
An Introduction to OpenMP

Alexey A. Romanenko
arom@ccfit.nsu.ru

Based on Sun Microsystems' presentation

mailto:arom@ccfit.nsu.ru

What is this section about?

● OpenMP overview
● OpenMP program compilation
● OpenMP execution environment
● Ways to make parallel program with OpenMP
● etc.

Agenda
● The OpenMP programming model
● OpenMP guide tour
● OpenMP overview

– Clauses
– Worksharing constructs
– Synchronization constructs
– Environment variables
– Global Data
– Runtime functions

OpenMP Origins
● In the early 90's, vendors of SMP supplied similar, directive-

based, Fortran programming extensions:
– The user would augment a serial Fortran program with

directives specifying which loops were to be parallelized
– The compiler would be responsible for automatically

parallelizing such loops across the SMP processors
● Implementations were all functionally similar, but were diverging
● First attempt at a standard was the draft for ANSI X3H5 in 1994.

It was never adopted, largely due to waning interest as
distributed memory machines became popular.

● The OpenMP standard specification started in the spring of
1997, taking over where ANSI X3H5 had left off, as newer
shared memory machine architectures started to become
prevalent.

OpenMP today

● The OpenMP programming model is a powerful, yet
compact, de-facto standard for Shared Memory
Programming

● Current release of the standard: 3.0
● Specifications released May 2008

Goals of OpenMP

● Provide a standard among a variety of shared memory
architectures/platforms

● Establish a simple and limited set of directives for
programming shared memory machines. Most of the
work is done by just 3 or 4 directives.

● Provide capability to incrementally parallelize a
program, unlike message-passing libraries which
typically require an all or nothing approach.

● Provide the capability to implement both coarse-grain
and fine-grain parallelism

● Support Fortran (77, 90, and 95), C, and C++

The SMP systems

BUS

Shared Memory Model
● All threads have access to the

same, globally shared, memory
● Data can be shared or private
● Shared data is accessible by all

threads
● Private data can be accessed

only by the threads that owns
● Data transfer is transparent to

the programmer
● Synchronization takes place, but

it is mostly implicit

About Data
● In a shared memory parallel program variables have a

"label" attached to them:
– Labelled "Private" Visible to one thread only⇨

● Change made in local data, is not seen by
others

● Example - Local variables in a function that is
executed in parallel

– Labelled "Shared" Visible to all threads⇨

● Change made in global data, is seen by all
others

● Example - Global data

The OpenMP execution model

Example

Sequential code

void main(){
 double x[1000];
 for(i=0; i<1000; i++){
 calc_smth(&x[i]);
 }
}

Parallel code

void main(){
 double x[1000];
#pragma omp parallel for ...
 for(i=0; i<1000; i++){
 calc_smth(&x[i]);
 }
}

OpenMP Guided Tour

http://www.openmp.org

When to consider using
OpenMP?

● The compiler may not be able to do the parallelization
in the way you like to see it:

● A loop is not parallelized
– The data dependency analysis is not able to

determine whether it is safe to parallelize or not
– The granularity is not high enough
– The compiler lacks information to parallelize at the

highest possible level
● This is when explicit parallelization through OpenMP

directives and functions comes into the picture

Terminology
● OpenMP Team := Master + Workers
● A Parallel Region is a block of code executed by all threads

simultaneously
– The master thread always has thread ID 0
– Thread adjustment (if enabled) is only done before entering a

parallel region
– Parallel regions can be nested, but support for this is

implementation dependent
– An "if" clause can be used to guard the parallel region; in case

the condition evaluates to "false", the code is executed serially
● A work-sharing construct divides the execution of the enclosed

code region among the members of the team; in other words: they
split the work

A loop parallelized with
OpenMP

#pragma omp parallel shared(a,b)
{
#pragma omp for private(i)
 for(i=0; i<10000; i++)
 a[i] = a[i] + b[i];
}

Clauses

Implicit barrier

Components of OpenMP

Directive format

● C: directives are case sensitive
– Syntax: #pragma omp directive [clause [clause] ...]

● Continuation: use \ in pragma
● Conditional compilation: _OPENMP macro is set

Example
#ifdef _OPENMP
printf(“Caution: The program was compiled with ”

“OpenMP and can consume all CPU resources ”
“ of your PC!\n”);

#endif
...
#omp parallel for private(i,j) \

shared(a,b,c)
{

for(i=0; i<100; i++)
for(j=0; j<100; j++)

a[i] = b[i][j]*c[j];
}

Some OpenMP Clauses

About OpenMP clauses

● Many OpenMP directives support clauses
● These clauses are used to specify additional

information with the directive
● For example, private(a) is a clause to the for directive:

– #pragma omp for private(a)
● Before we present an overview of all the directives, we

discuss several of the OpenMP clauses first
● The specific clause(s) that can be used, depends on

the directive

The if/private/shared clauses
● if (scalar expression)

– Only execute in parallel if expression is true
– Otherwise, execute serially

● private (list)
– No storage association with original object
– All references are to the local object
– Values are undefined on entry and exit

● shared (list)
– Data is accessible by all threads in the team
– All threads access the same address space

Example

#omp parallel for private(i,j) \
shared(a,b,c) if(M>100)

{
for(i=0; i<M; i++)

for(j=0; j<100; j++)
a[i] = b[i][j]*c[j];

}

About storage association

● Private variables are undefined on entry and exit of
the parallel region

● The value of the original variable (before the parallel
region) is undefined after the parallel region!

