declarations using C incomplete declara-
tion style must be completed to become full prototype declarations. A program may need to be updated
further if different calls to the same (non-prototype) function have different numbers of arguments or if the
type of corresponding arguments differed.
How widely used:Common.

8.3.5 [see 5.3.3]

2 Change: In C++, types may not be defined in return or parameter types. In C, these type definitions are
allowed
Example:

void f(struct S { int a; } arg) {} // valid C, invalid C++
enum E { A, B, C } f() {} // valid C, invalid C++

Rationale: When comparing types in different compilation units, C++ relies on name equivalence when C
relies on structural equivalence. Regarding parameter types: since the type defined in an parameter list
would be in the scope of the function, the only legal calls in C++ would be from within the function itself.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The type definitions must be moved to file scope, or in
header files.
How widely used:Seldom. This style of type definitions is seen as poor coding style.

8.4

3 Change: In C++, the syntax for function definition excludes the“old-style” C function. In C,“old-style”
syntax is allowed, but deprecated as“obsolescent.”
Rationale: Prototypes are essential to type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used:Common in old programs, but already known to be obsolescent.

8.5.2

4 Change: In C++, when initializing an array of character with a string, the number of characters in the string
(including the terminating’\0’) must not exceed the number of elements in the array. In C, an array can
be initialized with a string even if the array is not large enough to contain the string terminating’\0’
Example:

char array[4] = "abcd"; // valid C, invalid C++

693

ISO/IEC 14882:1998(E) © ISO/IEC

C.1.6 Clause 8: declarators Annex C Compatibility

Rationale: When these non-terminated arrays are manipulated by standard string routines, there is potential
for major catastrophe.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The arrays must be declared one element bigger to
contain the string terminating’\0’ .
How widely used:Seldom. This style of array initialization is seen as poor coding style.

[diff.class] C.1.7 Clause 9: classes

9.1 [see also 7.1.3]

1 Change: In C++, a class declaration introduces the class name into the scope where it is declared and hides
any object, function or other declaration of that name in an enclosing scope. In C, an inner scope declara-
tion of a struct tag name never hides the name of an object or function in an outer scope
Example:

int x[99];
void f()
{

struct x { int a; };
sizeof(x); /* size of the array in C */
/* size of the struct in C ++ */

}

Rationale: This is one of the few incompatibilities between C and C++ that can be attributed to the new
C++ name space definition where a name can be declared as a type and as a nontype in a single scope caus-
ing the nontype name to hide the type name and requiring that the keywordsclass , struct , union or
enum be used to refer to the type name. This new name space definition provides important notational
conveniences to C++ programmers and helps making the use of the user-defined types as similar as possible
to the use of built-in types. The advantages of the new name space definition were judged to outweigh by
far the incompatibility with C described above.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation. If the hidden name that needs to be accessed is at glo-
bal scope, the:: C++ operator can be used. If the hidden name is at block scope, either the type or the
struct tag has to be renamed.
How widely used:Seldom.

9.7

2 Change: In C++, the name of a nested class is local to its enclosing class. In C the name of the nested class
belongs to the same scope as the name of the outermost enclosing class
Example:

struct X {
struct Y { /* ... */ } y;

};
struct Y yy; // valid C, invalid C++

Rationale: C++ classes have member functions which require that classes establish scopes. The C rule
would leave classes as an incomplete scope mechanism which would prevent C++ programmers from main-
taining locality within a class. A coherent set of scope rules for C++ based on the C rule would be very
complicated and C++ programmers would be unable to predict reliably the meanings of nontrivial examples
involving nested or local functions.
Effect on original feature: Change of semantics of well-defined feature.
Difficulty of converting: Semantic transformation. To make the struct type name visible in the scope of
the enclosing struct, the struct tag could be declared in the scope of the enclosing struct, before the enclos-
ing struct is defined. Example:

694

© ISO/IEC ISO/IEC 14882:1998(E)

Annex C Compatibility C.1.7 Clause 9: classes

struct Y; // struct Y andstruct X are at the same scope
struct X {

struct Y { /* ... */ } y;
};

All the definitions of C struct types enclosed in other struct definitions and accessed outside the scope of
the enclosing struct could be exported to the scope of the enclosing struct. Note: this is a consequence of
the difference in scope rules, which is documented in 3.3.
How widely used:Seldom.

9.9

3 Change:In C++, a typedef name may not be redefined in a class declaration after being used in the declara-
tion
Example:

typedef int I;
struct S {

I i;
int I; // valid C, invalid C++

};

Rationale: When classes become complicated, allowing such a redefinition after the type has been used can
create confusion for C++ programmers as to what the meaning of ’I’ really is.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Either the type or the struct member has to be
renamed.
How widely used:Seldom.

[diff.special] C.1.8 Clause 12: special member functions

12.8 (copying class objects)

1 Change:Copying volatile objects
The implicitly-declared copy constructor and implicitly-declared copy assignment operator cannot make a
copy of a volatile lvalue. For example, the following is valid in ISO C:

struct X { int i; };
struct X x1, x2;
volatile struct X x3 = {0};
x1 = x3; // invalid C++
x2 = x3; // also invalid C++

Rationale: Several alternatives were debated at length. Changing the parameter tovolatile const X&
would greatly complicate the generation of efficient code for class objects. Discussion of providing two
alternative signatures for these implicitly-defined operations raised unanswered concerns about creating
ambiguities and complicating the rules that specify the formation of these operators according to the bases
and members.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. If volatile semantics are required for the copy, a user-
declared constructor or assignment must be provided. If non-volatile semantics are required, an explicit
const_cast can be used.
How widely used:Seldom.

695

ISO/IEC 14882:1998(E) © ISO/IEC

C.1.9 Clause 16: preprocessing directives Annex C Compatibility

[diff.cpp] C.1.9 Clause 16: preprocessing directives

16.8 (predefined names)

1 Change:Whether_ _STDC_ _ is defined and if so, what its value is, are implementation-defined
Rationale: C++ is not identical to ISO C. Mandating that_ _STDC_ _ be defined would require that trans-
lators make an incorrect claim. Each implementation must choose the behavior that will be most useful to
its marketplace.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used:Programs and headers that reference_ _STDC_ _ are quite common.

[diff.library] C.2 Standard C library

1 This subclause summarizes the contents of the C++ Standard library included from the Standard C library.
It also summarizes the explicit changes in definitions, declarations, or behavior from the ISO/IEC
9899:1990 and ISO/IEC 9899:1990/DAM 1 noted in other subclauses (17.4.1.2, 18.1, 21.4).

2 The C++ Standard library provides 54 standard macros from the C library, as shown in Table 95.

3 The header names (enclosed in< and>) indicate that the macro may be defined in more than one header.
All such definitions are equivalent (3.2).

Table 95—Standard Macros
_ __
assert HUGE_VAL NULL <cstring> SIGILL va_arg

BUFSIZ LC_ALL NULL <ctime> SIGINT va_end

CLOCKS_PER_SEC LC_COLLATE NULL <cwchar> SIGSEGV va_start

EDOM LC_CTYPE offsetof SIGTERM WCHAR_MAX

EOF LC_MONETARY RAND_MAX SIG_DFL WCHAR_MIN

ERANGE LC_NUMERIC SEEK_CUR SIG_ERR WEOF <cwchar>

errno LC_TIME SEEK_END SIG_IGN WEOF <cwctype>

EXIT_FAILURE L_tmpnam SEEK_SET stderr _IOFBF

EXIT_SUCCESS MB_CUR_MAX setjmp stdin _IOLBF

FILENAME_MAX NULL <cstddef> SIGABRT stdout _IONBF

FOPEN_MAX NULL <cstdio> SIGFPE TMP_MAX_ __

4 The C++ Standard library provides 45 standard values from the C library, as shown in Table 96:

696

© ISO/IEC ISO/IEC 14882:1998(E)

Annex C Compatibility C.2 Standard C library

Table 96—Standard Values
_ __
CHAR_BIT FLT_DIG INT_MIN MB_LEN_MAX

CHAR_MAX FLT_EPSILON LDBL_DIG SCHAR_MAX

CHAR_MIN FLT_MANT_DIG LDBL_EPSILON SCHAR_MIN

DBL_DIG FLT_MAX LDBL_MANT_DIG SHRT_MAX

DBL_EPSILON FLT_MAX_10_EXP LDBL_MAX SHRT_MIN

DBL_MANT_DIG FLT_MAX_EXP LDBL_MAX_10_EXP UCHAR_MAX

DBL_MAX FLT_MIN LDBL_MAX_EXP UINT_MAX

DBL_MAX_10_EXP FLT_MIN_10_EXP LDBL_MIN ULONG_MAX

DBL_MAX_EXP FLT_MIN_EXP LDBL_MIN_10_EXP USHRT_MAX

DBL_MIN FLT_RADIX LDBL_MIN_EXP

DBL_MIN_10_EXP FLT_ROUNDS LONG_MAX

DBL_MIN_EXP INT_MAX LONG_MIN_ __

5 The C++ Standard library provides 19 standard types from the C library, as shown in Table 97:

Table 97—Standard Types
_ __
clock_t ldiv_t size_t <cstdio> wctrans_t

div_t mbstate_t size_t <cstring> wctype_t

FILE ptrdiff_t size_t <ctime> wint_t <cwchar>

fpos_t sig_atomic_t time_t wint_t <cwctype>

jmp_buf size_t <cstddef> va_list_ __

6 The C++ Standard library provides 2 standard structures from the C library, as shown in Table 98:

Table 98—Standard Structs
_ ____________
lconv tm_ ____________

7 The C++ Standard library provides 209 standard functions from the C library, as shown in Table 99:

697

ISO/IEC 14882:1998(E) © ISO/IEC

C.2 Standard C library Annex C Compatibility

Table 99—Standard Functions
_ __
abort fmod isupper mktime strftime wcrtomb

abs fopen iswalnum modf strlen wcscat

acos fprintf iswalpha perror strncat wcschr

asctime fputc iswcntrl pow strncmp wcscmp

asin fputs iswctype printf strncpy wcscoll

atan fputwc iswdigit putc strpbrk wcscpy

atan2 fputws iswgraph putchar strrchr wcscspn

atexit fread iswlower puts strspn wcsftime

atof free iswprint putwc strstr wcslen

atoi freopen iswpunct putwchar strtod wcsncat

atol frexp iswspace qsort strtok wcsncmp

bsearch fscanf iswupper raise strtol wcsncpy

btowc fseek iswxdigit rand strtoul wcspbrk

calloc fsetpos isxdigit realloc strxfrm wcsrchr

ceil ftell labs remove swprintf wcsrtombs

clearerr fwide ldexp rename swscanf wcsspn

clock fwprintf ldiv rewind system wcsstr

cos fwrite localeconv scanf tan wcstod

cosh fwscanf localtime setbuf tanh wcstok

ctime getc log setlocale time wcstol

difftime getchar log10 setvbuf tmpfile wcstombs

div getenv longjmp signal tmpnam wcstoul

exit gets malloc sin tolower wcsxfrm

exp getwc mblen sinh toupper wctob

fabs getwchar mbrlen sprintf towctrans wctomb

fclose gmtime mbrtowc sqrt towlower wctrans

feof isalnum mbsinit srand towupper wctype

ferror isalpha mbsrtowcs sscanf ungetc wmemchr

fflush iscntrl mbstowcs strcat ungetwc wmemcmp

fgetc isdigit mbtowc strchr vfprintf wmemcpy

fgetpos isgraph memchr strcmp vfwprintf wmemmove

fgets islower memcmp strcoll vprintf wmemset

fgetwc isprint memcpy strcpy vsprintf wprintf

fgetws ispunct memmove strcspn vswprintf wscanf

floor isspace memset strerror vwprintf_ __

[diff.mods.to.headers] C.2.1 Modifications to headers

1 For compatibility with the Standard C library, the C++ Standard library provides the 18C headers(D.5),
but their use is deprecated in C++.

[diff.mods.to.definitions] C.2.2 Modifications to definitions

[diff.wchar.t] C.2.2.1 Typewchar_t

1 wchar_t is a keyword in this International Standard (2.11). It does not appear as a type name defined in
any of<cstddef> , <cstdlib> , or<cwchar> (21.4).

698

© ISO/IEC ISO/IEC 14882:1998(E)

Annex C Compatibility C.2.2.2 Header<iso646.h>

[diff.header.iso646.h] C.2.2.2 Header<iso646.h>

1 The tokensand , and_eq , bitand , bitor , compl , not_eq , not , or , or_eq , xor , andxor_eq are
keywords in this International Standard (2.11). They do not appear as macro names defined in
<ciso646> .

[diff.null] C.2.2.3 MacroNULL

1 The macroNULL, defined in any of<clocale> , <cstddef> , <cstdio> , <cstdlib> , <cstring> ,
<ctime> , or <cwchar> , is an implementation-defined C++ null pointer constant in this International
Standard (18.1).

[diff.mods.to.declarations] C.2.3 Modifications to declarations

1 Header<cstring> : The following functions have different declarations:

— strchr

— strpbrk

— strrchr

— strstr

— memchr

2 21.4 describes the changes.

[diff.mods.to.behavior] C.2.4 Modifications to behavior

1 Header<cstdlib> : The following functions have different behavior:

— atexit

— exit

— abort

18.3 describes the changes.

2 Header<csetjmp> : The following functions have different behavior:

— longjmp

18.7 describes the changes.

[diff.offsetof] C.2.4.1 Macrooffsetof(type , member-designator)

1 The macrooffsetof , defined in<cstddef> , accepts a restricted set oftype arguments in this Inter-
national Standard. 18.1 describes the change.

[diff.malloc] C.2.4.2 Memory allocation functions

1 The functionscalloc , malloc , and realloc are restricted in this International Standard. 20.4.6
describes the changes.

699

ISO/IEC 14882:1998(E) © ISO/IEC

700

(Blank page)

© ISO/IEC ISO/IEC 14882:1998(E)

Annex D Compatibility features D Compatibility features

Annex D [depr]
(normative)

Compatibility features

1 This clause describes features of the C++ Standard that are specified for compatibility with existing imple-
mentations.

2 These are deprecated features, wheredeprecatedis defined as: Normative for the current edition of the
Standard, but not guaranteed to be part of the Standard in future revisions.

[depr.post.incr] D.1 Postfix increment operator

1 The use of an operand of typebool with the postfix++ operator is deprecated (see 5.2.6).

[depr.static] D.2 static keyword

1 The use of thestatic keyword is deprecated when declaring objects in namespace scope (see 3.3.5).

[depr.access.dcl] D.3 Access declarations

1 Access declarations are deprecated (see 11.3).

[depr.string] D.4 Implicit conversion from const strings

1 The implicit conversion from const to non-const qualification for string literals (4.2) is deprecated.

[depr.c.headers] D.5 Standard C library headers

1 For compatibility with the Standard C library, the C++ Standard library provides the 18C headers, as
shown in Table 100:

Table 100—C Headers
__
<assert.h> <iso646.h> <setjmp.h> <stdio.h> <wchar.h>
<ctype.h> <limits.h> <signal.h> <stdlib.h> <wctype.h>
<errno.h> <locale.h> <stdarg.h> <string.h>
<float.h> <math.h> <stddef.h> <time.h>__

2 Each C header, whose name has the formname.h , behaves as if each name placed in the Standard library
namespace by the correspondingcname header is also placed within the namespace scope of the name-
spacestd and is followed by an explicitusing-declaration(7.3.3)

3 [Example:The header<cstdlib> provides its declarations and definitions within the namespacestd .
The header<stdlib.h> makes these available in the global name space, much as in the C Standard.
—end example]

[depr.ios.members] D.6 Old iostreams members

1 The following member names are in addition to names specified in clause 27:

701

ISO/IEC 14882:1998(E) © ISO/IEC

D.6 Old iostreams members Annex D Compatibility features

namespace std {
class ios_base {
public:

typedef T1 io_state;
typedef T2 open_mode;
typedef T3 seek_dir;
typedef OFF_T streamoff;
typedef OFF_T streampos;
// remainder unchanged

};
}

2 The typeio_state is a synonym for an integer type (indicated here asT1) that permits certain member
functions to overload others on parameters of typeiostate and provide the same behavior.

3 The typeopen_mode is a synonym for an integer type (indicated here asT2) that permits certain member
functions to overload others on parameters of typeopenmode and provide the same behavior.

4 The typeseek_dir is a synonym for an integer type (indicated here asT3) that permits certain member
functions to overload others on parameters of typeseekdir and provide the same behavior.

5 The typestreamoff is an implementation-defined type that satisfies the requirements of typeOFF_T
(27.4.1).

6 The typestreampos is an implementation-defined type that satisfies the requirements of typePOS_T
(27.2).

7 An implementation may provide the following additional member function, which has the effect of calling
sbumpc() (27.5.2.2.3):

namespace std {
template<class charT, class traits = char_traits<charT> >
class basic_streambuf {
public:

void stossc();
// remainder unchanged

};
}

8 An implementation may provide the following member functions that overload signatures specified in
clause 27:

namespace std {
template<class charT, class Traits> class basic_ios {
public:

void clear(io_state state);
void setstate(io_state state);
// remainder unchanged

};

class ios_base {
public:

void exceptions(io_state);
// remainder unchanged

};

702

© ISO/IEC ISO/IEC 14882:1998(E)

Annex D Compatibility features D.6 Old iostreams members

template<class charT, class traits = char_traits<charT> >
class basic_streambuf {
public:

pos_type pubseekoff(off_type off , ios_base::seek_dir way,
ios_base::open_mode which = ios_base::in | ios_base::out);

pos_type pubseekpos(pos_type sp ,
ios_base::open_mode which = ios_base::in | ios_base::out);

// remainder unchanged
};

template <class charT, class traits = char_traits<charT> >
class basic_filebuf : public basic_streambuf<charT,traits> {
public:

basic_filebuf<charT,traits>* open
(const char* s, ios_base::open_mode mode);

// remainder unchanged
};

template <class charT, class traits = char_traits<charT> >
class basic_ifstream : public basic_istream<charT,traits> {
public:

void open(const char* s, ios_base::open_mode mode = in);
// remainder unchanged

};

template <class charT, class traits = char_traits<charT> >
class basic_ofstream : public basic_ostream<charT,traits> {
public:

void open(const char* s, ios_base::open_mode mode = out | trunc);
// remainder unchanged

};

}

9 The effects of these functions is to call the corresponding member function specified in clause 27.

[depr.str.strstreams] D.7 char* streams

1 The header<strstream> defines three types that associate stream buffers with character array objects
and assist reading and writing such objects.

[depr.strstreambuf] D.7.1 Classstrstreambuf

namespace std {
class strstreambuf : public basic_streambuf<char> {
public:

explicit strstreambuf(streamsize alsize_arg = 0);
strstreambuf(void* (* palloc_arg)(size_t), void (* pfree_arg)(void*));
strstreambuf(char* gnext_arg , streamsize n, char* pbeg_arg = 0);
strstreambuf(const char* gnext_arg , streamsize n);

strstreambuf(signed char* gnext_arg , streamsize n,
signed char* pbeg_arg = 0);

strstreambuf(const signed char* gnext_arg , streamsize n);
strstreambuf(unsigned char* gnext_arg , streamsize n,

unsigned char* pbeg_arg = 0);
strstreambuf(const unsigned char* gnext_arg , streamsize n);

virtual ~strstreambuf();

703

ISO/IEC 14882:1998(E) © ISO/IEC

D.7.1 Classstrstreambuf Annex D Compatibility features

void freeze(bool freezefl = true);
char* str();
int pcount();

protected:
virtual int_type overflow (int_type c = EOF);
virtual int_type pbackfail(int_type c = EOF);
virtual int_type underflow();
virtual pos_type seekoff(off_type off , ios_base::seekdir way,

ios_base::openmode which
= ios_base::in | ios_base::out);

virtual pos_type seekpos(pos_type sp , ios_base::openmode which
= ios_base::in | ios_base::out);

virtual streambuf<char>* setbuf(char* s, streamsize n);

private:
// typedef T1 strstate ; exposition only
// static const strstate allocated ; exposition only
// static const strstate constant ; exposition only
// static const strstate dynamic ; exposition only
// static const strstate frozen ; exposition only
// strstate strmode ; exposition only
// streamsize alsize ; exposition only
// void* (* palloc)(size_t); exposition only
// void (* pfree)(void*); exposition only

};
}

1 The classstrstreambuf associates the input sequence, and possibly the output sequence, with an object
of some character array type, whose elements store arbitrary values. The array object has several
attributes.

2 [Note:For the sake of exposition, these are represented as elements of a bitmask type (indicated here asT1)
calledstrstate . The elements are:

— allocated , set when a dynamic array object has been allocated, and hence should be freed by the
destructor for thestrstreambuf object;

— constant , set when the array object hasconst elements, so the output sequence cannot be written;

— dynamic , set when the array object is allocated (or reallocated) as necessary to hold a character
sequence that can change in length;

— frozen , set when the program has requested that the array object not be altered, reallocated, or freed.
—end note]

3 [Note:For the sake of exposition, the maintained data is presented here as:

— strstate strmode , the attributes of the array object associated with thestrstreambuf object;

— int alsize , the suggested minimum size for a dynamic array object;

— void* (* palloc)(size_t) , points to the function to call to allocate a dynamic array object;

— void (* pfree)(void*) , points to the function to call to free a dynamic array object.—end note]

4 Each object of classstrstreambuf has aseekable area, delimited by the pointersseeklow and
seekhigh . If gnext is a null pointer, the seekable area is undefined. Otherwise,seeklow equals
gbeg and seekhigh is eitherpend , if pend is not a null pointer, orgend .

