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ABSTRACT

As it was found relatively recently, behavior-oriented diffusion models
reasonably describes the time evolution of the cross-shore position of
coastal profiles. Two time-independent coefficients in the governing
equation, which embody the relevant physical properties, are identified
simultaneously. Earlier, the authors have validated and calibrated
numerically the proposed model, processing two sets of real data, the
first measured over 10 years at Duck, in North Carolina (USA), the
second obtained over 39 years measurements at Delfland (Holland).
Here, the model dependence on the alongshore position of the
observation point is studied. The coefficients of the model equation are
determined by means of a certain iteration process. As it was observed,
the achieved convergence is now better than when several separate
observations along the coast are involved.
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INTRODUCTION

It is well known that erosion and accretion phenomena are
responsible for modifications of the coastal environment, and
thus have been a source of growing concern among coastal
engineers. Taking into account human activities, a special study
is needed to predict the impact of coastal zone management. To
introduce the reader to this subject, we refer to the ideas of
Avdeev et al. (2009).

In Larson et al. (1987), a diffusion-type equation has been
derived applying mass conservation to the /-line model of
coastal profiles. The diffusion coefficient in the governing
equation, having the physical dimension of a square length
divided by time, corresponds to the time scale of shoreline
change, following a disturbance (a wave action, e.g.). A high
amplitude of the long-shore sand transport rate produces a rapid
shoreline response, so that a new state of equilibrium with the
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incident waves is attained. Furthermore, a larger "depth of
closure" indicates that a larger part of the beach profile
participates in the sand movement, thus leading to a slower
shoreline response. We recall that the depth of closure, i.e. the
seaward limit of any significant net sediment transport, has been
typically estimated by comparing beach profiles, determining
where vertical changes become negligible. In Beavers et al.
(1999), downward-looking sonar altimetries were used at Duck,
North Carolina (USA), to survey the value of the depth of
closure due to environmental conditions and time scales.

The aforementioned diffusion model, presented in De Vriend et
al. (1993), is the following:
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Here, 0X (¢,z) represents the change of cross—shore position

(namely, the change in the depth at the distance z from the
shoreline) of the coastal profile, and D(z) > 0 is the diffusion
coefficient.

Following De Vriend et al. (1993), we give some explanations
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for a special case of the term ¢(I,Z,5)(,
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¢=S (t,z) (which represents a source term), it is possible to
introduce the effects of a random forcing, long-shore transport
gradients, and human interference, such as nourishment and
sand mining, cf. De Vriend et al. (1993).

The linear choice ¢ = B(z)0(6X)/ 0z, or ¢ =B(z)dX , is
also interesting in view of applications. In these models, the

coefficient B(z) represents the velocity of long-shore sand waves
movement. Thus, the collective movement of long-shore sand



waves can be described in addition to a particular movement.
This means that the motion of sediments is characterized by two
scales: a relatively rapid movement of sand particles, and a
relatively slow collective movement of sand bodies. Clearly, all
process-based and empirical knowledge is stored in the
coefficients D(z) and B(z) as well as in the boundary conditions
to be associated to Eq. 1. In this paper, we assume
¢=B(z)oX+f(t) in Eq. 1. In over words, following De
Vriend et al. (1993), we suppose that the long-term evolution of
coastal lines, such as the cross-shore profile, is described by the
diffusion equation

u,=D(z)u_.+B(z)utf(r) @)

along with suitable Initial and Boundary Data. This model states
that changes in the bathymetry (that is the elevation of the
seafloor) rests on two space-dependent coefficients as well as on
a time-dependent source-term, the wave height.

