3D wave-packet decomposition implemented on GPUs
Victor V. Nikitin, Alexey A. Romanenko, Novosibirsk State University, Anton A. Duchkov*, IPGG SB RAS and Novosi-
birsk State University, and Fredrik Andersson, Lund University

SUMMARY

Decomposition of seismic data into wave-packet representa-
tions has been successfully used for 2D data compression, in-
terpolation and de-noising. In this paper we present a fast im-
plementation of a 3D wave-packet decomposition using graph-
ical processing units (GPUs). This allows for the similar pro-
cessing of 3D seismic gathers.

We discuss parallel implementation of the wave-packet trans-
form on GPUs as opposed to existing algorithms (sequential
and MPI-parallel). A few computational steps had to be mod-
ified adapting them for a GPU platform. The code has been
tested on a 3D data set of size 256°, where we obtain speedup
of about 40 times compared to the sequential code perfor-
mance.

INTRODUCTION

Wave packets provide a natural basis for the representation
of seismic data and images (associated with singularities sup-
ported at traveltime curves or reflectors). They can be viewed
as localized plane-waves; oscillatory in one direction (which
can be associated with wavefront normal) and smoothly vary-
ing in the orthogonal directions (see Fig. 1). Thus, wave pack-
ets look suitable for ‘building up’ seismic waves. Different
versions of wave-packet type basis functions can be found in
the literature (Candés et al. (2006); Andersson et al. (2008);
Fomel and Liu (2010)). It was also shown that wave-packet de-
composition can be effectively used for data compression, reg-
ularization, interpolation, de-noising and imaging (Herrmann
et al. (2007); Neelamani et al. (2008); Douma and de Hoop
(2007)).

=

X2 X1

Figure 1: Example of a wave packet oriented vertically.

In this paper we consider a 3D wave-packet decomposition al-
gorithm described in Duchkov et al. (2010). This implementa-

tion was ported on a graphical processing unit (GPU) platform
using CUDA technology. Similarly to curvelet transforms our
wave packet decomposition is implemented through Fourier
transform. This is done using unequally spaced fast Fourier
transforms (USFFT). The most computationally intensive part
of USFFT is the weighted summation of values in a nearby
grid points, smearing. This is an operation that is well suited
for GPU implementation.

WAVE-PACKET DECOMPOSITION ALGORITHM

We briefly recapitulate the wave-packet decomposition algo-
rithm described in details in Duchkov et al. (2010). We con-
sider representations of 3D seismic data (or image) u(x) of the

form:
u(x) = E Ty @y(X), 9]
Y

where iy are wave-packet coefficients, and ¢y(x) are the wave
packets. The wave packets @y(x) are chosen such that their
Fourier transform have support in a box described by scale k
(distance from the origin) and orientation v. All boxes cover
the 3D Fourier space (with coordinates &) with some overlap
as illustrated in Fig. 2.

&

Figure 2: Box tiling of the Fourier space. (a) - overlapping in
radial direction (different scales k), (b) overlapping in orthog-
onal direction (same scale but different orientations V).

Let us assume that function u(x) is sampled at equally spaced
points, X;, with multi-index i = (iy,i»,i3), i = —%, veny % The
regular grids §;k are also defined on every box defined by
(k,v); j=(j1,42:J3)s jx = 1,...,;Ni. A forward wave-packet
(WP) transform maps an input function into a set of coeffi-
cients:

F: M(X,') — ﬂ(k,v,j)» 2)

where index j defines points on translation grids x;’k defin-

3D wave packets on GPU

ing possible positions of central points of wave packets corre-
sponding to scale k and orientation V.

In order to get a discrete wave-packet transform of complex-
ity comparable to FFT we make use of the USFFT as devel-
oped by Dutt and Rokhlin (1993) and Beylkin (1995). A dis-
crete wave-packet transform along with adjoint (approximate
inverse) can be schematically described as

M(X,‘) USFFT ﬁ(g;/vk) Windowing
~ N PN & ~
a8 e8] L gy), 3
and
M(X,‘) AdjointUSFFT i ;”k)fc\zi,k(;/,k) Windowing

iy s &) EL gy, .