704

© ISO/IEC ISO/IEC 14882:1998(E)

Annex D Compatibility features D.7.1.1strstreambuf constructors

[depr.strstreambuf.cons] D.7.1.1 strstreambuf constructors

explicit strstreambuf(streamsize alsize_arg = 0);

1 Effects: Constructs an object of classstrstreambuf , initializing the base class withstreambuf() .
The postconditions of this function are indicated in Table 101:

Table 101—strstreambuf(streamsize) effects
_ _________________________

Element Value_ __________________________ _________________________
strmode dynamic
alsize alsize_arg
palloc a null pointer
pfree a null pointer_ _________________________

strstreambuf(void* (* palloc_arg)(size_t), void (* pfree_arg)(void*));

2 Effects: Constructs an object of classstrstreambuf , initializing the base class withstreambuf() .
The postconditions of this function are indicated in Table 102:

Table 102—strstreambuf(void* (*)(size_t),void (*)(void*) effects
_ _____________________________

Element Value_ ______________________________ _____________________________
strmode dynamic
alsize an unspecified value
palloc palloc_arg
pfree pfree_arg_ _____________________________

strstreambuf(char* gnext_arg , streamsize n, char * pbeg_arg = 0);
strstreambuf(signed char* gnext_arg , streamsize n,

signed char * pbeg_arg = 0);
strstreambuf(unsigned char* gnext_arg , streamsize n,

unsigned char * pbeg_arg = 0);

3 Effects: Constructs an object of classstrstreambuf , initializing the base class withstreambuf() .
The postconditions of this function are indicated in Table 103:

Table 103—strstreambuf(charT*,streamsize,charT*) effects
_ _____________________________

Element Value_ ______________________________ _____________________________
strmode 0
alsize an unspecified value
palloc a null pointer
pfree a null pointer_ _____________________________

4 gnext_arg shall point to the first element of an array object whose number of elementsN is determined
as follows:

— If n > 0 , N is n.

— If n == 0 , N is std::strlen(gnext_arg) .

— If n < 0 , N is INT_MAX.312)

312) The function signaturestrlen(const char*) is declared in<cstring> . (21.4). The macroINT_MAX is defined in
<climits> (18.2).

705

ISO/IEC 14882:1998(E) © ISO/IEC

D.7.1.1strstreambuf constructors Annex D Compatibility features

5 If pbeg_arg is a null pointer, the function executes:

setg(gnext_arg , gnext_arg , gnext_arg + N);

6 Otherwise, the function executes:

setg(gnext_arg , gnext_arg , pbeg_arg);
setp(pbeg_arg , pbeg_arg + N);

strstreambuf(const char* gnext_arg , streamsize n);
strstreambuf(const signed char* gnext_arg , streamsize n);
strstreambuf(const unsigned char* gnext_arg , streamsize n);

7 Effects: Behaves the same asstrstreambuf((char*) gnext_arg , n) , except that the constructor
also setsconstant in strmode .

virtual ~strstreambuf();

8 Effects: Destroys an object of classstrstreambuf . The function frees the dynamically allocated array
object only if strmode & allocated != 0 and strmode & frozen == 0 .
(_lib.strstreambuf.virtuals_ describes how a dynamically allocated array object is freed.)

[depr.strstreambuf.members] D.7.1.2 Member functions

void freeze(bool freezefl = true);

1 Effects: If strmode & dynamic is non-zero, alters the freeze status of the dynamic array object as fol-
lows:

— If freezefl is true , the function setsfrozen in strmode .

— Otherwise, it clearsfrozen in strmode .

char* str();

2 Effects: Calls freeze() , then returns the beginning pointer for the input sequence,gbeg .
3 Notes: The return value can be a null pointer.

int pcount() const;

4 Effects: If the next pointer for the output sequence,pnext , is a null pointer, returns zero. Otherwise,
returns the current effective length of the array object as the next pointer minus the beginning pointer
for the output sequence,pnext - pbeg .

[depr.strstreambuf.virtuals] D.7.1.3 strstreambuf overridden virtual functions

int_type overflow(int_type c = EOF);

1 Effects: Appends the character designated byc to the output sequence, if possible, in one of two ways:

— If c != EOF and if either the output sequence has a write position available or the function makes a
write position available (as described below), assignsc to * pnext ++.
Returns(unsigned char) c .

— If c == EOF , there is no character to append.
Returns a value other thanEOF.

2 ReturnsEOFto indicate failure.
3 Notes: The function can alter the number of write positions available as a result of any call.

To make a write position available, the function reallocates (or initially allocates) an array object with a
sufficient number of elementsn to hold the current array object (if any), plus at least one additional
write position. How many additional write positions are made available is otherwise unspecified.313) If

313)An implementation should consideralsize in making this decision.

706

© ISO/IEC ISO/IEC 14882:1998(E)

Annex D Compatibility features D.7.1.3strstreambuf overridden virtual functions

palloc is not a null pointer, the function calls(* palloc)(n) to allocate the new dynamic array
object. Otherwise, it evaluates the expressionnew charT[n] . In either case, if the allocation fails,
the function returnsEOF. Otherwise, it setsallocated in strmode .

4 To free a previously existing dynamic array object whose first element address isp: If pfree is not a null
pointer, the function calls(* pfree)(p) . Otherwise, it evaluates the expressiondelete[] p.

5 If strmode & dynamic == 0 , or if strmode & frozen != 0 , the function cannot extend the
array (reallocate it with greater length) to make a write position available.

int_type pbackfail(int_type c = EOF);

6 Puts back the character designated byc to the input sequence, if possible, in one of three ways:

— If c != EOF , if the input sequence has a putback position available, and if(char) c == gnext [-
1] , assignsgnext - 1 to gnext .
Returnsc .

— If c != EOF , if the input sequence has a putback position available, and ifstrmode & constant
is zero, assignsc to *-- gnext .
Returnsc .

— If c == EOF and if the input sequence has a putback position available, assignsgnext - 1 to
gnext .
Returns a value other thanEOF.

7 ReturnsEOFto indicate failure.
8 Notes: If the function can succeed in more than one of these ways, it is unspecified which way is chosen.

The function can alter the number of putback positions available as a result of any call.

int_type underflow();

9 Effects: Reads a character from theinput sequence, if possible, without moving the stream position past it,
as follows:

— If the input sequence has a read position available, the function signals success by returning
(unsigned char)* gnext .

— Otherwise, if the current write next pointerpnext is not a null pointer and is greater than the current
read end pointergend , makes aread positionavailable by: assigning togend a value greater than
gnext and no greater thanpnext .
Returns(unsigned char)* gnext .

10 ReturnsEOFto indicate failure.
11 Notes: The function can alter the number of read positions available as a result of any call.

pos_type seekoff(off_type off , seekdir way, openmode which = in | out);

12 Effects: Alters the stream position within one of the controlled sequences, if possible, as indicated in Table
104:

707

ISO/IEC 14882:1998(E) © ISO/IEC

D.7.1.3strstreambuf overridden virtual functions Annex D Compatibility features

Table 104—seekoff positioning

Conditions Result__
(which & ios::in) != 0 positions the input sequence___
(which & ios::out) != 0 positions the output sequence___
(which & (ios::in |
ios::out)) == (ios::in |
ios::out)) and way ==
either ios::beg or
ios::end

positions both the input and the
output sequences

Otherwise the positioning operation fails.___

13 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determinesnewoff as indicated in Table 105:

Table 105—newoff values
_ ___

Condition newoff Value_ __ ___
way == ios::beg 0_ ___
way == ios::cur the next pointer minus the begin-

ning pointer (xnext - xbeg)_ ___
way == ios::end seekhigh minus the beginning

pointer (seekhigh - xbeg)_ ___
the positioning operation failsIf (newoff + off) <

(seeklow - xbeg),
or (seekhigh - xbeg) <
(newoff + off)_ ___

14 Otherwise, the function assignsxbeg + newoff + off to the next pointerxnext .
15 Returns: pos_type(newoff) , constructed from the resultant offsetnewoff (of type off_type),

that stores the resultant stream position, if possible. If the positioning operation fails, or if the con-
structed object cannot represent the resultant stream position, the object stores an invalid stream posi-
tion.

pos_type seekpos(pos_type sp , ios_base::openmode which
= ios_base::in | ios_base::out);

16 Effects: Alters the stream position within one of the controlled sequences, if possible, to correspond to the
stream position stored insp (as described below).

— If (which & ios::in) != 0 , positions the input sequence.

— If (which & ios::out) != 0 , positions the output sequence.

— If the function positions neither sequence, the positioning operation fails.

17 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determinesnewoff from sp .offset() :

— If newoff is an invalid stream position, has a negative value, or has a value greater than (seekhigh -
seeklow), the positioning operation fails

— Otherwise, the function addsnewoff to the beginning pointerxbeg and stores the result in the next
pointerxnext .

708

© ISO/IEC ISO/IEC 14882:1998(E)

Annex D Compatibility features D.7.1.3strstreambuf overridden virtual functions

18 Returns: pos_type(newoff) , constructed from the resultant offsetnewoff (of type off_type),
that stores the resultant stream position, if possible. If the positioning operation fails, or if the con-
structed object cannot represent the resultant stream position, the object stores an invalid stream posi-
tion.

streambuf<char>* setbuf(char* s, streamsize n);

19 Effects: Performs an operation that is defined separately for each class derived fromstrstreambuf .

[depr.istrstream] D.7.2 Classistrstream

namespace std {
class istrstream : public basic_istream<char> {
public:

explicit istrstream(const char* s);
explicit istrstream(char* s);
istrstream(const char* s, streamsize n);
istrstream(char* s, streamsize n);
virtual ~istrstream();

strstreambuf* rdbuf() const;
char *str();

private:
// strstreambuf sb ; exposition only

};
}

1 The classistrstream supports the reading of objects of classstrstreambuf . It supplies a
strstreambuf object to control the associated array object. For the sake of exposition, the maintained
data is presented here as:

— sb , thestrstreambuf object.

[depr.istrstream.cons] D.7.2.1 istrstream constructors

explicit istrstream(const char* s);
explicit istrstream(char* s);

1 Effects: Constructs an object of classistrstream , initializing the base class withistream(& sb) and
initializing sb with strstreambuf(s,0)) . s shall designate the first element of anNTBS.

istrstream(const char* s, streamsize n);

2 Effects: Constructs an object of classistrstream , initializing the base class withistream(& sb) and
initializing sb with strstreambuf(s, n)) . s shall designate the first element of an array whose
length is n elements, andn shall be greater than zero.

[depr.istrstream.members] D.7.2.2 Member functions

strstreambuf* rdbuf() const;

1 Returns: (strstreambuf*)& sb .

char* str();

2 Returns: rdbuf()->str() .

709

ISO/IEC 14882:1998(E) © ISO/IEC

D.7.3 Classostrstream Annex D Compatibility features

[depr.ostrstream] D.7.3 Classostrstream

namespace std {
class ostrstream : public basic_ostream<char> {
public:

ostrstream();
ostrstream(char* s, int n, ios_base::openmode mode = ios_base::out);
virtual ~ostrstream();

strstreambuf* rdbuf() const;
void freeze(bool freezefl = true);
char* str();
int pcount() const;

private:
// strstreambuf sb ; exposition only

};
}

1 The classostrstream supports the writing of objects of classstrstreambuf . It supplies a
strstreambuf object to control the associated array object. For the sake of exposition, the maintained
data is presented here as:

— sb , thestrstreambuf object.

[depr.ostrstream.cons] D.7.3.1 ostrstream constructors

ostrstream();

1 Effects: Constructs an object of classostrstream , initializing the base class withostream(& sb) and
initializing sb with strstreambuf()) .

ostrstream(char* s, int n, ios_base::openmode mode = ios_base::out);

2 Effects: Constructs an object of classostrstream , initializing the base class withostream(& sb) ,
and initializingsb with one of two constructors:

— If mode & app == 0 , thens shall designate the first element of an array ofn elements.
The constructor isstrstreambuf(s, n, s) .

— If mode & app != 0 , thens shall designate the first element of an array ofn elements that contains
anNTBS whose first element is designated bys .
The constructor isstrstreambuf(s, n, s + std::strlen(s)) .314)

[depr.ostrstream.members] D.7.3.2 Member functions

strstreambuf* rdbuf() const;

1 Returns: (strstreambuf*)& sb .

void freeze(bool freezefl = true);

2 Effects: Callsrdbuf()->freeze(freezefl) .

314)The function signaturestrlen(const char*) is declared in<cstring> (21.4).

710

© ISO/IEC ISO/IEC 14882:1998(E)

Annex D Compatibility features D.7.3.2 Member functions

char* str();

3 Returns: rdbuf()->str() .

int pcount() const;

4 Returns: rdbuf()->pcount() .

[depr.strstream] D.7.4 Classstrstream

namespace std {
class strstream

: public basic_iostream<char> {
public:

// Types
typedef char char_type;
typedef typename char_traits<char>::int_type int_type
typedef typename char_traits<char>::pos_type pos_type;
typedef typename char_traits<char>::off_type off_type;

// consturctors/destructor
strstream();
strstream(char* s, int n,

ios_base::openmode mode = ios_base::in|ios_base::out);
virtual ~strstream();

// Members:
strstreambuf* rdbuf() const;
void freeze(bool freezefl = true);
int pcount() const;
char* str();

private:
// strstreambuf sb; exposition only
};

}

1 The classstrstream supports reading and writing from objects of classsstrstreambuf. It supplies
a strstreambuf object to control the associated array object. For the sake of exposition, the maintained
data is presented here as

— sb , thestrstreambuf object.

[depr.strstream.cons] D.7.4.1 strstream constructors

strstream();

1 Effects: Constructs an object of classstrstream , initializing the base class withiostream(& sb) .

strstream(char* s, int n,
ios_base::openmode mode = ios_base::in|ios_base::out);

2 Effects: Constructs an object of classstrstream , initializing the base class withiostream(& sb) and
initializing sb with one of the two constructors:

— If mode&app==0, thens shall designate the first element of an array ofn elements. The constructor is
strstreambuf(s, n, s) .

— If mode&app==0, thens shall designate the first element of an array ofn elements that contains an
NTBS whose first element is designated by s . The constructor is
strstreambuf(s, n, s+std::strlen(s)) .

711

ISO/IEC 14882:1998(E) © ISO/IEC

D.7.4.2strstream destructor Annex D Compatibility features

[depr.strstream.dest] D.7.4.2 strstream destructor

virtual ~strstream()

1 Effects: Destroys an object of classstrstream .

strstreambuf* rdbuf() const;

2 Returns: &sb.

[depr.strstream.oper] D.7.4.3 strstream operations

void freeze(bool freezefl = true);

1 Effects: Callsrdbuf()->freeze(freezefl) .

char* str();

2 Returns: rdbuf()->str() .

int pcount() const;

3 Returns: rdbuf()->pcount() .

712

© ISO/IEC ISO/IEC 14882:1998(E)

Annex E [extendid]
(normative)

Universal-character-names

1 This clause lists the complete set of hexadecimal code values that are valid in universal-character-names in
C++ identifiers (2.10).

2 This table is reproduced unchanged from ISO/IEC PDTR 10176, produced by ISO/IEC JTC1/SC22/WG20,
except that the ranges 0041– 005a and 0061– 007a designate the upper and lower case English alphabets,
which are part of the basic source character set, and are not repeated in the table below.

Latin: 00c0– 00d6, 00d8– 00f6, 00f8– 01f5, 01fa– 0217, 0250– 02a8, 1e00– 1e9a, 1ea0– 1ef9

Greek: 0384, 0388– 038a, 038c, 038e– 03a1, 03a3– 03ce, 03d0– 03d6, 03da, 03dc, 03de, 03e0, 03e2– 03f3,
1f00– 1f15, 1f18– 1f1d, 1f20– 1f45, 1f48– 1f4d, 1f50– 1f57, 1f59, 1f5b, 1f5d, 1f5f– 1f7d, 1f80– 1fb4,
1fb6– 1fbc, 1fc2– 1fc4, 1fc6– 1fcc, 1fd0– 1fd3, 1fd6– 1fdb, 1fe0– 1fec, 1ff2– 1ff4, 1ff6– 1ffc

Cyrillic: 0401– 040d, 040f– 044f, 0451– 045c, 045e– 0481, 0490– 04c4, 04c7– 04c8, 04cb– 04cc,
04d0– 04eb, 04ee– 04f5, 04f8– 04f9

Armenian: 0531– 0556, 0561– 0587

Hebrew: 05d0– 05ea, 05f0– 05f4

Arabic: 0621– 063a, 0640– 0652, 0670– 06b7, 06ba– 06be, 06c0– 06ce, 06e5– 06e7

Devanagari: 0905– 0939, 0958– 0962

Bengali: 0985– 098c, 098f– 0990, 0993– 09a8, 09aa– 09b0, 09b2, 09b6– 09b9, 09dc– 09dd, 09df– 09e1,
09f0– 09f1

Gurmukhi: 0a05– 0a0a, 0a0f– 0a10, 0a13– 0a28, 0a2a– 0a30, 0a32– 0a33, 0a35– 0a36, 0a38– 0a39,
0a59– 0a5c, 0a5e

Gujarati: 0a85– 0a8b, 0a8d, 0a8f– 0a91, 0a93– 0aa8, 0aaa– 0ab0, 0ab2– 0ab3, 0ab5– 0ab9, 0ae0

Oriya: 0b05– 0b0c, 0b0f– 0b10, 0b13– 0b28, 0b2a– 0b30, 0b32– 0b33, 0b36– 0b39, 0b5c– 0b5d,
0b5f– 0b61

Tamil: 0b85– 0b8a, 0b8e– 0b90, 0b92– 0b95, 0b99– 0b9a, 0b9c, 0b9e– 0b9f, 0ba3– 0ba4, 0ba8– 0baa,
0bae– 0bb5, 0bb7– 0bb9

Telugu: 0c05– 0c0c, 0c0e– 0c10, 0c12– 0c28, 0c2a– 0c33, 0c35– 0c39, 0c60– 0c61

Kannada: 0c85– 0c8c, 0c8e– 0c90, 0c92– 0ca8, 0caa– 0cb3, 0cb5– 0cb9, 0ce0– 0ce1

Malayalam: 0d05– 0d0c, 0d0e– 0d10, 0d12– 0d28, 0d2a– 0d39, 0d60– 0d61

Thai: 0e01– 0e30, 0e32– 0e33, 0e40– 0e46, 0e4f– 0e5b

713

ISO/IEC 14882:1998(E) © ISO/IEC

E Universal-character-names Annex E Universal-character-names

Lao: 0e81– 0e82, 0e84, 0e87, 0e88, 0e8a, 0e0d, 0e94– 0e97, 0e99– 0e9f, 0ea1– 0ea3, 0ea5, 0ea7, 0eaa,
0eab, 0ead– 0eb0, 0eb2, 0eb3, 0ebd, 0ec0– 0ec4, 0ec6

Georgian: 10a0– 10c5, 10d0– 10f6

Hiragana: 3041– 3094, 309b– 309e

Katakana: 30a1– 30fe

Bopmofo: 3105– 312c

Hangul: 1100– 1159, 1161– 11a2, 11a8– 11f9

CJK Unified Ideographs: f900– fa2d, fb1f– fb36, fb38– fb3c, fb3e, fb40– fb41, fb42– fb44, fb46– fbb1,
fbd3– fd3f, fd50– fd8f, fd92– fdc7, fdf0– fdfb, fe70– fe72, fe74, fe76– fefc, ff21– ff3a, ff41– ff5a, ff66– ffbe,
ffc2– ffc7, ffca– ffcf, ffd2– ffd7, ffda– ffdc, 4e00– 9fa5

714

© ISO/IEC ISO/IEC 14882:1998(E)

Index

, —see comma operator 90
! —see logical negation operator 76
!= —see inequality operator 86
operator 305
operator 306
%—see modulus operator 83
%=operator 89
&
—see address-of operator 76
—see bitwise AND operator 87
reference declarator 132

&&—see logical AND operator 87
&= operator 89
()
—see function call operator 66
function declarator 135

*
—see indirection operator 76
—see multiplication operator 83
pointer declarator 131

*= operator 89
+
—see addition operator 84
—see unary plus operator 76

++ —see increment operator 69
+= operator 77, 89
-
—see subtraction operator 84
—see unary minus operator 76

-- —see decrement operator 69
-= operator 89
-> —see class member access operator 68
->* —see pointer to member operator 83
. —see class member access operator 68
.* —see pointer to member operator 83
... —see ellipsis 135
/ —see division operator 83
/* */ comment 12
// comment 12
/= operator 89
:
field declaration 159
label specifier 93

::
—see scope resolution operator 65
scope resolution operator 34

::* , pointer to member declarator 133
<
—see less than operator 85
template and 238– 239