● A private variable within a parallel region has no
storage association with the same variable outside of
the region

● Use the first/last private clause to override this
behaviour

● We will illustrate these concepts with an example

The first/last private clauses

● firstprivate (list)
– All variables in the list are initialized with the value

the original object had before entering the parallel
construct

● lastprivate (list)
– The thread that executes the sequentially last

iteration or section updates the value of the objects
in the list

Example

#pragma omp parallel
{
#pragma omp for private(i) lastprivate(k)
 for(i=0; i<10; i++)
 k = i*i;
}
printf("k = %d\n", k); // k == 81

Example
int myid, a;

a = 10;
#pragma omp parallel default(private) \
 firstprivate(a)
{
 myid = omp_get_thread_num();
 printf("Thread%d: a = %d\n", myid, a);
 a = myid;
 printf("Thread%d: a = %d\n", myid, a);
}

Thread1: a = 10
Thread1: a = 1
Thread2: a = 10
Thread0: a = 10
Thread3: a = 10
Thread3: a = 3
Thread2: a = 2
Thread0: a = 0

The default clause

● default (none | shared)
● none

– No implicit defaults
– Have to scope all variables explicitly

● shared
– All variables are shared
– The default in absence of an explicit "default"

clause

The reduction clause - example

● Example:
#pragma omp parallel

{
#pragma for shared(x, sum) private(i)

for(i=0; i<10000; i++)
sum = sum + x[i];

}
● Care needs to be taken when updating shared

variable SUM
● With the reduction clause, the OpenMP compiler

generates code such that a race condition is avoided

The reduction clause
● reduction (operator : list)

– Reduction variable(s) must be shared variables
– Note that the value of a reduction variable is undefined from

the moment the first thread reaches the clause till the
operation has completed

– The reduction can be hidden in a function call
#pragma omp parallel

{
#pragma for shared(x) private(i) reduction(+:sum)
 for(i=0; i<10000; i++)

sum += x[i];
}

#pragma omp parallel
{
#pragma for shared(x) private(i) reduction(min:gmin)

for(i=0; i<10000; i++)
gmin = min(gmin, x[i]);

}

The nowait clause

● To minimize synchronization, some OpenMP
directives/pragmas support the optional nowait clause

● If present, threads will not synchronize/wait at the end
of that particular construct

#pragma omp for nowait
{
 ...
}

The parallel region

● A parallel region is a block of code executed by
multiple threads simultaneously

#pragma omp parallel [clause[[,] clause] ...]
{
 "this will be executed in parallel"
} //implied barrier

The parallel region - clauses
● A parallel region supports the following clauses:

– if (scalar expression)
– private (list)
– shared (list)
– default (none|shared)
– reduction (operator: list)
– copyin (list)
– firstprivate (list)
– num_threads (scalar_int_expr)

Worksharing Directives

Work-sharing constructs

● for, section, single
– The work is distributed over the threads
– Must be enclosed in a parallel region
– Must be encountered by all threads in the team, or

none at all
– No implied barrier on entry; implied barrier on exit

(unless nowait is specified)
– A work-sharing construct does not launch any new

threads

Work-sharing constructs

The omp for directive
● The iterations of the loop are distributed over the

threads
 #pragma omp for [clause[[,] clause] ...]
 <original for-loop>
● Clauses supported:

– private
– firstprivate
– lastprivate
– reduction
– ordered
– schedule
– nowait

Load balancing
● Load balancing is an important aspect of performance
● For regular operations (e.g. a vector addition), load

balancing is not an issue
● For less regular workloads, care needs to be taken in

distributing the work over the threads
● Examples of irregular workloads:

– Transposing a matrix
– Multiplication of triangular matrices
– Parallel searches in a linked list

● For these irregular situations, the schedule clause
supports various iteration scheduling algorithms

The schedule clause

● schedule (static | dynamic | guided [, chunk] | runtime)
● static [, chunk]

– Distribute iterations in blocks of size "chunk" over
the threads in a round-robin fashion

– In absence of "chunk", each thread executes
approx. N/P chunks for a loop of length N and P
threads

The schedule clause
● dynamic [, chunk]

– Fixed portions of work; size is controlled by the
value of chunk

– When a thread finishes, it starts on the next portion
of work

● guided [, chunk]
– Same dynamic behaviour as "dynamic", but size of

the portion of work decreases exponentially
● runtime

– Iteration scheduling scheme is set at runtime
through environment variable OMP_SCHEDULE

The SECTIONS directive

● The individual code blocks are distributed over the
threads

● Clauses supported:
– private
– firstprivate
– lastprivate
– reduction
– nowait

Synchronization Controls

Barrier

● Suppose we run each of these two loops in parallel over i:
 for (i=0; i < N; i++)
 a[i] = b[i] + c[i];
 for (i=0; i < N; i++)
 d[i] = a[i] + b[i];

● This may give us a wrong answer
● We need to have updated all of a[] first, before using a[]

Barrier

● Each thread waits until all others have reached this
point:
– #pragma omp barrier

When to use barriers?