The last operation is a standard FFT transform on every box,
and the second operation (windowing) is also just a multipli-
cation of 3D arrays. The USFFT procedure is the most com-
plicated as it requires interpolation of highly oscillatory spec-
trum from one grid to another with controlled accuracy. As
proposed by Dutt and Rokhlin (1993) and Beylkin (1995), it
consists of the following steps:

e input image preprocessing (doubling the grid adding
zeros and multiplying by weighting coefficients);

e standard FFT operation on a regular grid;

e smearing operation.

The smearing operation is the final step of the interpolation
and it takes about 90 % of total computational time necessary
for the decomposition. Thus, we will discuss this operation in
more detail in the following section while describing how to
port the code to a GPU platform.

CODE MODIFICATION FOR GPU

Gathered smearing (forward transform)

The smearing step starts by having a spectrum of the input
data on a regular (global) grid illustrated by the gray squares
in Fig. 3,a. (Illustration is shown in 2D but the reader should
imagine a 3D picture with boxes instead of rectangles.) Now,
our aim is to finish the interpolation of the spectrum from the
global grid onto rotated (local) grid on each box as shown by
black crosses in Fig. 3,a. For each box we loop through lo-
cal grids (black crosses), and for each cross we compute a
weighted sum of the values at the gray squares located within
the influence region depicted by red square with a side iy in
Fig. 3,a. We call this step gathered smearing. The parameter
hg is chosen as discussed in Dutt and Rokhlin (1993), and it is
taken to be 6 in most of our applications.

It is natural to parallelize the calculation for each box by em-
ploying a number of threads equal to the number of points in
the box grid (crosses). In order to perform the computation we
have to load the following data into the GPU memory: a block

of data on global grid containing the box; the corresponding
window function; and the transform parameters.

After performing the smearing step for all the points on the box
we can multiply it by a window function and use an inverse
FFT for it getting a subset of wave packet coefficients. All
these operations are executed locally on the GPU because all
necessary data is already loaded in its global memory.

X X X %X %X X
Xi X % %0 XX
XX HHX XX X

e
N %

Figure 3: Layout of a global (regular) grid shown with gray
squares and local (rotated) grid shown with black crosses.

Scattered smearing (inverse transform)

For the inverse transform we need to reverse the operation de-
scribed in the previous section. We will call this reversed oper-
ation scattered smearing. In the original code this step was im-
plemented in a straightforward manner and Fig. 3,a can be used
to illustrate this step as well. A loop is performed through local
grid points (crosses) which have prescribed values now. Thus
instead of collecting the values from the surrounding global
grid points, we do the opposite procedure — scatter values with
some weights to the global grid points (gray squares) that are
located within the attraction region shown by the red square.
From the two overlapping red squares in Fig. 3,a one can see
that parallelization of this loop will result in a memory writ-
ing conflict when several parallel threads are trying to access
the same memory address for writing. Note that simultaneous
reading from the same address is allowed without causing con-
flicts. Also, note that this was not an issue for the MPI-parallel
implementation because each CPU had its own copy of the
global grid (gray squares). These copies are merged during a

3D wave packets on GPU

final global reduction communication step.

One possible solution could be to use atomic operations which
are implemented in two stages: blocking access and then oper-
ation execution. We did not consider this option for our appli-
cation as it will result in uncontrolled memory access delays.
Instead we modified the smearing procedure as schematically
illustrated in Fig. 3,b. Now, we organize a loop over global
grid points (gray squares) in the block containing the box. To
obtain the interpolated values in each point we may use the
gathered smearing procedure described in the previous sub-
section. That is, to compute a weighted sum of contributions
from different points of the local grid (black squares). After
parallelization of this loop the local grid is accessed by differ-
ent threads simultaneously for reading data but each point of
the global is accessed by only one thread for writing.

From Fig. 3,b one can see that this alternative implementation
results in some extra computations as there are more points
in the global grid and for some of them the scattered smear-
ing is collecting zeros (for example, for uppermost and lower-
most gray squares located far away from the box). However,
the extra computation cost is compensated by the avoidance of
multi-thread memory writing conflicts.