<< —see left shift operator 85
<<= operator 89
<= —see less than or equal to operator 85
= —see assignment operator 89
== —see equality operator 86
> —see greater than operator 85
>= —see greater than or equal operator 85
>> —see right shift operator 85
>>= operator 89
?: —see conditional expression operator 88

[]
—see subscripting operator 66
array declarator 133

\ —see backslash 17
^ —see bitwise exclusive OR operator 87
^= operator 89
_, underscore in identifier 14
{}
block statement 93
class declaration 149
class definition 149
enum declaration 110
initializer list 144

| —see bitwise inclusive OR operator 87
|= operator 89
|| —see logical OR operator 88
~
—see destructor 191
—see one’s complement operator 76

0
—see also zero, null 19
null character 19
string terminator 19

A
abort 45, 97, 320, 336, 341, 345
abs 585, 596– 597
complex 572

abstract
class 172
class, constructor and 173
class, pointer to 172

abstract-declarator128
access
adjusting base class member 178
ambiguity, member 165
andfriend , class 180
andfriend function 179
base class 177
base class member 163
class member 68
control 175
control, anonymousunion 158
control default 175
control, member function and 185
control, overloading resolution and 166
declaration 178
example, member name 179
member name 175
overloading and 212
specifier 176– 177
specifier andfriend 181
specifier and object layout 177
struct default member 149
union default member 149
virtual function 183

access-specifier163
accumulate 594
acos 585, 597

715

ISO/IEC 14882:1998(E) © ISO/IEC

addition operator 84
additive operator 84
additive-expression84
address
of bit-field 159
of bit-field restriction 159
of constructor 186
of cv-qualified name 76
of member function, unspecified 325
of overloaded function 76, 226

address-of operator 76
adjacent_find 547
adjusting base class member access 178
adjustment
array parameter 135
function parameter 135

advance 519
aggregate 144
alert 17
<algorithm> 537
alias 115
alignment
of bit-field 159
of bit-field, implementation defined 159
requirement, implementation-defined 51
storage allocation 79

allocation
alignment storage 79
function 47, 79
implementation defined bit-field 159
new, storage 78
unspecified 153, 177

Allocator requirements 354
allocator 368
allowing an exception 297
altermate definition 322
always_noconv , codecvt 426
ambiguity
base class member 165
class conversion 168
declaration type 102
declaration versus cast 128
declaration versus expression 99
detection, overloaded function 212
function declaration 142
member access 165
parentheses and 78
resolution, scoping 167

ambiguous conversion sequence 222
Amendment 1 322
AND
operator, bitwise 87
operator, logical 87
operator, side effects and logical 88

and pointer to member type, multi-level mixed pointer 59
anonymous
union 158
union access control 158
union at namespace scope 158
union , global 158
union restriction 158

any , bitset 506
append , basic_string 392
apply , valarray 582
arbitrary-positional stream 311
arg , complex 572
argc 43
argument 1, 324– 325, 351
and name hiding, default 139
and virtual function, default 140
binding of default 138

conversion 135
declaration, default 137
evaluation of default 138– 139
evaluation, order of 68
evaluation, unspecified order of 68
example of default 137– 138
list, empty 135
list, variable 135
matching—see overload resolution 212
overloaded operator and default 228
passing 67
passing, reference and 147
reference 67
scope of default 139
specification, template 278
substitution 305
template 239
to constructor, unspecified 81
type checking 67
type checking of default 138
type, unknown 135

argument-dependent lookup 32
arguments, implementation-defined order of evaluation of

function 139
argv[] 43
arithmetic
conversions, usual 64
exception 63
exception, undefined 63
pointer 84
type 54
unsigned 53

array
bound 133
const 55
declaration 133
declarator[] 133
declarator, multidimensional 134
delete 81
example 134
initialization 144
member 152
multidimensional 134
new 78
of class objects and constructor 196
of class objects andnew 80
of class objects initialization 146, 196
order of execution, constructor and 195
order of execution, destructor and 192
overloading and pointer versus 210
parameter adjustment 135
pointer conversion 58
size, default 134
sizeof 77
storage of 135
type 54, 135

array-to-pointer conversion 58
arrow operator—see class member access operator 68
as-if rule 5
asin 585, 597
asm
declaration 123
implementation-defined 123

assembler 123
<assert.h> 320, 701
assign
basic_string 393
deque 472
list 476
vector 484

Assignable requirements 459

716

© ISO/IEC ISO/IEC 14882:1998(E)

assignment
and initialization, overloaded 196
and lvalue 89
conversion by 89
expression 89
operator 89, 318
operator, copy 205
operator, overloaded 229
operator restriction, copy 206
reference 147
to class object 89
to reference 90

assignment-expression89
assignment-operator89
at , basic_string 391
atan 585, 597
atan2 585, 597
atexit 45, 320, 336
auto 103
destruction of 97– 98
initialization 99
object initialization 141
restriction 103
specifier 103
storage duration 46

automatic initialization 98– 99
auto_ptr 372
auto_ptr 373
auto_ptr 373
get 373
operator* 373
operator-> 373
operator= 373
release 374
~auto_ptr 373

~auto_ptr , auto_ptr 373

B
back_inserter 526
back_insert_iterator 525
back_insert_iterator 525
back_insert_iterator 525
operator* 525
operator++ 525
operator= 525

backslash character 17
backspace 17
bad , basic_ios 617
bad_alloc 79, 337, 340
bad_alloc 340
bad_alloc 340
operator= 340
what 340

bad_alloc::what , implementation-defined 340
bad_cast 71, 342
bad_cast 342
bad_cast 342
operator= 342
what 342

bad_cast::what , implementation-defined 342
bad_exception 299, 344
bad_exception 344
bad_exception 344
operator= 344
what 344

bad_exception::what , implementation-defined 344
bad_typeid 71, 342
bad_typeid 342– 343
bad_typeid 342– 343

operator= 343
what 343

bad_typeid::what , implementation-defined 343
base
class 322, 325
class 163– 164
class access 177
class cast 73
class constructor order of execution 186
class destructor order of execution 192
class, direct 163
class, indirect 163
class initialization 197
class initialization, order of 198
class initializer 141
class member access 163
class member access, adjusting 178
class member ambiguity 165
class,private 177
class,public 177
class virtual—see virtual base class 163
of integer literal 16

base-specifier163
base-specifier-list163
basic
execution character set 4
source character set 10

basic_filebuf 601, 657
basic_filebuf 658
basic_filebuf 658
close 659, 666
imbue 662
is_open 659, 666
open 659, 666
overflow 661
pbackfail 660
rdbuf 666
seekoff 661
seekpos 662
setbuf 661
showmanyc 660
sync 662
uflow 660
underflow 660
~basic_filebuf 658

~basic_filebuf , basic_filebuf 658
basic_filebuf<char> 657
basic_filebuf<wchar_t> 657
basic_fstream 601, 665
basic_fstream 666
basic_fstream 666

basic_ifstream 601, 662
basic_ifstream 663
basic_ifstream 663
close 663
is_open 663
open 663
rdbuf 663

basic_ifstream<char> 657
basic_ifstream<wchar_t> 657
basic_ios 601, 613
bad 617
basic_ios 614
basic_ios 614
clear 616
copyfmt 616
eof 617
exceptions 617
fail 617
fill 616
good 617

717

ISO/IEC 14882:1998(E) © ISO/IEC

imbue 615
init 632, 642
narrow 615
operator bool 616
operator! 616
rdbuf 615
rdstate 616
setstate 616
tie 615
widen 615

basic_ios<char> 604
basic_ios::failure argument, implementation-defined

616
basic_iostream 639
basic_iostream 639
basic_iostream 639
~basic_iostream 640

~basic_iostream , basic_iostream 640
basic_ios<wchar_t> 604
basic_istream 601, 630
basic_istream 632
basic_istream 632
gcount 635
get 636
getline 637
ignore 638
operator bool() 633
operator>> 634
peek 638
putback 638
read 638
readsome 638
seekg 639
sentry 632
sync 639
tellg 639
unget 638
~sentry 633

basic_istreambuf_iterator 601
basic_istream<char> 629
basic_istream<wchar_t> 629
basic_istringstream 601, 653
basic_istringstream 653
basic_istringstream 653
rdbuf 654
str 654

basic_istringstream<char> 649
basic_istringstream<wchar_t> 649
basic_ofstream 601, 664
basic_ofstream 664
basic_ofstream 664
close 665
is_open 665
open 665
rdbuf 665

basic_ofstream<char> 657
basic_ofstream<wchar_t> 657
basic_ostream 601
basic_ostream 642
basic_ostream 642
flush 646
operator bool() 642
operator<< 643– 644
put 645
seekp 643
sentry 642
tellp 643
write 646
~basic_ostream 642
~sentry 642

~basic_ostream , basic_ostream 642

basic_ostreambuf_iterator 601
basic_ostream<char> 629
basic_ostream<wchar_t> 629
basic_ostringstream 601, 654
basic_ostringstream 655
basic_ostringstream 655
rdbuf 655
str 655

basic_ostringstream<char> 649
basic_ostringstream<wchar_t> 649
basic_streambuf 601, 620
basic_streambuf 622
basic_streambuf 622
eback 624
egptr 624
epptr 625
gbump 624
getloc 623
gptr 624
imbue 625
in_avail 623
overflow 628
pbackfail 627
pbase 625
pbump 625
pptr 625
pubimbue 623
pubseekoff 623
pubseekpos 623
pubsetbuf 623
pubsync 623
sbumpc 623
seekoff 625
seekpos 625
setbuf 625
setg 624
setp 625
sgetc 623
sgetn 624
showmanyc 626, 660
snextc 623
sputbackc 624
sputc 624
sputn 624
sungetc 624
sync 626
uflow 627
underflow 626
xsgetn 626
xsputn 628

basic_streambuf<char> 619
basic_streambuf<wchar_t> 619
basic_string 383, 401, 648
append 392
assign 393
at 391
basic_string 387
basic_string 387
begin 390
c_str 397
capacity 391
clear 391
compare 400
copy 396
data 397
empty 391
end 390
erase 394
find 397
find_first_not_of 399
find_first_of 398

718

© ISO/IEC ISO/IEC 14882:1998(E)

find_last_not_of 400
find_last_of 399
getline 404
insert 393
max_size 390
operator!= 402
operator+ 401
operator+= 392
operator< 403
operator<< 404
operator<= 403
operator= 389
operator== 402
operator> 403
operator>= 404
operator>> 404
operator[] 391
rbegin 390
rend 390
replace 395
reserve 391
resize 391
rfind 398
size 390
substr 400
swap 397, 404

basic_stringbuf 601, 649
basic_stringbuf 650
basic_stringbuf 650
overflow 651
pbackfail 651
seekoff 651
seekpos 652
str 650
underflow 651

basic_stringbuf<char> 649
basic_stringbuf<wchar_t> 649
basic_stringstream 601, 655
basic_stringstream 656
basic_stringstream 656
rdbuf 656
str 656

before , type_info 341
begin , basic_string 390
behavior
default 312, 315
implementation-defined 2, 445
locale-specific 2
reentrancy, implementation-defined 325
required 312, 315
undefined 2
unspecified 3

Ben 211
bidirectional_iterator_tag 518
binary
operator, interpretation of 229
operator, overloaded 229

binary_function 361
binary_negate 363
binary_search 557
bind1st 364
bind2nd 365
binder1st 364
binder2nd 364
binding
—see virtual function, dynamic 168
of default argument 138
reference 147

bit-field 159
address of 159
alignment of 159

allocation, implementation defined 159
declaration 159
implementation defined alignment of 159
implementation-defined sign of 159
layout 159
restriction 159
restriction, address of 159
restriction, pointer to 159
type of 159
unnamed 159
zero width of 159

bit-fields, Boolean 159
bitmask type 316– 317
<bitset> 502
bitset 502
any 506
bitset 503
bitset 503
count 506
flip 505
none 506
operator!= 506
operator& 506
operator&= 504
operator<< 506– 507
operator<<= 504
operator== 506
operator>> 506– 507
operator>>= 505
operator^ 506
operator^= 504
operator| 506
operator|= 504
operator~ 505
reset 505
set 505
size 506
test 506
to_string 505
to_ulong 505

bitwise
AND operator 87
exclusive OR operator 87
inclusive OR operator 87
operator 87

block
initialization in 98
scope—see local scope 26
statement{} 93
structure 98

body, function 140
bool promotion to int 59
bool
increment 69, 77
type-specifier 108

bool()
basic_istream operator 633
basic_ostream operator 642

boolalpha 617
Boolean
bit-fields 159
conversion 61
literal 19
type 53
type 53

boolean-literal 19
bound array 133
bound, of array 133
break statement 97
built-in type—see fundamental type 53
byte 77

719

ISO/IEC 14882:1998(E) © ISO/IEC

string, null-terminated 317

C
C
header 321– 322, 324, 701
library, Standard 311, 317, 319, 321, 696, 698, 701
linkage to 124
summary, compatibility with ISO 687

call
—see also function call, member function call, overloaded

function call, virtual function call 66
by reference 67
by value 67
operator function 228
pseudo destructor 68

calloc 374, 699
candidate functions 266
capacity
basic_string 391
vector 485

carriage return 17
case label 93, 95
<cassert> 320, 352
cast
ambiguity, declaration versus 128
base class 73
const 74
derived class 73
dynamic 70, 342
integer to pointer 73
lvalue 72– 73
operator 76, 82, 128
pointer to function 73
pointer to integer 73
pointer to member 73– 74
reference 72, 74
reinterpret 73
reinterpret_cast , lvalue 73
reinterpret_cast , reference 74
static 72
static_cast , lvalue 72
static_cast , reference 72
to incomplete class 82
undefined pointer to function 73

cast-expression82
casting 68, 82
catch 291
category , locale 412
c-char 16
c-char-sequence16
<cctype> 405
ceil 597
cerr 603
<cerrno> 322, 352
<cfloat> 335
change
to const object, undefined 107
to string literal, undefined 19

char
implementation-defined sign of 53
literal, implementation-defined value of 18
type 53
type,signed 53
type specifier 108
type,unsigned 53

character 311
array initialization 146
container type 311
decimal-point 317

literal 17
literal, type of 17
multibyte 2
set, basic execution 4
set, basic source 10
signed 53
string 19
type 53
type string, null-terminated 312
underscore 321– 322

character-literal 16
char_traits
eq 397– 400
length 389– 390, 392– 395, 397– 403

checking
point of error 259
syntax 259

cin 602
<ciso646> 699
class 54, 149
abstract 172
access andfriend 180
and type 149
base 322, 325
base—see base class 164
cast to incomplete 82
constructor and abstract 173
conversion 188
conversion ambiguity 168
declaration, forward 150
declaration{} 149
definition 149, 152
definition 22
definition, empty 149
definition example 152
definition name hiding 150
definition, scope of 150
definition {} 149
derived 325
derived—see derived class 163
gslice 587
linkage of 41
linkage specification 124
local—see local class 160
member—see also member 151
member access 68
member access operator 68
member declaration 151
member function 153
member initialization 142
member semantics 68
member,static 46
member storage duration 48
member syntax 68
name 128
name as type definition 149
name declaration 21
name, elaborated 109, 150– 151
name, point of declaration 151
name, scope of 150
name,typedef 106, 151
nested—see nested class 160
object, assignment to 89
object,const 55
object copy 203
object copy—see also copy constructor 187
object initialization 144, 195– 196
object initialization—see also constructor 144
object layout 153, 164
object, member 152
object, operations on 149

720

© ISO/IEC ISO/IEC 14882:1998(E)

object,sizeof 77
objects and constructor, array of 196
objects andnew, array of 80
objects initialization, array of 146, 196
pointer to abstract 172
polymorphic 168
scope 27
scope of enumerator 111
sizeof , empty 149
template 503
template partial specializations 250
template specialization 239
unnamed 106

class
type specifier 149
versusstruct 149
versusunion 149

classes
narrow-oriented iostream 312
wide-oriented iostream 313

classic , locale 417
classic_table , ctype<char> 424
class-key149
class-name149
class-specifier149
clear
basic_ios 616
basic_string 391

<climits> 335, 504, 705
<clocale> 317, 457, 699
clog 603
close
basic_filebuf 659, 666
basic_ifstream 663
basic_ofstream 665
messages 452

<cmath> 596
codecvt 425
always_noconv 426
do_always_noconv 428
do_encoding 428
do_in 427
do_length 428
do_max_length 428
do_out 427
do_unshift 427
encoding 426
in 426
length 427
max_length 427
out 426
unshift 426

codecvt_byname 429
collate 439
compare 440
do_compare 440
do_hash 440
do_transform 440
hash 440
transform 440

collate_byname 441
combine , locale 416
comma
operator 90
operator, side effects and 90

comment 11
/* */ 12
// 12

compare
basic_string 400
collate 440

comparison
function 311
pointer 86
pointer to function 86
undefined pointer 84, 86
unspecified pointer 86
void* pointer 86

compatibility with ISO C summary 687
compilation, separate 9
compiler control line—see preprocessing directive 301
complete object 5
completely defined object type 152
<complex> 566
complex 567
abs 572
arg 572
complex 570
complex 570
conj 572
cos 573
cosh 573
exp 573
imag 572
log 573
log10 573
norm 572
operator!= 571
operator* 571
operator*= 570
operator+ 571
operator+= 570
operator- 571
operator-= 570
operator/= 570– 571
operator<< 572
operator== 571
operator>> 572
polar 573
pow 573
real 572
sin 573
sinh 573
sqrt 573
tan 573
tanh 574

component 312
compound
statement 93
type 54

compound-statement93
concatenation
string 19
undefined string literal 19

condition 94
conditional
expression operator 88
inclusion 302

conditional-expression, throw-expression in 88
conditions, rules for 94
conj , complex 572
consistency
example, linkage 103
linkage 103
linkage specification 125
type declaration 43

const
cast 74
member initialization 198

*const example 131
const 55
array 55

721

ISO/IEC 14882:1998(E) © ISO/IEC

class object 55
constructor and 156, 185
destructor and 156, 191
example 131
initialization 107, 143
linkage of 41, 103
member function 155
object, undefined change to 107
overloading and 210
reference 148
type 106

constant 15, 64
enumeration 110
expression 90
expression, pointer to member 76
initializer 152
null pointer 60– 61
pointer declaration 131
pointer example 131

constant-expression90
constant-initializer152
const_mem_fun1_ref_t 367
const_mem_fun1_t 367
const_mem_fun_ref_t 367
const_mem_fun_t 367
constructor 185
address of 186
and abstract class 173
and array order of execution 195
andconst 156, 185
and initialization 195– 196
and initialization example 196
and member function 186
andnew 80
andnew, unspecified 81
andreturn 98
andstatic objects order of execution 197
and virtual function call 201
andvolatile 156, 185
array of class objects and 196
call, explicit 186
conversion by 189
conversion by—see also user-defined conversion 188
copy 186– 187, 203, 318
default—see default constructor 80
definition 141
example 186
exception handling 294
for temporary 187
inheritance of 186
non-trivial 186
order of execution, base class 186
order of execution, member 186
restriction 185– 186
restriction, copy 205
type of 186
union 158
unspecified argument to 81

container
requirements 459
type, character 311

context, nondeduced 284
continue
in for statement 97
statement 97– 98

control line—see preprocessing directive 301
convention 315
conversion
Boolean 61
ambiguity, class 168
and name hiding, user-defined 189

argument 135
array pointer 58
array-to-pointer 58
by assignment 89
by constructor 189
class 188
derived-to-base 222
explicit type—see casting 68
floating point 60
floating-integral 60
function 190
function—see also user-defined conversion 188
function-to-pointer 58
implementation defined pointer integer 73
implementation-defined floating point 60
implicit 57, 188
implicit user-defined 188
inheritance of user-defined 191
integer 60
lvalue-to-rvalue 57
operator—see conversion function 190
overload resolution and 219
overload resolution and pointer 227
pointer 60
pointer to function 58
pointer to member 61
pointer to membervoid* 61
rank 223
return type 98
reverse_iterator 521
sequence, ambiguous 222
sequence, implicit 221
sequence, standard 57
signed unsigned integer 60
standard 57
to enumeration type 73
to enumeration type,static_cast , 73
to rvalue, lvalue 57
type of 190
undefined floating point 60
user-defined 188– 190
virtual user-defined 191

conversion-function-id190
conversions
qualification 58
usual arithmetic 64

copy
assignment operator 205
assignment operator 203
assignment operator, implicitly-declared 205
assignment operator restriction 206
class object 203
constructor 186– 187, 203, 318
constructor, implicitly-declared 204
constructor restriction 205
initialization 142

copy 549
basic_string 396

copy_backward 549
CopyConstructible requirements 354
copyfmt , basic_ios 616
cos 585, 597
complex 573

cosh 585, 597
complex 573

count 547
bitset 506

count_if 547
cout 602
__cplusplus 309
<csetjmp> 322, 346

722

© ISO/IEC ISO/IEC 14882:1998(E)

cshift , valarray 582
<csignal> 346
<cstdarg> 135, 322, 346
<cstddef> 77, 84, 327, 698– 699
<cstdio> 602– 603, 657, 659– 660, 666, 699
<cstdlib> 43, 45, 320, 336, 346, 374, 406, 563, 596,