Here u(z,t) = p(z,t) - p(z,0), p(z,t) denoting the depth profile and
thus u(zt) represents changes of the cross-shore profile.
Throughout the paper, the letter p will denote profiles, while u
will represent the difference between current profiles and the
initial profile. Concerning some general approaches to study the
long-term coastal profile evolution, see Bakker (1968),
Capobianco (1992), Dean (1991), Hanson (1987), Larson et al.
(1987). The two functional coefficients, D(z) and B(z), which
embody macroscopically all the relevant physical processes, are
unknown, and it seems very hard to conceive any derivation of
them from prime physical principles, or by means of purely
physical measurements. The source term, f{?), is associated with
wave conditions, in fact it represents the average wave height.
As was already mentioned, a validation of the model proposed
by De Vriend et al. (1993) was obtained in Avdeev et al. (2009).
As it was already observed, models like that in Eq. 2 reasonably
describes depth profile evolution, that is the cross shore at a
certain single point of the coast. Note that data sets measured at
two geographic locations (in the USA and in Holland) and with
essentially different structure, were considered. Moreover, the
possibility of 1-2 years prediction of the depth profile evolution
was demonstrated.

In this work, by using modern computer facilities, we include
into consideration the along-shore dependence of the depth
profiles. We apply the same model, where the coefficients, D
and B, only depend on the cross-shore distance, z, to describe
the depth profile evolution on a certain interval along the shore
line.

The rest of the paper is arranged as follows. First of all, the
mathematical formulation of the problem is given, following
Avdeev et al. (2009). Then, we describe the structure of the
measured data and recall some of the results earlier obtained, in
which only one observation point at the coast was used.
Proceeding as in Avdeev et al. (2009), we run some numerical
tests using 30 points along the coast. Finally, the problem is
calibrated under the assumption that the coefficients D and B
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may take different values at each of 10 observation points along
the coast. In all cases, D and B are assumed to be piecewise
constant, taking 15 (different) values at equal cross shore
interval.

STATEMENT OF THE PROBLEM

A validation of the model proposed in De Vriend et al. (1993)
was obtained proceeding along the following lines. Knowing
experimentally the solution, say u“”(z, ¢), in the space-time
domain Or=|(z1):0<¢<T.0<z<H| , for some H > 0

and 7 > 0 (at the grid-points where the measurements were
made, i.e. at Delfland), we can compute the Initial-Value (IV),
u“?(z,0) (note that u“”?(z,0) = 0 in case we describe changes of
the coastal profile), and the Boundary-Values (BVs), u“?(H,?),
0u™0z(0,t) . The latter quantity was obtained, in practice,
computing a differential namely
e (Az,t)=u™(0,1)) 4z Az
sufficiently small. While 7 could be any sufficiently long final
observation time (in order to be able to infer the long-time
behavior of the coastal line evolution), the parameter H can be
thought of as an estimate of the so-called “distance of closure”
(or depth of closure), that is the location where the simulated
diffusive and transport phenomena virtually end, or, in other
words, it represents the seaward limit of significant net sediment
transport.

quotient,

for a space-step

Assuming that the underlying model might be represented by the
diffusion equation, Eq. 2, and starting from some “initial guess”
for the coefficients B(z) and D(z), both taken piecewise constant
with z, we use a suitable inversion algorithm (based on the
minimization of a certain cost functional) to obtain iteratively a
better approximation, also piecewise constant with z, say B, and
D,, at the n-th iteration, for the two coefficients, simultaneously.

While we do not know the “true” values of coefficients, B(z) and
D(z), in (2), we now solve the direct problem,

dir dir

u{" =D, ull +B,u™ +f(t) (3)

for (z1)€0;=[0,H]x[0,T] , with the IV and the BV's
provided by the experimental solution, u“” (the data), i.e.,
imposing u™(z, 0) = u**(z, 0), u""(H, t) = u**(H, ¢), and u"".(0, 1)
= u*?,(0, t). The solution, so-evaluated numerically, is then
compared with the solution (actually the change of the profile)
obtained experimentally in Q7 (the measured data, u®?(z, t) ).
These two quantities, u*?(z, t) and u”"(z, ¢), favorably agree in
Or whenever the error, &(z¢)=|u® (z,t)—u"(z1¢)| is
"small", in some sense: point-wise, or in the maximum norm
(that is its maximum value is small), or in the L? norm (that is in
the square-mean, or rms) sense.