OPTIMIZATION OF GPU CODE

For a better program performance it is important to organize
the memory access in a proper manner. The GPU memory hi-
erarchy includes register, shared memory, constant cache, tex-
ture cache and global memory. The register and shared mem-
ory sizes are small but it has an access time of only 4 clock
cycles. The constant and texture cache are usually much larger
and also have an access time of about 4 cycles, provided that
there are no cache misses. Finally, the global memory access
time is about 400-600 cycles. Thus, it is necessary to rely on
constant and texture cache to speed up the program.

First, we note that there are some parameters frequently used
during the decomposition procedure: number of scales; size
and orientation of boxes; etc. We allocate a structure contain-
ing these parameters in the constant cache. Then, we notice
that interpolation (smearing) procedure requires only reading
from big three-dimensional blocks of data in global memory.
Each thread requires about a thousand memory readings. Thus,
performance can be significantly improved by binding a tex-
ture pointer to the corresponding memory blocks. Data access
is becoming much faster using texture cache.

We use Compute Visual Profiler designed for C applications
working on GPUs. It allows us to measure the execution time
for the different parts of the code; thread size; the number of
cache misses; and other parameters. A profiling of our original
smearing implementation showed about 50 % of cache misses.
In order to use cache optimally we have to organize memory
access in a more sequential manner. In particular, our smearing
procedures contains three nested loops over the indexes (i, j, k)
when running through a red square in Fig. 3 but in 3D. We
have modified it in such a way that reading takes place from
the texture cache address (a + k,b+ j,c+i), where a, b and ¢

are some shifts. This resulted in reduction of cache misses to
about 15 %.

Our code is extensively using the 3D Fourier transforms im-
plemented in the specialized library CUFFT. In this library, 3D
FFTs are organized as a combination of 2D transforms. This
can result in different FFT performance in the case of rect-
angular data blocks. The final inverse FFT (IFFT) is applied
separately to each box that has rectangular form with differ-
ent number of grid points in different directions (for example,
38 x 38 x 76). In our original implementation, the IFFT on the
box was executed as 76 calls of FFT for 38 x 38 grid. Instead,
a faster implementation of the same procedure is possible with
38 calls of FFT for 76 x 38 grid.

For gaining efficiency we also recast to single-precision com-
putations. This required to identify all variable types explic-
itly and to use specific single-precision functions: __expf(),
_sinf(), __cosf() etc. Further optimization of the code will
include proper choice of parameters, such as the number of
thread blocks, the number of registers per thread, and the size
of shared memory per block. We plan to do this work in future
using CUDA Occupancy Calculator.

TESTING

We have tested the wave-packet implementation on different
platforms. In addition to the sequential program executed on
a single CPU we consider a parallel implementation based on
MPI. We also test our modified algorithm on two GPU plat-
forms: GeForce Quadro 4000 and NVidia Tesla C2050. The
last GPU card developed in 2010 is based on the Fermi tech-
nology providing faster floating point operations and data ac-
cess due to better hierarchical cache structure.

From the Table 1 one can see that using GPU platform one can
gain speed-up about 45 times (forward transform) and 35 times
(inverse transform) compared to sequential implementation.

platform forw. inv.
(sec) (sec)
Tesla C2050 (GPU) 65.5 89.5
GeForce Quadro 4000 (GPU) 88.0 119.1
4xDual-Core AMD Opteron 2218 (MPI) | 1123.8 | 1150.1
Intel core i7 2947.5 | 3137.0

Table 1: Performance for 2563 image on different platforms.

Just to illustrate that our transform is consistent (approximate
inverse property), we show the reconstruction of a 3D data
cube. We tested our code on a synthetic 3D data cube of size
2563: a union of 256 shot gathers for a 2D model (one reflec-
tor and a background velocity model with a low-velocity lens).
One shot gather (two-dimensional slice through the cube) is
shown in Fig. 4,a. After applying the forward wave-packet
transform we keep only the N,,, largest coefficients and dis-
card the remainder of the coefficients. Then we can apply the
adjoint transform to obtain a reconstructed image. We mea-
sure the compression rate for representing seismic data in the

3D wave packets on GPU

Figure 4: Wave-packet representation of 3D data cube. Slice through: (a) original data cube, (b) and (c) data reconstructed using

different number of coefficients.

wave-packet domain by the ratio CR = N, /Nin, where Njy, is
the number of pixels in the original data cube.