698– 699, 701
c_str , basic_string 397
<cstring> 317, 375, 406, 699, 705, 710
<ctime> 346, 375, 410, 699
ctor-initializer 197
ctype 418
do_is 420
do_narrow 421
do_scan_is 420
do_scan_not 420
do_tolower 420
do_toupper 420
do_widen 420
is 419
narrow 420
scan_is 419
scan_not 419
tolower 419
toupper 419
widen 419

ctype_byname 421
ctype_byname<char> 425
ctype<char>
classic_table 424
ctype<char> 423
ctype<char> 423
is 423
narrow 424
scan_is 423
scan_not 423
table 424
tolower 424
toupper 424
widen 424
~ctype<char> 423

~ctype<char> , ctype<char> 423
<ctype.h> 701
C++
Standard Library 311, 322, 324– 325
Standard Library exception specifications 326
Standard library 322
headers 319

cv-qualified name, address of 76
cv-qualifier 55
cv-qualifier 128
<cwchar> 318, 322, 406, 698– 699
<cwctype> 322, 405

D
DAG
multiple inheritance 165
nonvirtual base class 165
virtual base class 165

data
member—see member 151
member,static 156

data , basic_string 397
date_order , time_get 442
deallocation
—seedelete 81
function 47, 81, 194

dec 619, 644
decimal literal 16

decimal-literal 15
decimal-point character 317
decimal_point , numpunct 438
declaration 21, 101
: , field 159
access 178
ambiguity, function 142
array 133
as definition 102
asm 123
bit-field 159
class member 151
class name 21
class name, point of 151
consistency, type 43
constant pointer 131
default argument 137
definition versus 21
ellipsis in function 67, 135
enumerator point of 25
example 22, 137
example, function 136
extern 21
extern reference 147
forward 104
forward class 150
function 21, 135
hiding—see name hiding 98
in for , scope of 97
in for statement 97
in switch statement 95
matching, overloaded function 211
member 151
multiple 43
name 21
name, point of 25
overloaded 209
overloaded name andfriend 180
parameter 135
parentheses in 128, 131
pointer 131
reference 132
register 103
specifier 102
statement 98
static member 21
storage class 103
type 130
type ambiguity 102
typedef 21
typedef as type 105
versus cast ambiguity 128
versus expression ambiguity 99
{} , class 149
{} , enum 110

declaration 101
declaration-statement98
declarative region 21, 24
declarator 101, 127
&, reference 132
() , function 135
* , pointer 131
::* , pointer to member 133
[] , array 133
example 128
initializer, temporary and 187
meaning of 130
multidimensional array 134

declarator 127
declarator-id 128
decl-specifier102

723

ISO/IEC 14882:1998(E) © ISO/IEC

decrement
operator 69, 76– 77
operator, overloaded 230

default
access control 175
argument and name hiding 139
argument and virtual function 140
argument, binding of 138
argument declaration 137
argument, evaluation of 138– 139
argument, example of 137– 138
argument, overload resolution and 219
argument, overloaded operator and 228
argument, scope of 139
argument, type checking of 138
array size 134
behavior 312, 315
constructor 186
constructor and initialization 195
constructor andnew 80
destructor 191
initialization 141
initializers, overloading and 211
member access,struct 149
member access,union 149

default label 93, 95
default-initialization 142
#define 305
definition 21, 311
altermate 322
and initialization 102
class 22
class 149, 152
class name as type 149
constructor 141
declaration as 102
empty class 149
enumerator 22
enumerator point of 110
example 22
example, function 140
example, nested class 160, 184
function 22
function 140
local class 161
member function 153
name hiding, class 150
namespace 112
nested class 160
object 22
of template 235
pure virtual function 172
scope, macro 306
scope of class 150
static member 157
versus declaration 21
virtual function 170
{} , class 149

definitions, implementation-generated 22
delete
array 81
object 81

delete 46, 81, 194
destructor and 81, 192
example 194
example, destructor and 195
example, scope of 195
operator 323, 338, 374
overloading and 48
type of 194
undefined 81

delete[] , operator 323, 339
deleted object, undefined 48
delete-expression81
dependent name 262, 265
deprecated features 69, 77
<deque> 467
deque 470
assign 472
erase 473
insert 473
resize 473

dereferencing—see also indirection 76
derivation—see inheritance 163
derived
class 325
class 163
class cast 73
class example 163
class, most 5
class, overloading and 211
object, most 5

derived-to-base conversion 222
destination type 143
destruction
of auto 97– 98
of localstatic 99
of local variable 97– 98
of temporary 187
of temporary, order of 187

destructor 191, 318
and array order of execution 192
andconst 156, 191
anddelete 81, 192
anddelete example 195
and exception, explicit 194
and exit from scope 97
and fundamental type 193
and member function 192
and placement of object 193
and virtual function call 201
andvolatile 156, 191
call example, explicit 193
call, explicit 192
call, implicit 192
call, pseudo 68
default 191
exception handling 294
for temporary 187
non-trivial 191
order of execution 192
order of execution, base class 192
order of execution, member 192
program termination and 192
pure virtual 192
restriction 191– 192
static object 45
union 158
virtual 192

diagnostic message 1
digit 14
digit-sequence18
digraph 12
direct
base class 163
binding of reference 147
initialization 142

direct-abstract-declarator128
direct-declarator127
directed acyclic graph—see DAG 164
directive
error 308

724

© ISO/IEC ISO/IEC 14882:1998(E)

null 308
pragma 308
preprocessing 301

direct-new-declarator78
distance 519
distinct string 19
div 596
divides 361
division
by zero, undefined 63, 84
implementation defined 84
operator 83

djacent_difference 595
do statement 95– 96
do_always_noconv , codecvt 428
do_close , messages 453
do_compare , collate 440
do_curr_symbol , moneypunct 451
do_date_order , time_get 443
do_decimal_point
moneypunct 450
numpunct 439

do_encoding , codecvt 428
do_falsename , numpunct do_truename 439
do_frac_digits , moneypunct 451
do_get
messages 452– 453
money_get 446
num_get 431

do_get_date , time_get 443
do_get_monthname , time_get 443
do_get_time , time_get 443
do_get_weekday , time_get 443
do_get_year , time_get 443
do_grouping
moneypunct 451
numpunct 439

do_hash , collate 440
do_in , codecvt 427
do_is , ctype 420
do_length , codecvt 428
domain_error 350
domain_error 350
domain_error 350

do_max_length , codecvt 428
dominance, virtual base class 167
donarrow 424
do_narrow , ctype 421
do_negative_sign , moneypunct 451
do_neg_format , moneypunct 451
do_open , messages 453
do_out , codecvt 427
do_pos_format , moneypunct 451
do_positive_sign , moneypunct 451
do_put
money_put 448
num_put 434
time_put 445

do_scan_is , ctype 420
do_scan_not , ctype 420
dot operator—see class member access operator 68
do_thousands_sep
moneypunct 450
numpunct 439

do_tolower , ctype 420
do_toupper , ctype 420
do_transform , collate 440
do_truename do_falsename , numpunct 439
double quote 17
double
literal 18

type 53
type specifier 108

do_unshift , codecvt 427
dowiden 424
do_widen , ctype 420
dynamic
binding—see virtual function 168
cast 70, 342
initialization 44
storage duration 46, 78
type 2

E
E suffix 18
eback , basic_streambuf 624
effect, side 6
egptr , basic_streambuf 624
elaborated
class name 109, 150– 151
enum name 109
type specifier—see elaborated class name 151

elaborated-type-specifier109
#elif 302
elimination of temporary 187
ellipsis
example 135
in function declaration 67, 135
overload resolution and 219

#else 303
else 94
empty
argument list 135
class definition 149
classsizeof 149
statement 93

empty 518
basic_string 391

encoding, multibyte 19
encoding , codecvt 426
end , basic_string 390
#endif 303
endl 644, 646
end-of-file 507
ends 646
entity 21
enum name,typedef 106
enum 54
declaration{} 110
name, elaborated 109
overloading and 210
type of 110
type specifier 109

enumerated type 54, 316
enumeration 110
constant 110
example 111
linkage of 41
type, conversion to 73
type,static_cast , conversion to 73
underlying type 111

enumerator
class, scope of 111
definition 22
member 111
point of declaration 25
point of definition 110
redefinition 110
restriction 110
value of 110

725

ISO/IEC 14882:1998(E) © ISO/IEC

enumerator110
environment, program 43
eof , basic_ios 617
epptr , basic_streambuf 625
eq , char_traits 397– 400
equal 548
istreambuf_iterator 533

equality operator 86
EqualityComparable requirements 353
equality-expression86
equal_range 557
equal_to 362
equivalence
template type 244
type 105, 149

equivalent
parameter declarations 209
parameter declarations, overloading and 209

erase
basic_string 394
deque 473
list 477
vector 485

<errno.h> 701
error
checking, point of 259
directive 308

#error 308
escape
character—see backslash 17
sequence 17
sequence, undefined 17

escape-sequence16
evaluation
new, unspecified order of 81
of default argument 138– 139
of expression, order of 7
order of argument 68
unspecified order of 44, 63
unspecified order of argument 68
unspecified order of function call 68

example
*const 131
array 134
class definition 152
const 131
constant pointer 131
constructor 186
constructor and initialization 196
declaration 22, 137
declarator 128
definition 22
delete 194
derived class 163
destructor anddelete 195
ellipsis 135
enumeration 111
explicit destructor call 193
explicit qualification 167
friend 150
friend function 179
function declaration 136
function definition 140
linkage consistency 103
local class 161
member function 155, 179
member name access 179
nested class 160
nested class definition 160, 184
nested class forward declaration 160
nested type name 161

of default argument 137– 138
of incomplete type 52
of overloading 209
pointer to member 133
pure virtual function 172
scope ofdelete 195
scope resolution operator 167
static member 157
subscripting 134
type name 128
typedef 105
unnamed parameter 141
variable parameter list 135
virtual function 169– 170

exception
allowing an 297
andnew 80
arithmetic 63
declaration scope 26
explicit destructor and 194
handler 294, 325
handler, incomplete type in 294
handling 291
handling constructor 294
handling destructor 294
specifications, C++ Standard Library 326
specifications, Standard C library 326
specifications, implementation-defined 326
throwing 292
types, implementation-defined 326
undefined arithmetic 63

<exception> 343
exception
exception 343
exception 343
operator= 344
what 344
~exception 344

~exception , exception 344
exception-declaration291
exceptions , basic_ios 617
exception-specification296
exception::what message, implementation-defined 344
execution character set, basic 4
exit from scope, destructor and 97
exit 43, 45, 97, 320, 336, 341
exp 585, 597
complex 573

explanation, subscripting 134
explicit
constructor call 186
destructor and exception 194
destructor call 192
destructor call example 193
instantiation 271
qualification 33
qualification example 167
specialization, template 272
type conversion—see casting 68

explicit specifier 105
explicit-specialization273
exponent-part18
export 235
expression 63
ambiguity, declaration versus 99
assignment 89
constant 90
order of evaluation of 7
parenthesized 65
pointer to member constant 76
postfix 66

726

© ISO/IEC ISO/IEC 14882:1998(E)

primary 64
reference 63
statement 93
unary 76

expression90
expression-list66
expression-statement93
extern 103
"C" 321– 322
"C++" 321– 322
declaration 21
linkage of 103
linkage specification 123
reference declaration 147
restriction 103

external linkage 41, 321– 322

F
F suffix 18
f suffix 18
facet , locale 414
fail , basic_ios 617
failed , ostreambuf_iterator 535
failure , ios_base::failure 607
falsename , numpunct truename 438
fclose 660
field declaration: 159
file 9
source 9, 320, 322

filebuf 601, 657
implementation-defined 662

fill 551
basic_ios 616
gslice_array 590
indirect_array 593
mask_array 592
slice_array 587

fill_n 551
final overrider 168
find 546
basic_string 397

find_end 546
find_first_not_of , basic_string 399
find_first_of 546
basic_string 398

find_if 546
find_last_not_of , basic_string 400
find_last_of , basic_string 399
fIoctal-digit 15
fixed 619
flags , ios_base 418, 610
flip , bitset 505
float
literal 18
type 53
type specifier 108

<float.h> 701
floating
point conversion 60
point conversion, implementation-defined 60
point conversion, undefined 60
point literal 18
point literal, type of 18
point promotion 59
point type 53
point type 53
point type, implementation-defined 54

floating-integral conversion 60
floating-literal 18

floating-suffix 18
float_round_style 333
floor 597
flush 610, 632, 642, 646
basic_ostream 646

fmtflags
ios 647
ios_base 607

fopen 659
for
scope of declaration in 97
statement 95, 97
statement,continue in 97
statement, declaration in 97

for_each 545
form feed 17
formal argument—see parameter 67
forward
class declaration 150
declaration 104
declaration example, nested class 160

forward_iterator_tag 518
fpos 604, 612
state 612

fractional-constant18
free store—see alsonew, delete 78
free 374
freestanding implementation 320
freeze
ostrstream 710
strstreambuf 706

frexp 597
friend
local class 181
specifier 325

friend
access specifier and 181
class access and 180
declaration, overloaded name and 180
example 150
function, access and 179
function example 179
function, inline 181
function, linkage of 180
function, member function and 179
function, nested class 161
inheritance and 181
local class and 181
member function 180
specifier 106
template and 248
virtual and 170

front_inserter 527
front_insert_iterator 526
front_insert_iterator 526
front_insert_iterator 526
operator* 526
operator++ 527
operator= 526

fseek 659
<fstream> 657
fstream 601
full-expression 6
function
—see alsofriend function, member function, inline

function, virtual function 104
allocation 47, 79
argument—see argument 67
arguments, implementation-defined order of evaluation of

139
body 140

727

ISO/IEC 14882:1998(E) © ISO/IEC

call 67
call evaluation, unspecified order of 68
call operator 66, 228
call operator, overloaded 229
call, recursive 68
call, undefined 73
cast, pointer to 73
cast, undefined pointer to 73
comparison 311
comparison, pointer to 86
conversion 190
conversion, pointer to 58
deallocation 47, 81, 194
declaration 21, 135
declaration ambiguity 142
declaration, ellipsis in 67, 135
declaration example 136
declaration matching, overloaded 211
declarator() 135
definition 140
definition 22
definition example 140
global 322, 324– 325
handler 312
linkage specification overloaded 125
modifier 312
name hiding 211
name, overloaded 209
observer 312
operator 227
overloaded—see also overloading 209
parameter—see parameter 67
parameter adjustment 135
plain old 347
pointer to member 83
prototype scope 26
replacement 312
reserved 313
return—seereturn 98
return type—see return type 136
scope 27
specifier 104
template 277
template overload resolution 288
template partial ordering 256
type 54, 135
typedef 136
viable 213
virtual —see virtual function 168
virtual member 322, 325

<functional> 359
function-body140
function-definition140
function-like macro 304
functions, candidate 266
function-specifier104
function-to-pointer conversion 58
function-try-block291
fundamental
type 53
type conversion—see conversion, user-defined conversion

190
type, destructor and 193

G
gbump, basic_streambuf 624
gcount , basic_istream 635
generate 551
generated destructor—see default destructor 191

generate_n 551
get
auto_ptr 373
basic_istream 636
money_get 446
num_get 431

get_date , time_get 442
getline
basic_istream 637
basic_string 404

getloc
basic_streambuf 623
ios_base 611

get_monthname , time_get 442
get_temporary_buffer 371
get_time , time_get 442
get_weekday , time_get 442
get_year , time_get 443
global
anonymousunion 158
function 322, 324– 325
name 27
namespace 322
namespace scope 27
scope 27

global , locale 416
good , basic_ios 617
goto
initialization and 98
statement 93, 97– 98

gptr , basic_streambuf 624
grammar 667
greater
than operator 85
than or equal to operator 85

greater 362
greater_equal 362
grouping , numpunct 438
gslice
class 587
gslice 588
gslice 588
size 589
start 589
stride 589

gslice_array 589
fill 590
gslice_array 589
gslice_array 589
operator%= 590
operator&= 590
operator*= 590
operator+= 590
operator-= 590
operator/= 590
operator<<= 590
operator= 590
operator>>= 590
operator^= 590
operator|= 590

H
handler
exception 294, 325
function 312
incomplete type in exception 294

handler 291
handler-seq291
hasfacet , locale 417

728

© ISO/IEC ISO/IEC 14882:1998(E)

hash , collate 440
header, C 321– 322, 324, 701
header-name13
headers, C++ 319
hex number 18
hex 619
hexadecimal literal 16
hexadecimal-digit15
hexadecimal-escape-sequence17
hexadecimal-literal15
hex-quad10
hiding—see name hiding 28
horizontal tab 17
hosted implementation 320

I
id, qualified 65
id , locale 414
identifier 14, 65, 101
_, underscore in 14

identifier 13
identities and overloading, operator 228
id-expression 65
id-expression64
#if 302, 324
if statement 94– 95
#ifdef 303
#ifndef 303
ifstream 601, 657
ignore , basic_istream 638
ill-formed program 2
imag 571
complex 572

imbue
basic_filebuf 662
basic_ios 615
basic_streambuf 625
ios_base 611

immolation, self 274
implementation
defined alignment of bit-field 159
defined bit-field allocation 159
defined division 84
defined modulus 84
defined pointer integer conversion 73
defined pointer subtraction 84
defined right shift 85
defined type ofptrdiff_t 84
freestanding 320
hosted 320
limits 2

implementation-defined 60, 148, 320, 322, 327, 336, 340,
342– 344, 611, 653, 661, 699

__STDC__ 309
alignment requirement 51
asm 123
bad_alloc::what 340
bad_cast::what 342
bad_exception::what 344
bad_typeid::what 343
basic_ios::failure argument 616
behavior 2, 445
behavior reentrancy 325
exception specifications 326
exception types 326
exception::what message 344
filebuf 662
floating point conversion 60
floating point type 54

generation of temporary 187
linkage ofmain() 43
linkage specification 124
object linkage 126
order of evaluation of function arguments 139
parameters tomain() 43
sign of bit-field 159
sign ofchar 53
sizeof integral type 53
sizeof type 53
streambuf 599
streamoff 604, 702
streampos 702
string literal 19
type of integer literal 16
type_info::name 342
types 316
value ofchar literal 18
value of multicharacter literal 17
volatile 108
wchar_t 53

implementation-dependent 632, 642
implementation-generated definitions 22
implementation-specifiedsmanip 647
implicit
conversion 57, 188
conversion sequence 221
conversion sequences implied object parameter 213
destructor call 192
instantiation, template 268
object argument 213
user-defined conversion 188

implicitly-declared
copy assignment operator 205
copy constructor 204
default constructor 186
default constructor—see default constructor 186

implied
object parameter 213
object parameter, implicit conversion sequences 213

in , codecvt 426
in_avail , basic_streambuf 623
#include 303, 320
includes 559
inclusion
conditional 302
source file 303

incomplete
class, cast to 82
type 22– 23, 26, 52, 57, 66– 68, 70– 71, 76– 78, 81, 84, 89,

163
type, example of 52
type in exception handler 294

increment
bool 69, 77
operator 69, 76– 77
operator, overloaded 230

indeterminate uninitialized variable 141
indirect base class 163
indirect_array 592
fill 593
indirect_array 592
indirect_array 592
operator%= 593
operator&= 593
operator*= 593
operator+= 593
operator-= 593
operator/= 593
operator<<= 593
operator= 593

729

ISO/IEC 14882:1998(E) © ISO/IEC

operator>>= 593
operator^= 593
operator|= 593

indirection 76
operator 76

inequality operator 86
inheritance 163
—see also multiple inheritance 163
andfriend 181
of constructor 186
of overloaded operator 228
of user-defined conversion 191

Init , ios_base::Init 609
init , basic_ios 632, 642
~Init , ios_base::Init 610
init-declarator 127
init-declarator-list 127
initialization 141
andgoto 98
andnew 80
array 144
array of class objects 146, 196
auto 99
auto object 141
automatic 98– 99
base class 197
character array 146
class member 142
class object 144, 195– 196
class object—see also constructor 144
const 107, 143
const member 198
constructor and 195– 196
copy 142
default 141
default constructor and 195
definition and 102
direct 142
dynamic 44
example, constructor and 196
in block 98
jump past 95, 98
localstatic 99
member 197
member object 197
order of 44, 164
order of base class 198
order of member 198
order of virtual base class 198
overloaded assignment and 196
parameter 67
reference 133, 147
reference member 198
run-time 44
static member 157
static object 44, 141
struct 144
union 146, 158
virtual base class 198, 205

initializer 141
base class 141
constant 152
list {} 144
member 141
scope of member 199
temporary and declarator 187

initializer 141
initializer-clause141
initializer-list 141
inline 324
friend function 181

function 104
member function 153

inline
linkage of 41
specifier 104

inner_product 595
inplace_merge 558
input_iterator_tag 518
insert
basic_string 393
deque 473
list 477
vector 485

inserter 528
insert_iterator 527
insert_iterator 527
insert_iterator 527
operator* 528
operator++ 528
operator= 527

instantiation
explicit 271
point of 265
template implicit 268
unit 10

int, bool promotion to 59
int
type 53
type specifier 108
type,unsigned 53

integer
cast, pointer to 73
conversion 60
conversion, implementation defined pointer 73
conversion,signed unsigned 60
literal 16
literal, base of 16
literal, implementation-defined type of 16
literal, type of 16
to pointer cast 73
type 53

integer-literal 15
integer-suffix16
integral
promotion 59
type 53
type 53
type, implementation-definedsizeof 53
value, undefined unrepresentable 60

internal linkage 41
internal 618
interpretation
of binary operator 229
of unary operator 228

invalid_argument 350, 503– 504
invalid_argument 350
invalid_argument 350

invocation, macro 305
<iomanip> 629
<ios> 604
ios 601, 604
fmtflags 647

ios_base 605
flags 418, 610
fmtflags 607
getloc 611
imbue 611
ios_base 612
ios_base 612
iostate 608
iword 611