The inversion algorithm, which has been used in this paper, is
similar to those, widely used to solve a number of the so-called
inverse problems, see Lavrent'ev et al. (1986). It consists of



minimizing a certain “misfit functional” (or cost functional).
Very often, the Fourier image of such a functional is minimized
instead, which is an equivalent task, in view of Parseval identity.
Here we use a version of this scheme, but we take, formally, the
Laplace transform of the problem considered.

As for the numerical inversion, we, first recalculate the available
data in terms of Laplace transforms, in order to obtain the data

U(Z,a)):L[u(Z,t)] and F(w)=L[f(¢)] . More precisely,
in order to solve the problem, we use the Laplace-type
representation

T
U(z,co):‘fu(z,t)e_“”dt
0

with the formal inverse formula given by
w

2
1
u(z,t)=?f U(zw)e” dw
@,
In this case, after formal Laplace transforming, the direct
problem (3) for U d'r( Z,a)) takes on the form

FU(zw)  B+m

U (z,0)=0 4
Py 5 U (z0) 4)
with the boundary conditions given by

oU

a—zz=0:UI(a)) 4)

oU

vy =0

a =z z=H

Ul..o=U,(®) (6)
The cost functional we considered is

@®(B(z),D(z))=

(7

N H
=2 [ (z0,) U (z0,)Pd:
n=—N 0

for some N. Note that the appropriate domain of integration, and
the data, U"", have been obtained solving a set of direct
problems (each for every value of n).

The general idea here is to minimize the functional in Eq. 7 by
choosing appropriate values of the coefficients D(z) and B(z).
The iterative procedure is as follows: we first guess certain
values D* and B* of D and B, respectively, in Eq. 4, and then
we solve numerically such equation with the boundary data
given in Eq. 5, thus obtaining U*. Then, we compute the current
value of the functional in Eq. 7 corresponding to U* for U™,
and, based on some numerical method (the conjugate gradient
method, e.g.), we make a new guess about the coefficients of the
differential equation in such a way to attain a smaller value of
the functional in Eq. 7.
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STRUCTURE OF THR MEASURED DATA

The long-time evolution of the cross-shore position of coastal
profiles was monitored during 39 years, from /963 to 2001, at
Delfland, in The Netherlands (JARKUS dataset). This real data
sets at each given point of the coast consists of a /00 x 39 array,
corresponding to /00 observation points in space (i.e., in the z
variable), each representing an average over 5 meters cross-
shore, and 39 observation times, each representing an average
over / year. The depth profiles have been studied only within a
distance of 500 m from the coastline with a space step size of 5
m. Significant changes of the depth could be observed at the
maximal distance where measures were made, at Delfland.
Therefore, the space interval under consideration actually does
not cover the distance of closure.

RECONSTRUCTING EQUATION COEFFICIENTS, TAKING
INTO ACCOUNT CERTAIN AREA ALONG THE COAST

The functional given in Eq. 7 was used to recover the functions
D(z) and B(z) in the governing Eq. 2, or, in fact, in the Eq. 4.
Recall that in Avdeev et al (2009) similar problem were solved
numerically using the experimental data obtained at the
Ameland Island (in Holland), over 36 years, from 1963 to 1998.
There, a special point at the coast was selected. Here we solve a
similar problem, taking into account the full portion of the coast
line located between the indicators 12.00 and 18.00 shown in the
Fig. 1.

At the so-selected part of the coast 30 observation points were
located at the distance of 200 m from each other. Measurements
(depth versus distance from the given point at the coast) were
taken once per a year. The number of points where the depth
(cross shore) was measured varied from 70 to 150 opposite each
point of the coast. Thus, an area of 3 km along the coast times
about 1,5 km seaward was covered by measurements. The
selected part of the coast is practically linear. Thus we did not
expect dramatically large fluctuations in the values of model
coefficients, D(z) and B(z).




Fig. 1. Schematic map of the Ameland Island (above). The part
of the coastline where the depth profiles have been used in the
numerical experiments, is given in pink. A satellite image of
Ameland Island is shown at the lower picture.