Two-dimensional slices through the reconstructed cubes are
shown in Fig. 4,b and Fig. 4,c for CR = .14 and CR = .02 cor-
respondingly. One can see that there is no visible data quality
deterioration in Fig. 4,b. In Fig. 4,c one can still see all relevant
information about the wave kinematics although an aggressive
thresholding results in a weakening of the amplitudes. This
is not surprising if we look at the concentration property of
the wave-packet coefficients. In Fig. 5 we show one particular
box in the Fourier domain (gray sphere is centered at the co-
ordinate origin). We draw only points of the local grid which
correspond to large coefficients. They appear to be clustered
in specific areas - where wavefield in data has orientation and
frequency content defined in accordance with the chosen box.

DISCUSSION

For a 256° input function it is necessary to repeat smearing
procedure ~ 10° times on a data array of 1 Gb size.

40,

Figure 5: Large coefficients are shown for one box.

We note that it is possible to make further development in or-
der to reduce memory requirements. First, we note that while

working with real-valued functions only half of the the spec-
trum can be stored in memory. To deal with large images
we propose to divide them into smaller segments processed
separately (for example, 5123 can be divided into 8 segments
of size 2563). Not that this is possible for seismic data be-
cause it is high-frequency in its nature. While dividing image
into smaller segments we can loose information about the low-
est frequencies. However, as the lower frequencies require a
smaller covering in frequency range, we can deal with with
them separately without increasing memory requirements.

Another important development is to adapt the code for de-
composing rectangular data which usually has much more sam-
ples in time compared to number of receivers and sources. Di-
viding into segments may also help dealing with this problem.

We remind that the wave-packet decomposition algorithm was
described in details in Duchkov et al. (2010), where we also
discussed seismic applications of the code. Some success-
ful applications of wave-packet type transforms were also re-
ported in the literature (Herrmann et al. (2007); Neelamani
et al. (2008); Douma and de Hoop (2007)).

CONCLUSIONS

An existing 3D wave-packet decomposition code was ported
onto a GPU platform. This was done by modifying some of
the computational steps of the algorithm. After some basic op-
timization we have got 45 and 35 times speedup for forward
and inverse transform correspondingly. Speedup was mea-
sured against the sequential code for a data set of size 256°.

This wave-packet decomposition code can be further used for
3D seismic data (or image) compression, interpolation and de-
noising.

ACKNOWLEDGMENTS

The work is partly supported by the Swedish Foundation for
International Cooperation in Research and Higher Education

and the Russian Ministry of education (GK P1178 from 03.06.10).

3D wave packets on GPU

REFERENCES

Andersson, F., M. De Hoop, H. Smith, and G. Uhlmann, 2008,
A multi-scale approach to hyperbolic evolution equations
with limited smoothness: Communications in Partial Dif-
ferential Equations, 33, 988-1017.

Beylkin, G., 1995, On the fast Fourier transform of functions
with singularities: Applied and Computational Harmonic
Analysis, 2, 363-381.

Candés, E., L. Demanet, D. Donoho, and L. Ying, 2006,
Fast discrete curvelet transforms: STAM Multiscale Model.
Simul., 5 (3), 861-899.

Douma, H., and M. de Hoop, 2007, Leading-order seismic
imaging using curvelets: Geophysics, 72, S231-S248.

Duchkov, A., F. Andersson, and M. de Hoop, 2010, Discrete
almost symmetric wave packets and multi-scale geometri-
cal representation of (seismic) waves: IEEE Transactions
on Geoscience and Remote Sensing, 48 (9), 3408-3423.

Dutt, A., and V. Rokhlin, 1993, Fast Fourier transforms for
nonequispaced data: SIAM Journal on Scientific Comput-
ing, 14, 1368-1393.

Fomel, S., and Y. Liu, 2010, Seislet transform and seislet
frame: Geophysics, 75 (3), V25-V38.

Herrmann, F., G. Hennenfent, and P. Moghaddam, 2007, Seis-
mic imaging and processing with curvelets: Extended Ab-
stracts, EAGE 69th Annual Meeting.

Neelamani, R., A. Baumstein, and D. Gillard, 2008, Coherent
and random noise attenuation using the curvelet transform:
The Leading Edge, 27 (2), 240-248.