730

© ISO/IEC ISO/IEC 14882:1998(E)

openmode 609
precision 418, 610
pword 611
register_callback 612
seekdir 609
setf 610
sync_with_stdio 611
unsetf 610
width 418, 610
xalloc 611

ios_base::failure 607
failure 607
what 607

ios_base::Init 609
Init 609
~Init 610

<iosfwd> 599
iostate , ios_base 608
iostream
classes, narrow-oriented 312
classes, wide-oriented 313

<iostream> 602
is
ctype 419
ctype<char> 423

isalnum 417
isalpha 417
iscntrl 417
isdigit 417
isgraph 417
islower 417
ISO C summary, compatibility with 687
<iso646.h> 699, 701
is_open
basic_filebuf 659, 666
basic_ifstream 663
basic_ofstream 665

isprint 417
ispunct 417
isspace 417
<istream> 629
istream 601, 629
operator>> 633

istreambuf_iterator 531
equal 533
istreambuf_iterator 533
istreambuf_iterator 533
operator!= 534
operator* 533
operator++ 533
operator== 533
proxy 532

istream_iterator 528
operator== 530

istringstream 601, 649
istrstream 709
istrstream 709
istrstream 709
rdbuf 709
str 709

isupper 417
isxdigit 417
iteration statement 95
iteration-statement95, 97– 98
scope 96

iterator requirements 509
<iterator> 514
iter_swap 549
iword , ios_base 611

J
Jessie 189
jump
past initialization 95, 98
statement 97

jump-statement97

K
keyword 667
list 14

L
L
prefix 17, 19
suffix 16, 18

l suffix 16, 18
label 98
case 93, 95
default 93, 95
name space 93
scope of 27, 93
specifier: 93

labeled statement 93
lattice—see DAG, sub-object 164
layout
access specifier and object 177
bit-field 159
class object 153, 164

layout-compatible type 52
left
shift operator 85
shift, undefined 85

left 618
length of name 14
length
char_traits 389– 390, 392– 395, 397– 403
codecvt 427
valarray 581

length_error 350, 384
length_error 350
length_error 350

less
than operator 85
than or equal to operator 85

less 362
less_equal 362
LessThanComparable requirements 353
lexical conventions 9
lexicographical_compare 562
Library, C++ Standard 311, 322, 324– 325
library
C++ Standard 322
Standard C 311, 317, 319, 321, 696, 698, 701

limits, implementation 2
<limits> 328
<limits.h> 701
#line 308
linkage 21, 41
consistency 103
consistency example 103
external 41, 321– 322
implementation-defined object 126
internal 41
of class 41
of const 41, 103
of enumeration 41
of extern 103

731

ISO/IEC 14882:1998(E) © ISO/IEC

of friend function 180
of inline 41
of main() , implementation-defined 43
of static 41, 103
specification 123
specification class 124
specification consistency 125
specification,extern 123
specification, implementation-defined 124
specification object 126
specification overloaded function 125
to C 124

linkage-specification123
list
keyword 14
operator 15, 227
{} , initializer 144

<list> 468
list 474
assign 476
erase 477
insert 477
merge 478
remove 478
resize 477
reverse 478
sort 478
splice 477
unique 478

literal 15, 64
base of integer 16
character 17
decimal 16
double 18
float 18
floating point 18
hexadecimal 16
implementation-defined type of integer 16
implementation-defined value ofchar 18
implementation-defined value of multicharacter 17
integer 16
long 16
long double 18
multicharacter 17
narrow-character 17
octal 16
type of character 17
type of floating point 18
type of integer 16
unsigned 16

literal 15
local
class andfriend 181
class definition 161
class example 161
class, friend 181
class member function 161
class, member function in 154
class nested class 161
class restriction 161
class restriction,static member 158
class, scope of 161
object,static 46
object storage duration 46
scope 26
static , destruction of 99
static initialization 99
variable, destruction of 97– 98

<locale> 409
locale
category 412

classic 417
combine 416
facet 414
global 416
hasfacet 417
id 414
locale() 415
name 416
operator!= 416
operator() 416
operator== 416
usefacet 417
~locale() 415

locale() , locale 415
~locale() , locale 415
<locale.h> 701
locale-specific behavior 2
log 585, 597
complex 573

log10 585, 597
complex 573

logical
AND operator 87
AND operator, side effects and 88
OR operator 88
OR operator, side effects and 88
negation operator 76– 77

logical_and 363
logical_not 363
logical_or 363
logic_error 349
logic_error 349
logic_error 349

long
double literal 18
double type 53
literal 16
type 53
type specifier 108
type,unsigned 53
typedef and 102

longjmp 347
long-suffix 16
lookup
argument-dependent 32
member name 165
name 21, 29
template name 257

lower_bound 556
lowercase 317
lvalue 55
assignment and 89
cast 72– 73
cast,reinterpret_cast , 73
cast,static_cast , 72
conversion to rvalue 57
modifiable 55

lvalue-to-rvalue conversion 57

M
macro
definition scope 306
function-like 304
invocation 305
masking 324
name 304
object-like 304
parameters 305
preprocessor 301

732

© ISO/IEC ISO/IEC 14882:1998(E)

replacement 304
main() 43
implementation-defined linkage of 43
implementation-defined parameters to 43
parameters to 43
return from 43, 45

make_heap 561
make_pair 359
malloc 374, 699
<map> 488
map 490
operator< 492
operator== 492
operator[] 493

mask_array 590
fill 592
mask_array 591
mask_array 591
operator%= 591
operator&= 591
operator*= 591
operator+= 591
operator-= 591
operator/= 591
operator<<= 591
operator= 591
operator>>= 591
operator^= 591
operator|= 591

masking macro 324
<math.h> 701
max 562
valarray 582

max_element 562
max_length , codecvt 427
max_size , basic_string 390
meaning of declarator 130
member
—see also base class member 151
access operator, overloaded 230
access ambiguity 165
access, base class 163
access, class 68
access,struct default 149
access,union default 149
array 152
cast, pointer to 73– 74
class object 152
constructor order of execution 186
declaration 151
declaration, class 151
declaration,static 21
definition,static 157
destructor order of execution 192
enumerator 111
example,static 157
function and access control 185
function andfriend function 179
function call, undefined 154
function, class 153
function,const 155
function, constructor and 186
function definition 153
function, destructor and 192
function example 155, 179
function,friend 180
function in local class 154
function, inline 153
function, local class 161
function, nested class 184
function, overload resolution and 213

function,static 156– 157
function template 245
function,union 158
function, virtual 322, 325
function,volatile 155
initialization 197
initialization, const 198
initialization, order of 198
initialization, reference 198
initialization,static 157
initializer 141
initializer, scope of 199
local class restriction,static 158
name access 175
name access example 179
name lookup 165
name, overloaded 152
object initialization 197
pointer to—see pointer to member 54
pointer value, null 61
static 156
static class 46
storage duration, class 48
template andstatic 246
type ofstatic 76
use,static 156

member-declaration151
member-declarator151
member-specification151
memchr 407
mem_fun 366– 367
mem_fun1_ref_t 366
mem_fun1_t 366
mem_fun_ref 366– 367
mem_fun_ref_t 366
mem_fun_t 366
mem-initializer197
mem-initializer-id197
memory
management—see alsonew, delete 78
model 4

<memory> 368
merge 558
list 478

message, diagnostic 1
messages 452
close 452
do_close 453
do_get 452– 453
do_open 453
open 452

messages_byname 453
min 562
valarray 581

min_element 562
minus 361
mismatch 547
missing storage class specifier 103
mixed pointer and pointer to member type, multi-level 59
mod 597
modf 597
modifiable lvalue 55
modifier function 312
modulus
implementation defined 84
operator 83
zero, undefined 63

modulus 362
money_get 446
do_get 446
get 446

733

ISO/IEC 14882:1998(E) © ISO/IEC

moneypunct 449
do_curr_symbol 451
do_decimal_point 450
do_frac_digits 451
do_grouping 451
do_neg_format 451
do_negative_sign 451
do_pos_format 451
do_positive_sign 451
do_thousands_sep 450

moneypunct_byname 451
money_put 448
do_put 448
put 448

most
derived class 5
derived object 5

multibyte
character 2
encoding 19
string, null-terminated 318

multicharacter
literal 17
literal, implementation-defined value of 17

multidimensional
array 134
array declarator 134

multi-level
mixed pointer and pointer to member type 59
pointer to member type 59

multimap 493
operator< 496
operator== 496

multiple
declaration 43
inheritance 163– 164
inheritance DAG 165
inheritance,virtual and 170

multiplication operator 83
multiplicative operator 83
multiplicative-expression83
multiset 499
operator< 501
operator== 501

mutable 103

N
name 14, 21, 65
address of cv-qualified 76
and translation unit 21
class—see class name 149
declaration 21
dependent 262, 265
elaboratedenum 109
global 27
hiding 25, 28, 64– 65, 98
hiding, class definition 150
hiding, function 211
hiding, overloading versus 211
hiding, user-defined conversion and 189
length of 14
lookup 21, 29
lookup, member 165
lookup, template 257
macro 304
overloaded function 209
overloaded member 152
point of declaration 25
qualified 33

reserved 321
resolution, template 257
scope of 24
space, label 93
unqualified 29

name
locale 416
type_info 341

namespace 319, 701
definition 112
global 322
scope 27
scope, anonymousunion at 158
scope, global 27

namespaces 112
narrow string literal 19
narrow
basic_ios 615
ctype 420
ctype<char> 424

narrow-character literal 17
narrow-oriented iostream classes 312
NDEBUG320
negate 362
negation operator, logical 76– 77
nested
class definition 160
class definition example 160, 184
class example 160
class forward declaration example 160
classfriend function 161
class, local class 161
class member function 184
class, scope of 160
type name 161
type name example 161
type name, scope of 161

nested-name-specifier65
<new> 323, 337
new 46, 78– 79
array 78
array of class objects and 80
constructor and 80
default constructor and 80
exception and 80
initialization and 80
operator 322, 337, 339– 340, 374
placement syntax 79
scoping and 78
storage allocation 78
type of 194
unspecified constructor and 81
unspecified order of evaluation 81

new[] , operator 322, 338– 340
new-declarator78
new-expression78
new_handler 47, 340
new-initializer 78
new-line 17
new-placement 78
new-type-id78
next_permutation 563
noboolalpha 617
nondeduced context 284
nondigit 13
none , bitset 506
non-trivial
constructor 186
destructor 191

nonvirtual base class DAG 165
nonzero-digit15

734

© ISO/IEC ISO/IEC 14882:1998(E)

norm , complex 572
noshowbase 617
noshowpoint 618
noshowpos 618
noskipws 618
not1 363
not2 364
notation, syntax 4
not_equal_to 362
nounitbuf 618
nouppercase 618
NTBS 317– 318, 659, 709– 710
static 317

NTCTS 312
nth_element 556
NTMBS 318
static 318

NTWCS 318
static 318

null
character0 19
directive 308
member pointer value 61
pointer constant 60– 61
pointer value 60
reference 133
statement 93

NULL 327
null-terminated
byte string 317
character type string 312
multibyte string 318
wide-character string 318

number
hex 18
octal 18

numeric type requirements 565
<numeric> 593
numeric_limits 54, 328
num_get 429
do_get 431
get 431

numpunct 437
decimal_point 438
do_decimal_point 439
do_grouping 439
do_thousands_sep 439
do_truename do_falsename 439
grouping 438
thousands_sep 438
truename falsename 438

numpunct_byname 439
num_put 433
do_put 434
put 434

O
object 4, 21, 55
class—see also class object 149
complete 5
definition 22
delete 81
destructor and placement of 193
destructorstatic 45
initialization,auto 141
initialization,static 44, 141
layout, access specifier and 177
lifetime 48
linkage, implementation-defined 126

linkage specification 126
representation 51
state 312
static local 46
storage duration, local 46
temporary—see temporary 187
type 4
type 52
type, completely defined 152
undefined deleted 48
unnamed 186

object-expression 63
object-like macro 304
observer function 312
oct 619
octal
literal 16
number 18

octal-escape-sequence17
octal-literal 15
of
overloading, example 209
reference, direct binding 147

offsetof 328, 699
ofstream 601, 657
old function, plain 347
one-definition rule 22
one’s complement operator 76– 77
open
basic_filebuf 659, 666
basic_ifstream 663
basic_ofstream 665
messages 452

openmode, ios_base 609
operations on class object 149
operator
—see conversion function, conversion 190
%= 89
&= 89
*= 89
+= 77, 89
-= 89
/= 89
<<= 89
>>= 89
^= 89
additive 84
address-of 76
assignment 89, 318
bitwise 87
bitwise AND 87
bitwise exclusive OR 87
bitwise inclusive OR 87
cast 76, 82, 128
class member access 68
comma 90
conditional expression 88
copy assignment 203
decrement 69, 76– 77
division 83
equality 86
example, scope resolution 167
function call 66, 228
function call 228
greater than 85
greater than or equal to 85
identities and overloading 228
increment 69, 76– 77
indirection 76
inequality 86
left shift —see left shift operator 85

735

ISO/IEC 14882:1998(E) © ISO/IEC

less than 85
less than or equal to 85
list 15, 227
logical AND 87
logical OR 88
logical negation 76– 77
modulus 83
multiplication 83
multiplicative 83
new —seenew 78
one’s complement 76– 77
overloaded 63
overloading—see also overloaded operator 227
overloading restrictions 228
pointer to member 83
precedence of 7
relational 85
right shift; right shift operator 85
scope resolution 64– 65, 79, 154, 163, 172
shift —see left shift operator, right shift operator 85
side effects and comma 90
side effects and logical AND 88
side effects and logical OR 88
sizeof 76– 77
subscripting 66, 228
unary 76
unary minus 76– 77
unary plus 76
use, scope resolution 157
|= 89

operator
bool , basic_ios 616
bool() , basic_istream 633
bool() , basic_ostream 642
delete 323, 338, 374
delete 79, 81, 194
delete —seedelete 81
delete[] 323, 339
delete[] 79, 81, 194
function 227
new 322, 337, 339– 340, 374
new 79
new[] 322, 338– 340
new[] 79
overloaded 227

operator!
basic_ios 616
valarray 580

operator!= 357
basic_string 402
bitset 506
complex 571
istreambuf_iterator 534
locale 416
reverse_iterator 523
type_info 341
valarray 584

operator% , valarray 583
operator%=
gslice_array 590
indirect_array 593
mask_array 591
slice_array 587
valarray 581

operator&
bitset 506
valarray 583

operator&& , valarray 583– 584
operator&=
bitset 504
gslice_array 590

indirect_array 593
mask_array 591
slice_array 587
valarray 581

operator() , locale 416
operator*
auto_ptr 373
back_insert_iterator 525
complex 571
front_insert_iterator 526
insert_iterator 528
istreambuf_iterator 533
ostreambuf_iterator 534
reverse_iterator 521
valarray 583

operator*=
complex 570
gslice_array 590
indirect_array 593
mask_array 591
slice_array 587
valarray 581

operator+
basic_string 401
complex 571
reverse_iterator 522, 524
valarray 580, 583

operator++
back_insert_iterator 525
front_insert_iterator 527
insert_iterator 528
istreambuf_iterator 533
ostreambuf_iterator 535
reverse_iterator 522

operator+=
basic_string 392
complex 570
gslice_array 590
indirect_array 593
mask_array 591
reverse_iterator 522
slice_array 587
valarray 581

operator-
complex 571
reverse_iterator 523– 524
valarray 580, 583

operator-- , reverse_iterator 522
operator-=
complex 570
gslice_array 590
indirect_array 593
mask_array 591
reverse_iterator 523
slice_array 587
valarray 581

operator->
auto_ptr 373
reverse_iterator 522

operator/ , valarray 583
operator/=
complex 570– 571
gslice_array 590
indirect_array 593
mask_array 591
slice_array 587
valarray 581

operator<
basic_string 403
map 492
multimap 496

736

© ISO/IEC ISO/IEC 14882:1998(E)

multiset 501
pair 358
queue 480
reverse_iterator 523
set 498
valarray 584
vector 484
vector<bool> 488

operator<< 619
basic_ostream 643– 644
basic_string 404
bitset 506– 507
complex 572
valarray 583

operator<<=
bitset 504
gslice_array 590
indirect_array 593
mask_array 591
slice_array 587
valarray 581

operator<= 358
basic_string 403
reverse_iterator 524
valarray 584

operator=
auto_ptr 373
back_insert_iterator 525
bad_alloc 340
bad_cast 342
bad_exception 344
bad_typeid 343
basic_string 389
exception 344
front_insert_iterator 526
gslice_array 590
indirect_array 593
insert_iterator 527
mask_array 591
ostreambuf_iterator 534
slice_array 587
type_info 342
valarray 579

operator==
basic_string 402
bitset 506
complex 571
istream_iterator 530
istreambuf_iterator 533
locale 416
map 492
multimap 496
multiset 501
pair 358
queue 480
reverse_iterator 523
set 498
type_info 341
valarray 584
vector 484
vector<bool> 488

operator> 358
basic_string 403
reverse_iterator 523
valarray 584

operator>= 358
basic_string 404
reverse_iterator 524
valarray 584

operator>>
basic_istream 634

basic_string 404
bitset 506– 507
complex 572
istream 633
valarray 583

operator>>=
bitset 505
gslice_array 590
indirect_array 593
mask_array 591
slice_array 587
valarray 581

operator[]
basic_string 391
map 493
reverse_iterator 523
valarray 580

operator^
bitset 506
valarray 583

operator^=
bitset 504
gslice_array 590
indirect_array 593
mask_array 591
slice_array 587
valarray 581

operator|
bitset 506
valarray 583

operator|=
bitset 504
gslice_array 590
indirect_array 593
mask_array 591
slice_array 587
valarray 581

operator|| , valarray 583– 584
operator~
bitset 505
valarray 580

operator 228
operator-function-id227
optimization of temporary—see elimination of temporary 187
OR
operator, bitwise exclusive 87
operator, bitwise inclusive 87
operator, logical 88
operator, side effects and logical 88

order
of argument evaluation 68
of argument evaluation, unspecified 68
of base class initialization 198
of destruction of temporary 187
of evaluationnew, unspecified 81
of evaluation of expression 7
of evaluation of function arguments, implementation-defined

139
of evaluation, unspecified 44, 63
of execution, base class constructor 186
of execution, base class destructor 192
of execution, constructor and array 195
of execution, constructor andstatic objects 197
of execution, destructor 192
of execution, destructor and array 192
of execution, member constructor 186
of execution, member destructor 192
of function call evaluation, unspecified 68
of initialization 44, 164
of member initialization 198
of virtual base class initialization 198

737

ISO/IEC 14882:1998(E) © ISO/IEC

ordering, function template partial 256
<ostream> 629
ostream 601, 629
ostreambuf_iterator 534
failed 535
operator* 534
operator++ 535
operator= 534
ostreambuf_iterator 534
ostreambuf_iterator 534

ostream_iterator 530
ostringstream 601, 649
ostrstream 710
:pcount 711
freeze 710
ostrstream 710
ostrstream 710
rdbuf 710
str 710

out , codecvt 426
out_of_range 351, 384, 503– 506
out_of_range 351
out_of_range 351

output_iterator_tag 518
overflow 63
undefined 63

overflow
basic_filebuf 661
basic_streambuf 628
basic_stringbuf 651
strstreambuf 706

overflow_error 351– 352, 503, 505
overflow_error 352
overflow_error 352

overload
resolution 212
resolution and conversion 219
resolution and default argument 219
resolution and ellipsis 219
resolution and member function 213
resolution and pointer conversion 227
resolution contexts 212
resolution, function template 288
resolution, template 256

overloaded
assignment and initialization 196
assignment operator 229
binary operator 229
declaration 209
decrement operator 230
function, address of 76, 226
function ambiguity detection 212
function call operator 229
function call resolution—see also argument matching,

overload resolution 212
function declaration matching 211
function, linkage specification 125
function name 209
increment operator 230
member access operator 230
member name 152
name andfriend declaration 180
operator 227
operator 63
operator 227
operator and default argument 228
operator, inheritance of 228
subscripting operator 230
unary operator 228

overloading 135, 150, 209, 254
and access 212

andconst 210
and default initializers 211
anddelete 48
and derived class 211
andenum 210
and equivalent parameter declarations 209
and pointer versus array 210
and return type 209
and scope 211
andstatic 209
andtypedef 210
andvolatile 210
operator identities and 228
postfix++ and-- 230
prefix ++ and-- 230
resolution and access control 166
restriction 228
subsequence rule 225
versus name hiding 211

overrider, final 168

P
pair 358
operator< 358
operator== 358

parameter 2
adjustment, array 135
adjustment, function 135
declaration 135
example, unnamed 141
initialization 67
list example, variable 135
list, variable 67, 135
reference 132
scope of 26
void 135

parameter type list136
parameter-declaration135
parameterized type—see template 235
parameters
macro 305
to main() 43
to main() , implementation-defined 43

parentheses
and ambiguity 78
in declaration 128, 131

parenthesized expression 65
partial
ordering, function template 256
specializations, class template 250

partial_sort 555
partial_sort_copy 556
partial_sum 595
partition 554
pbackfail
basic_filebuf 660
basic_streambuf 627
basic_stringbuf 651
strstreambuf 707

pbase , basic_streambuf 625
pbump, basic_streambuf 625
:pcount , ostrstream 711
pcount
strstream 712
strstreambuf 706

peek , basic_istream 638
period 317
phases, translation 9
placement

738

© ISO/IEC ISO/IEC 14882:1998(E)

of object, destructor and 193
syntax,new 79

plain old function 347
plus 361
pm-expression83
POD
class type 80
type 52
type 80