The measured data, used to minimize the cost functional in Eq.
7, is visualized in Fig. 2. The “horizontal” axis (going down
from the left to the right) represents the years when the
observations were made. The points along the coast are at the
other axis, going up from left to right. Appreciable changes in
depth (in meters) are observed on the vertical axis. The entire
picture looks chaotic. A contour plot is given in Fig. 3, for
convenience and future comparison. As it can be observed, the
depth's deviation exceeds 3 meters in certain areas, and this
phenomenon recurs from year to year.

r /

1990 /
V12

Fig. 2. Depth variations nearby the coast (virtually at z = 0), at
all selected coastal observation points over the time when the
observations were made. Vertical axis is calibrated in meters.
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Fig. 3. Contour plot for the depth variation at the coast. The
horizontal axis represents the years when the measurements
were made, the vertical ones, observation points along the coast.

NUMERICAL RESULTS

In the first set of numerical tests, the coefficients, D(z) and B(z),
were supposed constant at all 30 observation points along the
coast. The following version of the misfit functional in Eq. 7
was considered in the form

o(B(2)D(:))=
2 [1U(@)-U%(0,0,D(z),B(z))Pde ®)

The functions D(z) and B(z) were supposed to be constant at
each interval 100 m, that is they take on 15 values each:

D(z) =d, B(z) = b, 100n<z< 100 (n+1), n=0,1,...14. (9)

The values of coefficients D(z) and B(z) in the form of Eq. 9,

obtained numerically, are shown in Fig. 4.
5
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Fig. 4. Equation coefficients D(z) (above) and B(z) (below) for
which the functional in Eq. 8 attains its minimum value. Both,
D(z) and B(z), are piecewise constant functions as in Eq. 9.

As it was observed, the convergence of the numerical algorithm
that implements the cost functional in Eq. 8 was faster compared
to that of for the functional in Eq. 7 used for the single
observation made along the coast. The value attained by the
functional in Eq. 8 was

@(B(z),D(z))=41,5 (10)

The direct problem Egs. 4~5 was solved, again, with the so-
obtained piecewise constant coefficients in Eq. 9. We then
compute the depth's variations close to the coast, as it was done
previously using the measured data. The results are given in

Figs. 5~6:

Fig. 5. Depth variations (cf. Fig. 2) close to the coast (virtually
at z = ), computed with the help of the coefficients D(z) and
B(z) obtained numerically in the form of Eq. 9. The vertical axis
is in meters.

1965 1970 1975 1980 1985 1990 1995
Fig. 6. Contour plot of the depth variation at the coast (cf. Fig.
3), computed by the help of the values of the coefficients D(z)
and B(z) obtained numerically as in Eq. 9. The horizontal axis
represents the years, the vertical one the observation points
along the coast.

As it was observed, the qualitative behavior of the depth
evolution agrees with what was observed, which fact is clear
from Figs. 3 and 6.

In Figs. 7~8, the difference are shown between the measured
data and the numerical solution to the direct problem for Eq. 4
with the obtained optimal values of coefficients in the form of
Eq. 9. Even though the variation of such a difference looks
similar to that in the original picture in Fig. 2, the average
amplitude is essentially smaller that that and it does not exceed
1 m.
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Fig. 7. Difference between the measured and the computed
depth's variation nearby the coast, i.e., difference between the
values shown on Figs. 2 and 5.



This phenomenon is clearer considering the contour plot of such
a difference, depicted in Fig. 8. Definitely, the variations of the
computed difference is distributed more uniformly compared to
the original depth's variations of Figs. 3 and 6. Moreover, such a
difference, in practice, does not exceed 1 m at any time and all
locations.

1965 1970 1975 1980 1985 1990 1995
Fig. 8. Contour plot for the difference of values given in Fig. 7;
compare to Figs. 3 and 6.