● When data is updated asynchronously and the data
integrity is at risk

● Examples:
– Between parts in the code that read and write the

same section of memory
– After one timestep/iteration in a solver

● Unfortunately, barriers tend to be expensive and also
may not scale to a large number of processors

● Therefore, use them with care

Critical region
● If sum is a shared variable, this loop can not be run in parallel
 for (i=0; i < N; i++){

 sum += a[i];

 }

● We can use a critical region for this:
 for (i=0; i < N; i++){

 //one at a time can proceed
 sum += a[i];
 //next in line, please

 }

Critical region

● Useful to avoid a race condition, or to perform I/O (but
which still will have random order)

● Be aware that your parallel computation may be
serialized and so this could introduce a scalability
bottleneck (Amdahl's law)

● All threads execute the code, but only one at a time:
– #pragma omp critical [(name)]

{<code-block>}
– #pragma omp atomic

<statement>

SINGLE and MASTER construct

● Only one thread in the team executes the code
enclosed

 #pragma omp single [clause[[,] clause] ...]
{ <code-block> }

● Only the master thread executes the code block:
 #pragma omp master

{<code-block>}

OpenMP Environment Variables

OpenMP environment variables

● OMP_NUM_THREADS n
● OMP_SCHEDULE “schedule,[chunk]”
● OMP_DYNAMIC { TRUE | FALSE }
● OMP_NESTED { TRUE | FALSE }

OpenMP Runtime Functions

OpenMP runtime environment
● OpenMP provides various user-callable functions

– To control and query the parallel environment
– General purpose semaphore/lock routines

● Nested locks are supported, but will not be
covered here

● The runtime functions take precedence over the
corresponding environment variables

● Recommended to use under control of an #ifdef for
_OPENMP (C/C++)

● C/C++ programs need to include <omp.h>

Runtime library overview
omp_set_num_threads
omp_get_num_threads
omp_get_max_threads
omp_get_thread_num
omp_get_num_procs
omp_in_parallel
omp_set_dynamic
omp_get_dynamic
omp_set_nested
omp_get_nested
omp_get_wtime

omp_get_wtick

Set number of threads
Return number of threads in team
Return maximum number of threads
Get thread ID
Return maximum number of processors
Check whether in parallel region
Activate dynamic thread adjustment
Check for dynamic thread adjustment
Activate nested parallelism
Check for nested parallelism
Returns wall clock time
Number of seconds between clock ticks

OpenMP locking routines
● Locks provide greater flexibility over critical sections and

atomic updates:
– Possible to implement asynchronous behaviour
– Not block structured

● The so-called lock variable, is a special variable:
– C/C++: type omp_lock_t and omp_nest_lock_t for nested

locks
● Lock variables should be manipulated through the API only
● It is illegal, and behaviour is undefined, in case a lock

variable is used without the appropriate initialization

Nested locking
● Simple locks: may not be locked if already in a locked state
● Nestable locks: may be locked multiple times by the same

thread before being unlocked
● The interface for functions dealing with nested locks is

similar (but using nestable lock variables):
 Simple locks Nestable locks
 omp_init_lock omp_init_nest_lock
 omp_destroy_lock omp_destroy_nest_lock
 omp_set_lock omp_set_nest_lock
 omp_unset_lock omp_unset_nest_lock
 omp_test_lock omp_test_nest_lock

OpenMP and Compilers
● OpenMP v2.5

– Visual C++ 2005 (Professional and Team System editions)
– Intel Parallel Studio
– Sun Studio
– Portland Group compilers
– GCC since version 4.2.

● OpenMP v3.0
– GCC 4.3.1
– Nanos compiler
– Intel Fortran and C/C++ versions 11.0 and 11.1 Compilers, and

Intel Parallel Studio.
– IBM XL C/C++ Compiler
– Sun Studio 12 update 1

Program compilation

● gcc -fopenmp -o test test.c
● icc -openmp -o test test.c

Summary

● OpenMP provides for a compact, but yet powerful,
programming model for shared memory programming

● OpenMP supports Fortran, C and C++
● OpenMP programs are portable to a wide range of

systems
● An OpenMP program can be written such that the

sequential version is still “built-in”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