POD-struct 149
POF 347
point
of declaration class name 151
of declaration, enumerator 25
of declaration name 25
of definition, enumerator 110
of error checking 259
of instantiation 265
promotion, floating 59
type, floating 53

pointer
—see alsovoid* 54
and pointer to member type, multi-level mixed 59
arithmetic 84
cast, integer to 73
comparison 86
comparison, undefined 84, 86
comparison, unspecified 86
comparison,void* 86
constant, null 60– 61
conversion 60
conversion, array 58
conversion, overload resolution and 227
declaration 131
declarator* 131
example, constant 131
integer conversion, implementation defined 73
subtraction, implementation defined 84
terminology 54
to abstract class 172
to bit-field restriction 159
to function cast 73
to function cast, undefined 73
to function comparison 86
to function conversion 58
to integer cast 73
to member 54, 83
to member cast 73– 74
to member constant expression 76
to member conversion 61
to member declarator::* 133
to member example 133
to member function 83
to member operator 83
to member type, multi-level 59
to member type, multi-level mixed pointer and 59
to membervoid* conversion 61
type 54
value, null 60
value, null member 61
versus array, overloading and 210
zero 60

pointer_to_binary_function 365
pointer_to_unary_function 365
polar , complex 573
polymorphic
class 168
type 168

pop , priority_queue 481
pop_heap 561
postfix

++ and-- 69
++ and-- , overloading 230
expression 66

potential scope 24
pow 585, 597
complex 573

pp-number13
pptr , basic_streambuf 625
pragma directive 308
#pragma 308
precedence of operator 7
precision , ios_base 418, 610
prefix
++ and-- 77
++ and-- , overloading 230
L 17, 19

preprocessing 301
directive 301

preprocessing-op-or-punc15
preprocessing-token11
preprocessor, macro 301
prev_permutation 563
primary
expression 64
template 250

priority_queue 480
pop 481
priority_queue 481
priority_queue 481
push 481

private 175
base class 177

program 41
environment 43
ill-formed 2
start 43– 44
startup 321, 323
termination 43, 45
termination and destructor 192
well-formed 3

promotion
floating point 59
integral 59
to int, bool 59

protected 175
protection 325
—see access control 175

proxy , istreambuf_iterator 532
pseudo destructor call 68
pseudo-destructor-name 68
pseudo-destructor-name66
ptrdiff_t 84
implementation defined type of 84

ptr_fun 365
ptr-operator 127
pubimbue , basic_streambuf 623
public 175
base class 177

pubseekoff , basic_streambuf 623
pubseekpos , basic_streambuf 623
pubsetbuf , basic_streambuf 623
pubsync , basic_streambuf 623
punctuators 15
pure
specifier 151
virtual destructor 192
virtual function 172
virtual function call, undefined 173
virtual function definition 172
virtual function example 172

pure-specifier151

739

ISO/IEC 14882:1998(E) © ISO/IEC

push , priority_queue 481
push_heap 561
put
basic_ostream 645
money_put 448
num_put 434
time_put 445

putback , basic_istream 638
pword , ios_base 611

Q
qualification
conversions 58
explicit 33

qualified
id 65
name 33

qualified-id 65
question mark 17
<queue> 468
queue 479
operator< 480
operator== 480

quote
double 17
single 17

R
random_access_iterator_tag 518
random_shuffle 553
range_error 351
range_error 351
range_error 351

rank, conversion 223
rbegin , basic_string 390
rdbuf
basic_filebuf 666
basic_ifstream 663
basic_ios 615
basic_istringstream 654
basic_ofstream 665
basic_ostringstream 655
basic_stringstream 656
istrstream 709
ostrstream 710
strstream 712

rdstate , basic_ios 616
read , basic_istream 638
readsome , basic_istream 638
real 571
complex 572

realloc 374
recursive function call 68
redefinition
enumerator 110
typedef 105

reentrancy 325
implementation-defined behavior 325

reference 54
and argument passing 147
andreturn 147
argument 67
assignment 147
assignment to 90
binding 147
call by 67
cast 72, 74
cast,reinterpret_cast , 74

cast,static_cast , 72
const 148
declaration 132
declaration,extern 147
declarator& 132
direct binding of 147
expression 63
initialization 133, 147
member initialization 198
null 133
parameter 132
restriction 133
sizeof 77

reference-compatible 147
reference-related 147
region, declarative 21, 24
register 103
declaration 103
restriction 103

register_callback , ios_base 612
reinterpret cast 73
reinterpret_cast
lvalue cast 73
reference cast 74

relational operator 85
relational-expression85
release , auto_ptr 374
rel_ops 357
remainder operator—see modulus operator 83
remove 551
list 478

remove_copy 551
remove_copy_if 551
remove_if 551
rend , basic_string 390
replace 550
basic_string 395

replace_copy 550
replace_copy_if 550
replace_if 550
replacement
function 312
macro 304

repositional stream 313
representation
object 51
value 51

required behavior 312, 315
requirements 314
Allocator 354
Assignable 459
CopyConstructible 354
EqualityComparable 353
LessThanComparable 353
container 459
iterator 509
numeric type 565

reraise 293
rescanning and replacement 306
reserve
basic_string 391
vector 485

reserved
function 313
identifier 14
name 321
word —see keyword 14

reset , bitset 505
resetiosflags 647
resize
basic_string 391

740

© ISO/IEC ISO/IEC 14882:1998(E)

deque 473
list 477
valarray 582
vector 485

resolution
and conversion, overload 219
and default argument, overload 219
and ellipsis, overload 219
and member function, overload 213
and pointer conversion, overload 227
argument matching—see overload 212
function template overload 288
overload 212
overloaded function call resolution—see also argument

matching, overload 212
overloading—see overload resolution 212
resolution overloading—see overload 212
scoping ambiguity 167
template name 257
template overload 256

restriction 324– 325
address of bit-field 159
anonymousunion 158
auto 103
bit-field 159
constructor 185– 186
copy assignment operator 206
copy constructor 205
destructor 191– 192
enumerator 110
extern 103
local class 161
overloading 228
pointer to bit-field 159
reference 133
register 103
static 103
static member local class 158
union 158, 186

restrictions, operator overloading 228
rethrow 293
return
type 136
type conversion 98
type, overloading and 209

return 97– 98
constructor and 98
from main() 43, 45
reference and 147
statement—see alsoreturn 97

reverse 552
list 478

reverse_copy 552
reverse_iterator 520
conversion 521
operator!= 523
operator* 521
operator+ 522, 524
operator++ 522
operator+= 522
operator- 523– 524
operator-- 522
operator-= 523
operator-> 522
operator< 523
operator<= 524
operator== 523
operator> 523
operator>= 524
operator[] 523
reverse_iterator 521

reverse_iterator 521
rfind , basic_string 398
right
shift, implementation defined 85
shift operator 85

right 619
rotate 553
rotate_copy 553
rounding 60
rule
as-if 5
one-definition 22

rules
for conditions 94
summary, scope 29

run-time initialization 44
runtime_error 351
runtime_error 351
runtime_error 351

rvalue 55
lvalue conversion to 57

S
sbumpc , basic_streambuf 623
scalar type 52
scan_is
ctype 419
ctype<char> 423

scan_not
ctype 419
ctype<char> 423

s-char 19
s-char-sequence19
scientific 619
scope 21, 24
anonymousunion at namespace 158
class 27
destructor and exit from 97
exception declaration 26
function 27
function prototype 26
global 27
global namespace 27
iteration-statement96
local 26
macro definition 306
namespace 27
of class definition 150
of class name 150
of declaration infor 97
of default argument 139
of delete example 195
of enumerator class 111
of label 27, 93
of local class 161
of member initializer 199
of name 24
of nested class 160
of nested type name 161
of parameter 26
overloading and 211
potential 24
resolution operator 64– 65, 79, 154, 163, 172
resolution operator:: 34
resolution operator example 167
resolution operator use 157
rules summary 29
selection-statement94

scoping

741

ISO/IEC 14882:1998(E) © ISO/IEC

ambiguity resolution 167
andnew 78

search 548
seekdir , ios_base 609
seekg , basic_istream 639
seekoff
basic_filebuf 661
basic_streambuf 625
basic_stringbuf 651
strstreambuf 707

seekp , basic_ostream 643
seekpos
basic_filebuf 662
basic_streambuf 625
basic_stringbuf 652
strstreambuf 708

selection statement 94
selection-statement94
scope 94

self immolation 274
semantics, class member 68
sentry
basic_istream 632
basic_ostream 642

~sentry
basic_istream 633
basic_ostream 642

separate
compilation 9
translation 9

sequence
ambiguous conversion 222
implicit conversion 221
point 6, 63
standard conversion 57
statement 93

sequencing operator—see comma operator 90
set, basic source character 10
<set> 489
set 496
bitset 505
operator< 498
operator== 498

setbase 647
setbuf
basic_filebuf 661
basic_streambuf 625
streambuf 709
strstreambuf 709

set_difference 560
setf , ios_base 610
setfill 647
setg , basic_streambuf 624
set_intersection 559
setiosflags 647
setjmp 322
<setjmp.h> 701
setlocale 317
set_new_handler 323, 341
setp , basic_streambuf 625
setprecision 648
setstate , basic_ios 616
set_symmetric_difference 560
set_terminate 323, 345
set_unexpected 323, 345
set_union 559
setw 648
sgetc , basic_streambuf 623
sgetn , basic_streambuf 624
shift operator—see left shift operator, right shift operator 85
shift , valarray 582

shift-expression85
short
type 53
type specifier 108
type,unsigned 53
typedef and 102

showbase 617
showmanyc
basic_filebuf 660
basic_streambuf 626, 660

showpoint 617
showpos 618
side
effect 6
effects 63
effects and comma operator 90
effects and logical AND operator 88
effects and logical OR operator 88

sign
of bit-field, implementation-defined 159
of char , implementation-defined 53

sign 18
<signal.h> 701
signature 2
signed
char type 53
character 53
typedef and 102
unsigned integer conversion 60

simple-escape-sequence17
simple-type-specifier108
sin 585, 597
complex 573

single quote 17
sinh 585, 597
complex 573

size
basic_string 390
bitset 506
gslice 589
slice 586

sizeof
array 77
class object 77
empty class 149
integral type, implementation-defined 53
operator 76– 77
reference 77
string 19
type, implementation-defined 53

size_t 77
skipws 618
slice 585
size 586
slice 585
slice 585
start 586
stride 586

slice_array 586
fill 587
operator%= 587
operator&= 587
operator*= 587
operator+= 587
operator-= 587
operator/= 587
operator<<= 587
operator= 587
operator>>= 587
operator^= 587
operator|= 587

742

© ISO/IEC ISO/IEC 14882:1998(E)

slice_array 587
slice_array 587

smanip , implementation-specified 647
snextc , basic_streambuf 623
sort 555
list 478

sort_heap 561
source
character set, basic 10
file 9, 320, 322
file inclusion 303

space, white 11
special member function—see also constructor, destructor,

inline function, user-defined conversion, virtual function
185

specialization
class template 239
template 267
template explicit 272

specializations, class template partial 250
specification, template argument 278
specifications
C++ Standard Library exception 326
Standard C library exception 326
implementation-defined exception 326

specifier
access—see access specifier 163
auto 103
declaration 102
explicit 105
friend 106
friend 325
function 104
inline 104
missing storage class 103
static 103
storage class 103
type—see type specifier 106
typedef 105
virtual 105

splice , list 477
sputbackc , basic_streambuf 624
sputc , basic_streambuf 624
sputn , basic_streambuf 624
sqrt 585, 597
complex 573

<sstream> 649
stable_partition 554
stable_sort 555
stack unwinding 294
<stack> 469
stack 481
Standard
C library 311, 317, 319, 321, 696, 698, 701
C library exception specifications 326
Library, C++ 311, 322, 324– 325
library, C++ 322

standard
conversion 57
conversion sequence 57
structure of 4

start, program 43– 44
start
gslice 589
slice 586

startup, program 321, 323
state, object 312
state , fpos 612
statement 93
—see alsoreturn , return 97
break 97

compound 93
continue 97– 98
continue in for 97
declaration 98
declaration infor 97
declaration inswitch 95
do 95– 96
empty 93
expression 93
for 95, 97
goto 93, 97– 98
if 94– 95
iteration 95
jump 97
labeled 93
null 93
selection 94
sequence 93
switch 94– 95, 97
while 95– 96
{} , block 93

statement93
static

NTBS 317
NTMBS 318
NTWCS 318
cast 72
type 2

static 103
class member 46
data member 156
destruction of local 99
initialization, local 99
linkage of 41, 103
local object 46
member 156
member declaration 21
member definition 157
member example 157
member function 156– 157
member initialization 157
member local class restriction 158
member, template and 246
member, type of 76
member use 156
object, destructor 45
object initialization 44, 141
objects order of execution, constructor and 197
overloading and 209
restriction 103
specifier 103

static_cast
conversion to enumeration type 73
lvalue cast 72
reference cast 72

<stdarg.h> 701
__STDC__ 309
implementation-defined 309

<stddef.h> 17, 19, 701
<stdexcept> 349
<stdio.h> 701
<stdlib.h> 701
storage
allocationnew 78
class 21
class declaration 103
class specifier 103
class specifier, missing 103
duration 45
duration,auto 46
duration, class member 48

743

ISO/IEC 14882:1998(E) © ISO/IEC

duration, dynamic 46, 78
duration, local object 46
management—seenew, delete 78
of array 135

str
basic_istringstream 654
basic_ostringstream 655
basic_stringbuf 650
basic_stringstream 656
istrstream 709
ostrstream 710
strstream 712
strstreambuf 706

strchr 407
stream
arbitrary-positional 311
repositional 313

<streambuf> 619
streambuf 601, 619
implementation-defined 599
setbuf 709

streamoff 612, 702
implementation-defined 604, 702

streampos , implementation-defined 702
streamsize 604
strftime 445
stride
gslice 589
slice 586

string
concatenation 19
distinct 19
literal 19
literal concatenation, undefined 19
literal, implementation-defined 19
literal, narrow 19
literal, type of 19
literal, undefined change to 19
literal, wide 19
null-terminated byte 317
null-terminated character type 312
null-terminated multibyte 318
null-terminated wide-character 318
sizeof 19
terminator0 19
type of 19

<string> 381
stringbuf 601, 649
<string.h> 701
string-literal 19
stringstream 601
strlen 705, 710
strpbrk 407
strrchr 407
strstr 407
strstream 711
pcount 712
rdbuf 712
str 712
strstream 711
strstream 711
~strstream 711

~strstream , strstream 711
strstreambuf 703
freeze 706
overflow 706
pbackfail 707
pcount 706
seekoff 707
seekpos 708
setbuf 709

str 706
strstreambuf 705
strstreambuf 705
underflow 707
~strstreambuf 706

~strstreambuf , strstreambuf 706
struct
class versus 149
default member access 149
initialization 144
type specifier 149

structure 149
of standard 4
tag—see class name 149

sub-object 5
lattice—see DAG 164

subscripting
example 134
explanation 134
operator 66, 228
operator, overloaded 230

subsequence rule, overloading 225
substr , basic_string 400
subtraction
implementation defined pointer 84
operator 84

suffix
E 18
F 18
L 16, 18
U 16
f 18
l 16, 18
u 16

sum, valarray 581
summary
compatibility with ISO C 687
scope rules 29
syntax 667

sungetc , basic_streambuf 624
swap 549
basic_string 397, 404

swap_ranges 549
switch
statement 94– 95, 97
statement, declaration in 95

sync
basic_filebuf 662
basic_istream 639
basic_streambuf 626

sync_with_stdio , ios_base 611
synonym 115
type name as 105

syntax
checking 259
class member 68
notation 4
summary 667

T
table , ctype<char> 424
tan 585, 597
complex 573

tanh 585, 597
complex 574

tellg , basic_istream 639
tellp , basic_ostream 643
template 235
and< 238– 239

744

© ISO/IEC ISO/IEC 14882:1998(E)

andfriend 248
andstatic member 246
argument 239
argument specification 278
class 503
definition of 235
explicit specialization 272
function 277
implicit instantiation 268
member function 245
name lookup 257
name resolution 257
overload resolution 256
overload resolution, function 288
partial ordering, function 256
partial specializations, class 250
primary 250
specialization 267
specialization, class 239
type equivalence 244

template 235
template-argument238
template-argument-list238
template-declaration235
template-id238
template-name238
template-parameter236
template-parameter-list235
temporary 187
and declarator initializer 187
constructor for 187
destruction of 187
destructor for 187
elimination of 187
implementation-defined generation of 187
order of destruction of 187

terminate 45, 299, 336, 345
terminate() 298
terminate_handler 323, 345
termination
and destructor, program 192
program 43, 45

terminator0, string 19
terminology, pointer 54
test , bitset 506
this 64
pointer—seethis 155
type of 155

thousands_sep , numpunct 438
throw 291
throw-expression in conditional-expression 88
throw-expression291
throwing, exception 292
tie , basic_ios 615
time_get 441
date_order 442
do_date_order 443
do_get_date 443
do_get_monthname 443
do_get_time 443
do_get_weekday 443
do_get_year 443
get_date 442
get_monthname 442
get_time 442
get_weekday 442
get_year 443

time_get_byname 444
<time.h> 701
time_put 444
do_put 445

put 445
time_put_byname 445
times 361
to
int, bool promotion 59
rvalue, lvalue conversion 57

token 12, 15
token 12
tolower 417
ctype 419
ctype<char> 424

to_string , bitset 505
to_ulong , bitset 505
toupper 417
ctype 419
ctype<char> 424

traits 313
transform 550
collate 440

translation
phases 9
separate 9
unit 320– 321
unit 9, 41
unit, name and 21

trigraph 9, 11
truename falsename , numpunct 438
truncation 60
try 291
try-block 291
type 21
Boolean 53
POD 52
ambiguity, declaration 102
arithmetic 54
array 54, 135
bitmask 316– 317
char 53
character 53
character container 311
checking, argument 67
checking of default argument 138
class and 149
completely defined object 152
compound 54
const 106
conversion, explicit—see casting 68
declaration 130
declaration consistency 43
declaration,typedef as 105
definition, class name as 149
destination 143
double 53
dynamic 2
enumerated 54, 316
enumeration underlying 111
equivalence 105, 149
equivalence, template 244
example of incomplete 52
float 53
floating point 53
function 54, 135
fundamental 53
generator—see template 235
implementation-definedsizeof 53
incomplete 22– 23, 26, 52, 57, 66– 68, 70– 71, 76– 78, 81,

84, 89, 163
int 53
integral 53
long 53
long double 53

745

ISO/IEC 14882:1998(E) © ISO/IEC

multi-level mixed pointer and pointer to member 59
multi-level pointer to member 59
name 128
name as synonym 105
name example 128
name example, nested 161
name, nested 161
name, scope of nested 161
object 4
of bit-field 159
of character literal 17
of constructor 186
of conversion 190
of delete 194
of enum 110
of floating point literal 18
of integer literal 16
of integer literal, implementation-defined 16
of new 194
of ptrdiff_t , implementation defined 84
of static member 76
of string 19
of string literal 19
of this 155
pointer 54
polymorphic 168
pun 74
requirements, numeric 565
short 53
signed char 53
specifier,char 108
specifier,class 149
specifier,double 108
specifier,enum 109
specifier,float 108
specifier,int 108
specifier,long 108
specifier,short 108
specifier,struct 149
specifier,union 149
specifier,unsigned 108
specifier,void 108
specifier,volatile 108
static 2
unsigned 53
unsigned char 53
unsigned int 53
unsigned long 53
unsigned short 53
void 54
void* 54
volatile 106
wchar_t 53
wchar_t underlying 53

typedef, function 136
typedef
andlong 102
andshort 102
andsigned 102
andunsigned 102
as type declaration 105
class name 106, 151
declaration 21
enum name 106
example 105
overloading and 210
redefinition 105
specifier 105

typedef-name105
typeid 71
type-id 128

type-id-list 296
<typeinfo> 341
type_info 71, 341
before 341
name 341
operator!= 341
operator= 342
operator== 341
type_info 342
type_info 342

type_info::name , implementation-defined 342
typename 109
type-name108
type-parameter236
types
implementation-defined 316
implementation-defined exception 326

type-specifier
bool 108
wchart 108

type-specifier106

U
Usuffix 16
u suffix 16
uflow
basic_filebuf 660
basic_streambuf 627

unary
expression 76
minus operator 76– 77
operator 76
operator, interpretation of 228
operator, overloaded 228
plus operator 76

unary-expression76
unary_function 361
unary_negate 363
unary-operator76
uncaught\xception 346
#undef 306, 321
undefined 312– 313, 321– 322, 324, 347, 391, 532, 579– 581,