Finally, we admit variations of the coefficients, D(z) and B(z),
along the coast. Precisely, we suppose that both coefficients
D(z) and B(z) takes three different values: D;(z) and B,(z) for the
part of the coast line, located between the indicators 12.00 and
14.00 shown in the Fig. 1; D;(z) and B:(z) for the part between
the indicators 14.00 and 16.00; and D;(z) and B;(z), for the part
between the indicators 16.00 and 18.00. Each pair Diz) and
Bi(z), i=1,2,3, has the form, given in Eq. 9.

5
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Fig. 9. The numerically obtained values of the coefficients D,(z)
(above), D(z) (middle), and Ds(z) (below), in the form given in
Eq. 9 are shown as solid line. The dashed line represents the
values of D(z), obtained earlier and given in Fig. 4 (above).

The functional in Eq. 8 now takes the form
¢(Bl(Z):D(Z)erz(Z)rDz(Z):Bs(Z):Ds(Z)):

10
> [1Uy(0)-U(0,0,D,,B,) do+

i1

20 . . (11
Z f |U’0(a))— U?lr(os W:D2’32)|2dw"'

i=11 o

30
_ZZ:I Ui(@)-U%(0,0,D,,B,)Fdo

For initial guess we use the uniform (with respect to direction
along the coast) optimal values of D(z) and B(z), in the form of
Eq. 9, obtained earlier. These triples Di(z) and Bi(z), i = 1, 2, 3,
are shown in Figs. 9~10, respectively.
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Fig. 10. The numerically obtained values of the coefficients
Bi(z) (above), B>(z) (middle), and B;(z) (below), given in the
form of Eq. 9, are shown as solid line. The dashed line
represents the values of B(z), obtained earlier and given in Fig. 4
(below).

The value of the misfit functional in Eq. 11 turned out to be
smaller, compared to the what found in the first numerical test,
see Eq. 10:

D(B\(2),D,(2), B,(2). D,(2), Bs(2), D5(2)) = 32,3 (12)

As it can be observed in Figs. 9~10, the variations of the
coefficients D(z) and B(z) become smaller. Figs. 11~12 show
the simulated variations of depth at the coast using the triples
Di(z) and By(z), i = 1, 2, 3, and the corresponding contour plot
(compare with Figs. 5~8).
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Fig. 11. Contour plot of the depth's variation at the coast, at z=0
(cf. Fig. 8), computed with the numerically obtained triples
Di(Z) and Bi(Z), i= 1, 2, 3.

Finally, as it was done in Figs. 7~8, we show the difference
between the values of the measured data and those provided by
the numerical solution to the direct problem in Eq. 4 with the
optimal values of the triples for] the coefficients D;(z) and B(z),
i=1,2 3inthe formof Eq.9.
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Fig. 12. Difference between the measured and the computed
depth's variation close to the coast (contour plot, cf. to Fig. 8).

In Figs. 13~14 we also show the corresponding error for the
computed values of the depth's profiles, according to the
formula

o) (O,t) :lume‘”"md(o’ ! )_ucalculated(oat)

0,¢)

[+100 (13)

measured (

and the corresponding contour plot:

Fig. 13. Related error, computed according to Eq. 13, describing
the coastal profile evolution with the help of the governing Eq. 4
and the optimal coefficients Di(z) and Bi(z), i=1, 2, 3, given in
Figs. 9~10.
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Fig. 14. Contour plot for the corresponding error, Eq. 13, given
in Fig. 13.
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CONCLUSIONS

The diffusion model in Eq. 2 was used to describe the measured
data of costal profile evolution. Upon an appropriate choice of
the two coefficients, B(z) and D(z), modeled as piecewise
constant functions, but depending on the distance from the
shoreline, the depth profile evolution can be reasonable
described on a rectangular region having the size of 3 km along
the coast times about 1,5 km seaward. The model equation in
Eq. 2 exploits data up to the so-called depth of closure, that is
the distance from the shore where depth changes virtually end.
Even though the available measured data does not possess this
property, the numerical relative errors (see Eq. 13) are rather
small over the entire area of observation.
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