583– 584, 588, 593, 613
arithmetic exception 63
behavior 2
change toconst object 107
change to string literal 19
delete 81
deleted object 48
division by zero 63, 84
escape sequence 17
floating point conversion 60
function call 73
left shift 85
member function call 154
modulus zero 63
overflow 63
pointer comparison 84, 86
pointer to function cast 73
pure virtual function call 173
string literal concatenation 19
unrepresentable integral value 60

underflow
basic_filebuf 660
basic_streambuf 626
basic_stringbuf 651
strstreambuf 707

underflow_error
underflow_error 352

746

© ISO/IEC ISO/IEC 14882:1998(E)

underflow_error 352
underlying
type, enumeration 111
type,wchar_t 53

underscore
character 321– 322
in identifier_ 14

unexpected 345
unexpected() 299
unexpected_handler 323, 345
unget , basic_istream 638
uninitialized variable, indeterminate 141
uninitialized_copy 371
uninitialized_fill 372
uninitialized_fill_n 372
union 54, 158
access control, anonymous 158
anonymous 158
at namespace scope, anonymous 158
class versus 149
constructor 158
default member access 149
destructor 158
global anonymous 158
initialization 146, 158
member function 158
restriction 158, 186
restriction, anonymous 158
type specifier 149

unique 552
list 478

unique_copy 552
unit
instantiation 10
translation 320– 321

unitbuf 618
universal-character-name 10
universal-character-name10
unknown argument type 135
unnamed
bit-field 159
class 106
object 186
parameter example 141

unqualified name 29
unqualified-id 64
unrepresentable integral value, undefined 60
unsetf , ios_base 610
unshift , codecvt 426
unsigned
arithmetic 53
char type 53
int type 53
integer conversion,signed 60
literal 16
long type 53
short type 53
type 53
type specifier 108
typedef and 102

unsigned-suffix16
unspecified 337– 339, 341, 388, 555, 581, 651, 705– 707
address of member function 325
allocation 153, 177
argument to constructor 81
behavior 3
constructor andnew 81
order of argument evaluation 68
order of evaluation 44, 63
order of evaluationnew 81
order of function call evaluation 68

pointer comparison 86
unwinding, stack 294
upper_bound 557
uppercase 317, 321
uppercase 618
usefacet , locale 417
user-defined
conversion 188– 190
conversion and name hiding 189
conversion, implicit 188
conversion, inheritance of 191
conversion, virtual 191

using-declaration 115
using-directive 120
usual arithmetic conversions 64
<utility> 357

V
va_end 322
<valarray> 574
valarray 577, 589
apply 582
cshift 582
length 581
max 582
min 581
operator! 580
operator!= 584
operator% 583
operator%= 581
operator& 583
operator&& 583– 584
operator&= 581
operator* 583
operator*= 581
operator+ 580, 583
operator+= 581
operator- 580, 583
operator-= 581
operator/ 583
operator/= 581
operator< 584
operator<< 583
operator<<= 581
operator<= 584
operator= 579
operator== 584
operator> 584
operator>= 584
operator>> 583
operator>>= 581
operator[] 580
operator^ 583
operator^= 581
operator| 583
operator|= 581
operator|| 583– 584
operator~ 580
resize 582
shift 582
sum 581
valarray 578
valarray 578
~valarray 579

~valarray , valarray 579
va_list 322
value
call by 67
null member pointer 61

747

ISO/IEC 14882:1998(E) © ISO/IEC

null pointer 60
of char literal, implementation-defined 18
of enumerator 110
of multicharacter literal, implementation-defined 17
representation 51
undefined unrepresentable integral 60

variable
argument list 135
indeterminate uninitialized 141
parameter list 67, 135
parameter list example 135

<vector> 469
vector 482
assign 484
capacity 485
erase 485
insert 485
operator< 484
operator== 484
reserve 485
resize 485
vector 484
vector 484

vector<bool> 486
operator< 488
operator== 488

vertical tab 17
viable function 213
virtual
base class 164
base class DAG 165
base class dominance 167
base class initialization 198, 205
base class initialization, order of 198
destructor 192
destructor, pure 192
function 168
function access 183
function call 172
function call, constructor and 201
function call, destructor and 201
function call, undefined pure 173
function definition 170
function definition, pure 172
function example 169– 170
function example, pure 172
function, pure 172
member function 322, 325
user-defined conversion 191

virtual
andfriend 170
and multiple inheritance 170
specifier 105

visibility 29
void
parameter 135
type 54
type specifier 108

void& 132
void*
conversion, pointer to member 61
pointer comparison 86
type 54

volatile 55
constructor and 156, 185
destructor and 156, 191
implementation-defined 108
member function 155
overloading and 210
type 106
type specifier 108

W
wcerr 603
<wchar.h> 701
wchart type-specifier 108
wchar_t 17, 19, 318, 407
implementation-defined 53
type 53
underlying type 53

wcin 603
wclog 603
wcout 603
wcschr 407
wcspbrk 408
wcsrchr 408
wcsstr 408
<wctype.h> 701
well-formed program 3
wfilebuf 601, 657
wfstream 601
what
bad_alloc 340
bad_cast 342
bad_exception 344
bad_typeid 343
exception 344
ios_base::failure 607

while statement 95– 96
white
space 11
space 12

wide string literal 19
wide-character 17
string, null-terminated 318

widen
basic_ios 615
ctype 419
ctype<char> 424

wide-oriented iostream classes 313
width , ios_base 418, 610
wifstream 601, 657
wios 604
wistream 601, 629
wistringstream 601, 649
wmemchr 408
wofstream 601, 657
wostream 601, 629
wostringstream 601, 649
write , basic_ostream 646
ws 634, 639
wstreambuf 601, 619
wstreamoff 604
wstringbuf 601, 649
wstringstream 601

X
xalloc , ios_base 611
xsgetn , basic_streambuf 626
xsputn , basic_streambuf 628
X(X&) —see copy constructor 186, 203

Z
zero
pointer 60
undefined division by 63, 84
undefined modulus 63
width of bit-field 159

zero-initialization 141

748

ISO/IEC 14882:1998(E) © ISO/IEC

ICS 35.060
Descriptors: data processing, computer software, artificial languages, programming languages, C (programming language),
implementation.

Price based on 732 pages

	AAA00025.PDF
	1 General
	1.1 Scope
	1.2 Normative references
	1.3 Definitions
	1.4 Implementation compliance
	1.5 Structure of this International Standard
	1.6 Syntax notation
	1.7 The C++ memory model
	1.8 The C++ object model
	1.9 Program execution
	1.10 Acknowledgments

	2 Lexical conventions
	2.1 Phases of translation
	2.2 Character sets
	2.3 Trigraph sequences
	2.4 Preprocessing tokens
	2.5 Alternative tokens
	2.6 Tokens
	2.7 Comments
	2.8 Header names
	2.9 Preprocessing numbers
	2.10 Identifiers
	2.11 Keywords
	2.12 Operators and punctuators
	2.13 Literals
	2.13.1 Integer literals
	2.13.2 Character literals
	2.13.3 Floating literals
	2.13.4 String literals
	2.13.5 Boolean literals

	3 Basic concepts
	3.1 Declarations and definitions
	3.2 One definition rule
	3.3 Declarative regions and scopes
	3.3.1 Point of declaration
	3.3.2 Local scope
	3.3.3 Function prototype scope
	3.3.4 Function scope
	3.3.5 Namespace scope
	3.3.6 Class scope
	3.3.7 Name hiding

	3.4 Name lookup
	3.4.1 Unqualified name lookup
	3.4.2 Argument dependent name lookup
	3.4.3 Qualified name lookup
	3.4.3.1 Class members
	3.4.3.2 Namespace members

	3.4.4 Elaborated type specifiers
	3.4.5 Class member access
	3.4.6 Using directives and namespace aliases

	3.5 Program and linkage
	3.6 Start and termination
	3.6.1 Main function
	3.6.2 Initialization of non local objects
	3.6.3 Termination

	3.7 Storage duration
	3.7.1 Static storage duration
	3.7.2 Automatic storage duration
	3.7.3 Dynamic storage duration
	3.7.3.1 Allocation functions
	3.7.3.2 Deallocation functions

	3.7.4 Duration of sub objects

	3.8 Object Lifetime
	3.9 Types
	3.9.1 Fundamental types
	3.9.2 Compound types
	3.9.3 CV qualifiers

	3.10 Lvalues and rvalues

	4 Standard conversions
	4.1 Lvalue to rvalue conversion
	4.2 Array to pointer conversion
	4.3 Function to pointer conversion
	4.4 Qualification conversions
	4.5 Integral promotions
	4.6 Floating point promotion
	4.7 Integral conversions
	4.8 Floating point conversions
	4.9 Floating integral conversions
	4.10 Pointer conversions
	[conv.mem] 4.11 Pointer to member conversions
	4.12 Boolean conversions

	5 Expressions
	5.1 Primary expressions
	5.2 Postfix expressions
	5.2.1 Subscripting
	5.2.2 Function call
	5.2.3 Explicit type conversion (functional notation)
	5.2.4 Pseudo destructor call
	5.2.5 Class member access
	5.2.6 Increment and decrement
	5.2.7 Dynamic cast
	5.2.8 Type identification
	5.2.9 Static cast
	5.2.10 Reinterpret cast
	5.2.11 Const cast

	5.3 Unary expressions
	5.3.1 Unary operators
	5.3.2 Increment and decrement
	5.3.3 Sizeof
	5.3.4 New
	5.3.5 Delete

	5.4 Explicit type conversion (cast notation)
	5.5 Pointer to member operators
	5.6 Multiplicative operators
	5.7 Additive operators
	5.8 Shift operators
	5.9 Relational operators
	5.10 Equality operators
	5.11 Bitwise AND operator
	5.12 Bitwise exclusive OR operator
	5.13 Bitwise inclusive OR operator
	5.14 Logical AND operator
	5.15 Logical OR operator
	5.16 Conditional operator
	5.17 Assignment operators
	5.18 Comma operator
	5.19 Constant expressions

	6 Statements
	6.1 Labeled statement
	6.2 Expression statement
	6.3 Compound statement or block
	6.4 Selection statements
	6.4.1 The if statement
	6.4.2 The switch statement

	6.5 Iteration statements
	6.5.1 The while statement
	6.5.2 The do statement
	6.5.3 The for statement

	6.6 Jump statements
	6.6.1 The break statement
	6.6.2 The continue statement
	6.6.3 The return statement
	6.6.4 The goto statement

	6.7 Declaration statement
	6.8 Ambiguity resolution

	7 Declarations
	7.1 Specifiers
	7.1.1 Storage class specifiers
	7.1.2 Function specifiers
	7.1.3 The typedef specifier
	7.1.4 The friend specifier
	7.1.5 Type specifiers
	7.1.5.1 The cv qualifiers
	7.1.5.2 Simple type specifiers
	7.1.5.3 Elaborated type specifiers

	7.2 Enumeration declarations
	7.3 Namespaces
	7.3.1 Namespace definition
	7.3.1.1 Unnamed namespaces
	7.3.1.2 Namespace member definitions

	7.3.2 Namespace alias
	7.3.3 The using declaration
	7.3.4 Using directive

	7.4 The asm declaration
	7.5 Linkage specifications

	8 Declarators
	8.1 Type names
	8.2 Ambiguity resolution
	8.3 Meaning of declarators
	8.3.1 Pointers
	8.3.2 References
	8.3.3 Pointers to members
	8.3.4 Arrays
	8.3.5 Functions
	8.3.6 Default arguments

	8.4 Function definitions
	8.5 Initializers
	8.5.1 Aggregates
	8.5.2 Character arrays
	8.5.3 References

	9 Classes
	9.1 Class names
	9.2 Class members
	9.3 Member functions
	9.3.1 Nonstatic member functions
	9.3.2 The this pointer

	9.4 Static members
	9.4.1 Static member functions
	9.4.2 Static data members

	9.5 Unions
	9.6 Bit fields
	9.7 Nested class declarations
	9.8 Local class declarations
	9.9 Nested type names

	10 Derived classes
	10.1 Multiple base classes
	10.2 Member name lookup
	10.3 Virtual functions
	10.4 Abstract classes

	11 Member access control
	11.1 Access specifiers
	11.2 Accessibility of base classes and base class members
	11.3 Access declarations
	11.4 Friends
	11.5 Protected member access
	11.6 Access to virtual functions
	11.7 Multiple access
	11.8 Nested classes

	12 Special member functions
	12.1 Constructors
	12.2 Temporary objects
	12.3 Conversions
	12.3.1 Conversion by constructor
	12.3.2 Conversion functions

	12.4 Destructors
	12.5 Free store
	12.6 Initialization
	12.6.1 Explicit initialization
	12.6.2 Initializing bases and members

	12.7 Construction and destruction
	12.8 Copying class objects

	13 Overloading
	13.1 Overloadable declarations
	13.2 Declaration matching
	13.3 Overload resolution
	13.3.1 Candidate functions and argument lists
	13.3.1.1 Function call syntax
	13.3.1.1.1 Call to named function
	13.3.1.1.2 Call to object of class type

	13.3.1.2 Operators in expressions
	13.3.1.3 Initialization by constructor
	13.3.1.4 Copy initialization of class by user defined conversion
	13.3.1.5 Initialization by conversion function
	13.3.1.6 Initialization by conversion function for direct reference binding

	13.3.2 Viable functions
	13.3.3 Best Viable Function
	13.3.3.1 Implicit conversion sequences
	13.3.3.1.1 Standard conversion sequences
	13.3.3.1.2 User defined conversion sequences
	13.3.3.1.3 Ellipsis conversion sequences
	13.3.3.1.4 Reference binding

	13.3.3.2 Ranking implicit conversion sequences

	13.4 Address of overloaded function
	13.5 Overloaded operators
	13.5.1 Unary operators
	13.5.2 Binary operators
	13.5.3 Assignment
	13.5.4 Function call
	13.5.5 Subscripting
	13.5.6 Class member access
	13.5.7 Increment and decrement

	13.6 Built in operators

	14 Templates
	14.1 Template parameters
	14.2 Names of template specializations
	14.3 Template arguments
	14.3.1 Template type arguments
	14.3.2 Template non type arguments
	14.3.3 Template template arguments

	14.4 Type equivalence
	14.5 Template declarations
	14.5.1 Class templates
	14.5.1.1 Member functions of class templates
	14.5.1.2 Member classes of class templates
	14.5.1.3 Static data members of class templates

	14.5.2 Member templates
	14.5.3 Friends
	14.5.4 Class template partial specializations
	14.5.4.1 Matching of class template partial specializations
	14.5.4.2 Partial ordering of class template specializations
	14.5.4.3 Members of class template specializations

	14.5.5 Function templates
	14.5.5.1 Function template overloading
	14.5.5.2 Partial ordering of function templates

	14.6 Name resolution
	14.6.1 Locally declared names
	14.6.2 Dependent names
	14.6.2.1 Dependent types
	14.6.2.2 Type dependent expressions
	14.6.2.3 Value dependent expressions
	14.6.2.4 Dependent template arguments

	14.6.3 Non dependent names
	14.6.4 Dependent name resolution
	14.6.4.1 Point of instantiation
	14.6.4.2 Candidate functions

	14.6.5 Friend names declared within a class template

	14.7 Template instantiation and specialization
	14.7.1 Implicit instantiation
	14.7.2 Explicit instantiation
	14.7.3 Explicit specialization

	14.8 Function template specializations
	14.8.1 Explicit template argument specification
	14.8.2 Template argument deduction
	14.8.2.1 Deducing template arguments from a function call
	14.8.2.2 Deducing template arguments taking the address of a function template
	14.8.2.3 Deducing conversion function template arguments
	14.8.2.4 Deducing template arguments from a type

	14.8.3 Overload resolution

	15 Exception handling
	15.1 Throwing an exception
	15.2 Constructors and destructors
	15.3 Handling an exception
	15.4 Exception specifications
	15.5 Special functions
	15.5.1 The terminate() function
	15.5.2 The unexpected() function
	15.5.3 The uncaught_exception() function

	15.6 Exceptions and access

	16 Preprocessing directives
	16.1 Conditional inclusion
	16.2 Source file inclusion
	16.3 Macro replacement
	16.3.1 Argument substitution
	16.3.2 The # operator
	16.3.3 The ## operator
	16.3.4 Rescanning and further replacement
	16.3.5 Scope of macro definitions

	16.4 Line control
	16.5 Error directive
	16.6 Pragma directive
	16.7 Null directive
	16.8 Predefined macro names

	17 Library introduction
	17.1 Definitions
	17.2 Additional definitions
	17.3 Method of description (Informative)
	17.3.1 Structure of each subclause
	17.3.1.1 Summary
	17.3.1.2 Requirements
	17.3.1.3 Specifications
	17.3.1.4 C Library

	17.3.2 Other conventions
	17.3.2.1 Type descriptions
	17.3.2.1.1 Enumerated types
	17.3.2.1.2 Bitmask types
	17.3.2.1.3 Character sequences
	17.3.2.1.3.1 Byte strings
	17.3.2.1.3.2 Multibyte strings
	17.3.2.1.3.3 Wide character sequences

	17.3.2.2 Functions within classes
	17.3.2.3 Private members

	17.4 Library wide requirements
	17.4.1 Library contents and organization
	17.4.1.1 Library contents
	17.4.1.2 Headers
	17.4.1.3 Freestanding implementations

	17.4.2 Using the library
	17.4.2.1 Headers
	17.4.2.2 Linkage

	17.4.3 Constraints on programs
	17.4.3.1 Reserved names
	17.4.3.1.1 Macro names
	17.4.3.1.2 Global names
	17.4.3.1.3 External linkage
	17.4.3.1.4 Types

	17.4.3.2 Headers
	17.4.3.3 Derived classes
	17.4.3.4 Replacement functions
	17.4.3.5 Handler functions
	17.4.3.6 Other functions
	17.4.3.7 Function arguments
	17.4.3.8 Required paragraph

	17.4.4 Conforming implementations
	17.4.4.1 Headers
	17.4.4.2 Restrictions on macro definitions
	17.4.4.3 Global functions
	17.4.4.4 Member functions
	17.4.4.5 Reentrancy
	17.4.4.6 Protection within classes
	17.4.4.7 Derived classes
	17.4.4.8 Restrictions on exception handling

	18 Language support library
	18.1 Types
	18.2 Implementation properties
	18.2.1 Numeric limits
	18.2.1.1 Template class numeric_limits
	18.2.1.2 numeric_limits members
	18.2.1.3 Type float_round_style
	18.2.1.4 Type float_denorm_style
	18.2.1.5 numeric_limits specializations

	18.2.2 C Library

	18.3 Start and termination
	18.4 Dynamic memory management
	18.4.1 Storage allocation and deallocation
	18.4.1.1 Single object forms
	18.4.1.2 Array forms
	18.4.1.3 Placement forms

	18.4.2 Storage allocation errors
	18.4.2.1 Class bad_alloc
	18.4.2.2 Type new_handler
	18.4.2.3 set_new_handler

	18.5 Type identification
	18.5.1 Class type_info
	18.5.2 Class bad_cast
	18.5.3 Class bad_typeid

	18.6 Exception handling
	18.6.1 Class exception
	18.6.2 Violating exception specifications
	18.6.2.1 Class bad_exception
	18.6.2.2 Type unexpected_handler
	18.6.2.3 set_unexpected
	18.6.2.4 unexpected

	18.6.3 Abnormal termination
	18.6.3.1 Type terminate_handler
	18.6.3.2 set_terminate
	18.6.3.3 terminate

	18.6.4 uncaught_exception

	18.7 Other runtime support

	19 Diagnostics library
	19.1 Exception classes
	19.1.1 Class logic_error
	19.1.2 Class domain_error
	19.1.3 Class invalid_argument
	19.1.4 Class length_error
	19.1.5 Class out_of_range
	19.1.6 Class runtime_error
	19.1.7 Class range_error
	19.1.8 Class overflow_error

	19.2 Assertions
	19.3 Error numbers

	20 General utilities library
	20.1 Requirements
	20.1.1 Equality comparison
	20.1.2 Less than comparison
	20.1.3 Copy construction
	20.1.4 Default construction
	20.1.5 Allocator requirements

	20.2 Utility components
	20.2.1 Operators
	20.2.2 Pairs

	20.3 Function objects
	20.3.1 Base
	20.3.2 Arithmetic operations
	20.3.3 Comparisons
	20.3.4 Logical operations
	20.3.5 Negators
	20.3.6 Binders
	20.3.6.1 Template class binder1st
	20.3.6.2 bind1st
	20.3.6.3 Template class binder2nd
	20.3.6.4 bind2nd

	20.3.7 Adaptors for pointers to functions
	20.3.8 Adaptors for pointers to members

	20.4 Memory
	20.4.1 The default allocator
	20.4.1.1 allocator members
	20.4.1.2 allocator globals

	20.4.2 Raw storage iterator
	20.4.3 Temporary buffers
	20.4.4 Specialized algorithms
	20.4.4.1 uninitialized_copy
	20.4.4.2 uninitialized_fill
	20.4.4.3 uninitialized_fill_n

	20.4.5 Template class auto_ptr
	20.4.5.1 auto_ptr constructors
	20.4.5.2 auto_ptr members
	20.4.5.3 auto_ptr conversions

	20.4.6 C Library

	20.5 Date and time

	21 Strings library
	21.1 Character traits
	21.1.1 Character traits requirements
	21.1.2 traits typedefs
	21.1.3 char_traits specializations
	21.1.3.1 struct char_traits<char>
	21.1.3.2 struct char_traits<wchar_t>

	21.2 String classes
	21.3 Template class basic_string
	21.3.1 basic_string constructors
	21.3.2 basic_string iterator support
	21.3.3 basic_string capacity
	21.3.4 basic_string element access
	21.3.5 basic_string modifiers
	21.3.5.1 basic_string::operator+=
	21.3.5.2 basic_string::append
	21.3.5.3 basic_string::assign
	21.3.5.4 basic_string::insert
	21.3.5.5 basic_string::erase
	21.3.5.6 basic_string::replace
	21.3.5.7 basic_string::copy
	21.3.5.8 basic_string::swap

	21.3.6 basic_string string operations
	21.3.6.1 basic_string::find
	21.3.6.2 basic_string::rfind
	21.3.6.3 basic_string::find_first_of
	21.3.6.4 basic_string::find_last_of
	21.3.6.5 basic_string::find_first_not_of
	21.3.6.6 basic_string::find_last_not_of
	21.3.6.7 basic_string::substr
	21.3.6.8 basic_string::compare

	21.3.7 basic_string non member functions
	21.3.7.1 operator+
	21.3.7.2 operator==
	21.3.7.3 operator!=
	21.3.7.4 operator<
	21.3.7.5 operator>
	21.3.7.6 operator<=
	21.3.7.7 operator>=
	21.3.7.8 swap
	21.3.7.9 Inserters and extractors

	21.4 Null terminated sequence utilities

	22 Localization library
	22.1 Locales
	22.1.1 Class locale
	22.1.1.1 locale types
	22.1.1.1.1 Type locale::category
	22.1.1.1.2 Class locale::facet
	22.1.1.1.3 Class locale::id

	22.1.1.2 locale constructors and destructor
	22.1.1.3 locale members
	22.1.1.4 locale operators
	22.1.1.5 locale static members

	22.1.2 locale globals
	22.1.3 Convenience interfaces
	22.1.3.1 Character classification
	22.1.3.2 Character conversions

	22.2 Standard locale categories
	22.2.1 The ctype category
	22.2.1.1 Template class ctype
	22.2.1.1.1 ctype members
	22.2.1.1.2 ctype virtual functions

	22.2.1.2 Template class ctype_byname
	22.2.1.3 ctype specializations
	22.2.1.3.1 ctype<char> destructor
	22.2.1.3.2 ctype<char> members
	22.2.1.3.3 ctype<char> static members
	22.2.1.3.4 ctype<char> virtual functions

	22.2.1.4 Class ctype_byname<char>
	22.2.1.5 Template class codecvt
	22.2.1.5.1 codecvt members
	22.2.1.5.2 codecvt virtual functions

	22.2.1.6 Template class codecvt_byname

	22.2.2 The numeric category
	22.2.2.1 Template class num_get
	22.2.2.1.1 num_get members
	22.2.2.1.2 num_get virtual functions

	22.2.2.2 Template class num_put
	22.2.2.2.1 num_put members
	22.2.2.2.2 num_put virtual functions

	22.2.3 The numeric punctuation facet
	22.2.3.1 Template class numpunct
	22.2.3.1.1 numpunct members
	22.2.3.1.2 numpunct virtual functions

	22.2.3.2 Template class numpunct_byname

	22.2.4 The collate category
	22.2.4.1 Template class collate
	22.2.4.1.1 collate members
	22.2.4.1.2 collate virtual functions

	22.2.4.2 Template class collate_byname

	22.2.5 The time category
	22.2.5.1 Template class time_get
	22.2.5.1.1 time_get members
	22.2.5.1.2 time_get virtual functions

	22.2.5.2 Template class time_get_byname
	22.2.5.3 Template class time_put
	22.2.5.3.1 time_put members
	22.2.5.3.2 time_put virtual functions

	22.2.5.4 Template class time_put_byname

	22.2.6 The monetary category
	22.2.6.1 Template class money_get
	22.2.6.1.1 money_get members
	22.2.6.1.2 money_get virtual functions

	22.2.6.2 Template class money_put
	22.2.6.2.1 money_put members
	22.2.6.2.2 money_put virtual functions

	22.2.6.3 Template class moneypunct
	22.2.6.3.1 moneypunct members
	22.2.6.3.2 moneypunct virtual functions

	22.2.6.4 Template class moneypunct_byname

	22.2.7 The message retrieval category
	22.2.7.1 Template class messages
	22.2.7.1.1 messages members
	22.2.7.1.2 messages virtual functions

	22.2.7.2 Template class messages_byname

	22.2.8 Program defined facets

	22.3 C Library Locales

	23 Containers library
	23.1 Container requirements
	23.1.1 Sequences
	23.1.2 Associative containers

	23.2 Sequences
	23.2.1 Template class deque
	23.2.1.1 deque constructors, copy, and assignment
	23.2.1.2 deque capacity
	23.2.1.3 deque modifiers
	23.2.1.4 deque specialized algorithms

	23.2.2 Template class list
	23.2.2.1 list constructors, copy, and assignment
	23.2.2.2 list capacity
	23.2.2.3 list modifiers
	23.2.2.4 list operations
	23.2.2.5 list specialized algorithms

	23.2.3 Container adaptors
	23.2.3.1 Template class queue
	23.2.3.2 Template class priority_queue
	23.2.3.2.1 priority_queue constructors
	23.2.3.2.2 priority_queue members

	23.2.3.3 Template class stack

	23.2.4 Template class vector
	23.2.4.1 vector constructors, copy, and assignment
	23.2.4.2 vector capacity
	23.2.4.3 vector modifiers
	23.2.4.4 vector specialized algorithms

	23.2.5 Class vector<bool>

	23.3 Associative containers
	23.3.1 Template class map
	23.3.1.1 map constructors, copy, and assignment
	23.3.1.2 map element access
	23.3.1.3 map operations
	23.3.1.4 map specialized algorithms

	23.3.2 Template class multimap
	23.3.2.1 multimap constructors
	23.3.2.2 multimap operations
	23.3.2.3 multimap specialized algorithms

	23.3.3 Template class set
	23.3.3.1 set constructors, copy, and assignment
	23.3.3.2 set specialized algorithms

	23.3.4 Template class multiset
	23.3.4.1 multiset constructors
	23.3.4.2 multiset specialized algorithms

	23.3.5 Template class bitset
	23.3.5.1 bitset constructors
	23.3.5.2 bitset members
	23.3.5.3 bitset operators

	24 Iterators library
	24.1 Iterator requirements
	24.1.1 Input iterators
	24.1.2 Output iterators
	24.1.3 Forward iterators
	24.1.4 Bidirectional iterators
	24.1.5 Random access iterators

	24.2 Header <iterator> synopsis
	24.3 Iterator primitives
	24.3.1 Iterator traits
	24.3.2 Basic iterator
	24.3.3 Standard iterator tags
	24.3.4 Iterator operations

	24.4 Predefined iterators
	24.4.1 Reverse iterators
	24.4.1.2 reverse_iterator requirements
	24.4.1.3 reverse_iterator operations
	24.4.1.3.1 reverse_iterator constructor
	24.4.1.3.2 Conversion
	24.4.1.3.3 operator*
	24.4.1.3.4 operator >
	24.4.1.3.5 operator++
	24.4.1.3.6 operator
	24.4.1.3.7 operator+
	24.4.1.3.8 operator+=
	24.4.1.3.9 operator
	24.4.1.3.10 operator =
	24.4.1.3.11 operator[]
	24.4.1.3.12 operator==
	24.4.1.3.13 operator<
	24.4.1.3.14 operator!=
	24.4.1.3.15 operator>
	24.4.1.3.16 operator>=
	24.4.1.3.17 operator<=
	24.4.1.3.18 operator
	24.4.1.3.19 operator+

	24.4.2 Insert iterators
	24.4.2.1 Template class back_insert_iterator
	24.4.2.2 back_insert_iterator operations
	24.4.2.2.1 back_insert_iterator constructor
	24.4.2.2.2 back_insert_iterator::operator=
	24.4.2.2.3 back_insert_iterator::operator*
	24.4.2.2.4 back_insert_iterator::operator++
	24.4.2.2.5 back_inserter

	24.4.2.3 Template class front_insert_iterator
	24.4.2.4 front_insert_iterator operations
	24.4.2.4.1 front_insert_iterator constructor
	24.4.2.4.2 front_insert_iterator::operator=
	24.4.2.4.3 front_insert_iterator::operator*
	24.4.2.4.4 front_insert_iterator::operator++
	24.4.2.4.5 front_inserter

	24.4.2.5 Template class insert_iterator
	24.4.2.6 insert_iterator operations
	24.4.2.6.1 insert_iterator constructor
	24.4.2.6.2 insert_iterator::operator=
	24.4.2.6.3 insert_iterator::operator*
	24.4.2.6.4 insert_iterator::operator++
	24.4.2.6.5 inserter

	24.5 Stream iterators
	24.5.1 Template class istream_iterator
	24.5.1.1 istream_iterator constructors and destructor
	24.5.1.2 istream_iterator operations

	24.5.2 Template class ostream_iterator
	24.5.2.1 ostream_iterator constructors and destructor
	24.5.2.2 ostream_iterator operations

	24.5.3 Template class istreambuf_iterator
	24.5.3.1 Template class istreambuf_iterator::proxy
	24.5.3.2 istreambuf_iterator constructors
	24.5.3.3 istreambuf_iterator::operator*
	24.5.3.4 istreambuf_iterator::operator++
	24.5.3.5 istreambuf_iterator::equal
	24.5.3.6 operator==
	24.5.3.7 operator!=

	24.5.4 Template class ostreambuf_iterator
	24.5.4.1 ostreambuf_iterator constructors
	24.5.4.2 ostreambuf_iterator operations

	25 Algorithms library
	25.1 Non modifying sequence operations
	25.1.1 For each
	25.1.2 Find
	25.1.3 Find End
	25.1.4 Find First
	25.1.5 Adjacent find
	25.1.6 Count
	25.1.7 Mismatch
	25.1.8 Equal
	25.1.9 Search

	25.2 Mutating sequence operations
	25.2.1 Copy
	25.2.2 Swap
	25.2.3 Transform
	25.2.4 Replace
	25.2.5 Fill
	25.2.6 Generate
	25.2.7 Remove
	25.2.8 Unique
	25.2.9 Reverse
	25.2.10 Rotate
	25.2.11 Random shuffle
	25.2.12 Partitions

	25.3 Sorting and related operations
	25.3.1 Sorting
	25.3.1.1 sort
	25.3.1.2 stable_sort
	25.3.1.3 partial_sort
	25.3.1.4 partial_sort_copy

	25.3.2 Nth element
	25.3.3 Binary search
	25.3.3.1 lower_bound
	25.3.3.2 upper_bound
	25.3.3.3 equal_range
	25.3.3.4 binary_search

	25.3.4 Merge
	25.3.5 Set operations on sorted structures
	25.3.5.1 includes
	25.3.5.2 set_union
	25.3.5.3 set_intersection
	25.3.5.4 set_difference
	25.3.5.5 set_symmetric_difference

	25.3.6 Heap operations
	25.3.6.1 push_heap
	25.3.6.2 pop_heap
	25.3.6.3 make_heap
	25.3.6.4 sort_heap

	25.3.7 Minimum and maximum
	25.3.8 Lexicographical comparison
	25.3.9 Permutation generators

	25.4 C library algorithms

	26 Numerics library
	26.1 Numeric type requirements
	26.2 Complex numbers
	26.2.1 Header <complex> synopsis
	26.2.2 Template class complex
	26.2.3 complex specializations
	26.2.4 complex member functions
	26.2.5 complex member operators
	26.2.6 complex non member operations
	26.2.7 complex value operations
	26.2.8 complex transcendentals

	26.3 Numeric arrays
	26.3.1 Header <valarray> synopsis
	26.3.2 Template class valarray
	26.3.2.1 valarray constructors
	26.3.2.2 valarray assignment
	26.3.2.3 valarray element access
	26.3.2.4 valarray subset operations
	26.3.2.5 valarray unary operators
	26.3.2.6 valarray computed assignment
	26.3.2.7 valarray member functions

	26.3.3 valarray non member operations
	26.3.3.1 valarray binary operators
	26.3.3.2 valarray logical operators

	26.3.4 Class slice
	26.3.4.1 slice constructors
	26.3.4.2 slice access functions

	26.3.5 Template class slice_array
	26.3.5.1 slice_array constructors
	26.3.5.2 slice_array assignment
	26.3.5.3 slice_array computed assignment
	26.3.5.4 slice_array fill function

	26.3.6 The gslice class
	26.3.6.1 gslice constructors
	26.3.6.2 gslice access functions

	26.3.7 Template class gslice_array
	26.3.7.1 gslice_array constructors
	26.3.7.2 gslice_array assignment
	26.3.7.3 gslice_array computed assignment
	26.3.7.4 gslice_array fill function

	26.3.8 Template class mask_array
	26.3.8.1 mask_array constructors
	26.3.8.2 mask_array assignment
	26.3.8.3 mask_array computed assignment
	26.3.8.4 mask_array fill function

	26.3.9 Template class indirect_array
	26.3.9.1 indirect_array constructors
	26.3.9.2 indirect_array assignment
	26.3.9.3 indirect_array computed assignment
	26.3.9.4 indirect_array fill function

	26.4 Generalized numeric operations
	26.4.1 Accumulate
	26.4.2 Inner product
	26.4.3 Partial sum
	26.4.4 Adjacent difference

	26.5 C Library

	27 Input/output library
	27.1 Iostreams requirements
	27.1.1 Imbue Limitations
	27.1.2 Positioning Type Limitations

	27.2 Forward declarations
	27.3 Standard iostream objects
	27.3.1 Narrow stream objects
	27.3.2 Wide stream objects

	27.4 Iostreams base classes
	27.4.1 Types
	27.4.2 Class ios_base
	27.4.2.1 Types
	27.4.2.1.1 Class ios_base::failure
	27.4.2.1.2 Type ios_base::fmtflags
	27.4.2.1.3 Type ios_base::iostate
	27.4.2.1.4 Type ios_base::openmode
	27.4.2.1.5 Type ios_base::seekdir
	27.4.2.1.6 Class ios_base::Init

	27.4.2.2 ios_base fmtflags state functions
	27.4.2.3 ios_base locale functions
	27.4.2.4 ios_base static members
	27.4.2.5 ios_base storage functions
	27.4.2.6 ios_base callbacks
	27.4.2.7 ios_base constructors/destructors

	27.4.3 Template class fpos
	27.4.3.1 fpos Members
	27.4.3.2 fpos requirements

	27.4.4 Template class basic_ios
	27.4.4.1 basic_ios constructors
	27.4.4.2 Member functions
	27.4.4.3 basic_ios iostate flags functions

	27.4.5 ios_base manipulators
	27.4.5.1 fmtflags manipulators
	27.4.5.2 adjustfield manipulators
	27.4.5.3 basefield manipulators
	27.4.5.4 floatfield manipulators

	27.5 Stream buffers
	27.5.1 Stream buffer requirements
	27.5.2 Template class basic_streambuf<charT,traits>
	27.5.2.1 basic_streambuf constructors
	27.5.2.2 basic_streambuf public member functions
	27.5.2.2.1 Locales
	27.5.2.2.2 Buffer management and positioning
	27.5.2.2.3 Get area
	27.5.2.2.4 Putback
	27.5.2.2.5 Put area

	27.5.2.3 basic_streambuf protected member functions
	27.5.2.3.1 Get area access
	27.5.2.3.2 Put area access

	27.5.2.4 basic_streambuf virtual functions
	27.5.2.4.1 Locales
	27.5.2.4.2 Buffer management and positioning
	27.5.2.4.3 Get area
	27.5.2.4.4 Putback
	27.5.2.4.5 Put area

	27.6 Formatting and manipulators
	27.6.1 Input streams
	27.6.1.1 Template class basic_istream
	27.6.1.1.1 basic_istream constructors
	27.6.1.1.2 Class basic_istream::sentry

	27.6.1.2 Formatted input functions
	27.6.1.2.1 Common requirements
	27.6.1.2.2 Arithmetic Extractors
	27.6.1.2.3 basic_istream::operator>>

	27.6.1.3 Unformatted input functions
	27.6.1.4 Standard basic_istream manipulators
	27.6.1.5 Template class basic_iostream
	27.6.1.5.1 basic_iostream constructors
	27.6.1.5.2 basic_iostream destructor

	27.6.2 Output streams
	27.6.2.1 Template class basic_ostream
	27.6.2.2 basic_ostream constructors
	27.6.2.3 Class basic_ostream::sentry
	27.6.2.4 basic_ostream seek members
	27.6.2.5 Formatted output functions
	27.6.2.5.1 Common requirements
	27.6.2.5.2 Arithmetic Inserters
	27.6.2.5.3 basic_ostream::operator<<
	27.6.2.5.4 Character inserter template functions

	27.6.2.6 Unformatted output functions
	27.6.2.7 Standard basic_ostream manipulators

	27.6.3 Standard manipulators

	27.7 String based streams
	27.7.1 Template class basic_stringbuf
	27.7.1.1 basic_stringbuf constructors
	27.7.1.2 Member functions
	27.7.1.3 Overridden virtual functions

	27.7.2 Template class basic_istringstream
	27.7.2.1 basic_istringstream constructors
	27.7.2.2 Member functions

	27.7.3 Class basic_ostringstream
	27.7.3.1 basic_ostringstream constructors
	27.7.3.2 Member functions

	27.7.4 Template class basic_stringstream
	27.7.5 basic_stringstream constructors
	27.7.6 Member functions

	27.8 File based streams
	27.8.1 File streams
	27.8.1.1 Template class basic_filebuf
	27.8.1.2 basic_filebuf constructors
	27.8.1.3 Member functions
	27.8.1.4 Overridden virtual functions
	27.8.1.5 Template class basic_ifstream
	27.8.1.6 basic_ifstream constructors
	27.8.1.7 Member functions
	27.8.1.8 Template class basic_ofstream
	27.8.1.9 basic_ofstream constructors
	27.8.1.10 Member functions
	27.8.1.11 Template class basic_fstream
	27.8.1.12 basic_fstream constructors
	27.8.1.13 Member functions

	27.8.2 C Library files

	Annex A Grammar summary
	A.1 Keywords
	A.2 Lexical conventions
	A.3 Basic concepts
	A.4 Expressions
	A.5 Statements
	A.6 Declarations
	A.7 Declarators
	A.8 Classes
	A.9 Derived classes
	A.10 Special member functions
	A.11 Overloading
	A.12 Templates
	A.13 Exception handling
	A.14 Preprocessing directives

	Annex B Implementation quantities
	Annex C Compatibility
	C.1 C++ and ISO C
	C.1.1 Clause 2: lexical conventions
	C.1.2 Clause 3: basic concepts
	C.1.3 Clause 5: expressions
	C.1.4 Clause 6: statements
	C.1.5 Clause 7: declarations
	C.1.6 Clause 8: declarators
	C.1.7 Clause 9: classes
	C.1.8 Clause 12: special member functions
	C.1.9 Clause 16: preprocessing directives

	C.2 Standard C library
	C.2.1 Modifications to headers
	C.2.2 Modifications to definitions
	C.2.2.1 Type wchar_t
	C.2.2.2 Header <iso646.h>
	C.2.2.3 Macro NULL

	C.2.3 Modifications to declarations
	C.2.4 Modifications to behavior
	C.2.4.1 Macro offsetof(type, member designator)
	C.2.4.2 Memory allocation functions

	Annex D Compatibility features
	D.1 Postfix increment operator
	D.2 static keyword
	D.3 Access declarations
	D.4 Implicit conversion from const strings
	D.5 Standard C library headers
	D.6 Old iostreams members
	D.7 char* streams
	D.7.1 Class strstreambuf
	D.7.1.1 strstreambuf constructors
	D.7.1.2 Member functions
	D.7.1.3 strstreambuf overridden virtual functions

	D.7.2 Class istrstream
	D.7.2.1 istrstream constructors
	D.7.2.2 Member functions

	D.7.3 Class ostrstream
	D.7.3.1 ostrstream constructors
	D.7.3.2 Member functions

	D.7.4 Class strstream
	D.7.4.1 strstream constructors
	D.7.4.2 strstream destructor
	D.7.4.3 strstream operations

	Annex E Universal character names

