
Program optimization

Alexey A. Romanenko
arom@ccfit.nsu.ru
arom@u-aizu.ac.jp

mailto:arom@ccfit.nsu.ru
mailto:arom@u-aizu.ac.jp


What this course about?

In this course you will learn:
● Types of program optimization
● Approaches for program optimization
● Profiling tools



Optimization

Optimization consists of analyzing and 
tuning software code to make it perform 

faster and more efficiently on Intel 
processor architecture.

www.intel.com/products/glossary/body.htm

On ANY architecture!

http://www.intel.com/products/glossary/body.htm


Types of optimization

● Performance
● Memory
● Scalability
● Communications
● etc.

● We address mainly to performance  optimization



Statements
● Donald Knuth

– Premature optimization is the root of all evil
● If your code already works, optimizing it is a sure 

way to introduce new, and possibly subtle, bugs
● Optimization tends to make code harder to 

understand and maintain
● Some of the optimization techniques increase speed 

by reducing the extensibility of the code
● A lot of time can be spent optimizing, with little gain 

in performance, and can result in obfuscated code
● If you're overly obsessed with optimizing code, 

people will call you a nerd behind your back



Statements
● Faster program, more memory required.
● Making more faster program required more time 

for optimization.
● Optimizing code for one platform may actually 

make it worse on another platform

BUT!!!!!

● Michael Abrash (Quake, Unreal Tournament, 
Space Strike, Half-life, etc.):

– Performance must always be measured

– Any optimization, user can feel, should be 
done. 



Does compilers make an 
optimization?

● They does. But

– Compiler do not have database for algorithms

– Compiler know nothing about field of investigation

– It's impossible for compiler to look through your 
program totally

– Worth implementation couldn't be fix by any 
compiler

–  What if your program should executed as you 
wrote it?



Stages of optimization

● Program design

– Selecting algorithms and data structures

– Speed up factor – 100 ...1000+
● Program implementation

– Programming language 

– Speed up factor – 10 ...100+
● Program profiling

– Turn program for the architecture

– Speed up factor – 1 ...10+ (not for CELL)



Example

s, i, N - integer 

for (s=0, i=1; i<=N; i++)
s += N/i;

If N equal 40.000.000.000, it takes 
● ~ 6 hours on Intel PIII-933! 
● ~ 1 hour on Xeon Dualcore 2.4GHz (OpenMP, 

Pthreads)

● Let's take Quadro-core CPU and 4 CPU system 
board. 



Solution
N = 10

I 1 2 3 4 5 6 7 8 9 10
10 5 3 2 2 1 1 1 1 1k=[N/I]

//[N/k] – index of right edge
//[N/(k+1)] – index of left edge

i = N;
while(i>0){

//m – number of elements with the same value
m = i - N/(N/i + 1); 
s +=(N/i) * m;
i -= m;

}

Less then 1 sec!



Selecting algorithm
● Read books

– The Art of Computer Programming, vol.1. Fundamental 
Algorithms by Donald E. Knuth 

– A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and 
Analysis of Computer Algorithms.

– Field related works.
● Find simetry
● Think of border conditions
● Apply your imagination, thing out of box.

If your program need to be run once, perhaps, you don't need to 
spend your working hours for its optimization. It would be better 
to spend this time with you friends while program work.



Program implementation



Program implementation

● Loops
● Memory I/O
● Function calls 
● Passing parameters
● etc.



Loops

● Rule of “10-90” - 90% of time you program 
spends in 10% of the code.

● As a rule, this 10% of code is loops.
● Optimizing loops you can significantly speed 

up your program



Loops optimization

● Move conditions outside of the loop
● Eliminate data recalculations
● Keep all data in cache
● Place simples operations inside the loop

– Unroll loops



Conditions inside the loop

for(i=0; i<N; i++){
if(i<N/2)

// - foo
else

// - bar
}

for(i=0; i<N/2; i++){
// - foo

}
for(i=N/2; i<N; i++){

// - bar
}

for(i=0; i<N; i++){
if(a == b)

// - foo
else

// - bar
}

if(a == b)
for(i=0; i<N; i++)

// - foo
else

for(i=0; i<N; i++)
// - bar



Conditions inside the loop

● Unnecessary operations inside the loop 

– Comparison

– Jump
● Stall processor's pipeline on wrong prediction



Data recalculation

for(i=0; i<N; i++){
s += F(i)*dx;

}

for(i=0; i<N; i++){
s += F(i);

}
s = s*dx;



Problem
● Parallelepiped is given
● Edges of parallelepiped are A, B, C – integer
● 1 <= A, B, C, <=250
● Find all parallelepipeds, where main diagonal D  is 

integer, and D<=250  

A

B

C

D



Solution 1

for(D=1; D<=250; D++){
for(A=1; A<=250; A++){

for(B=1; B<=250; B++){
for(C=1; C<=250; C++){

if(D*D*D ==  A*A*A + B*B*B + C*C*C){
my_print(A, B, C, D);

}
}

}
}

}



Notes

● Cubes could be calculated in advance;
● If one parallelepiped was found (ABC), we know other 

five: ACB, BAC, BCA, CAB, CBA. Modify my_print 
function;

● We can check edges which meet the following 
equation: A<=B<=C 



Solution 2
for(D=1; D<=250; D++) cube[D] = D*D*D;
for(D=1; D<=250; D++){

for(A=1; A<D; A++){
for(B=A; B<=250; B++){

tmp = cube[D] – cube[A] – cube[B];
if(tmp <= 0) break;
for(C=B; C<=250; C++){

if(tmp < cube[C]) break;
if(tmp == cube[C]){

my_print(A, B, C, D);
break;

}
}

}
}

}
Twice times faster!



Keeping data in cache

for(i=0; i<N; i++)
for(j=0; j<K; j++)

c[i][j] = 
a[i][j]*f[j];

do I=1, N
do J=1, K

c(I,J) = a(I,J)*f(J)
end do

end do

for(j=0; j<K; j++)
for(i=0; i<N; i++)

c[i][j] = 
a[i][j]*f[j];

do J=1, K
do I=1, N

c(I,J) = a(I,J)*f(J)
end do

end do



Array elements

● Fortran: 

– m(1, 1), m(2, 1), m(3, 1), ... m(1, 2), m(2, 2), ...
● C/C++ : 

– m(0, 0), m(0, 1), m(0, 2), ... m(1, 0), m(1, 1), ...

● Data in cache are stored in cache lines
● Cache line is from 8 to 512 bytes
● Cache line contains several stored elements
● Fetching data from cache faster then fetching data 

from memory



Keeping data in cache

for(i=0; i<N; i++)
for(j=0; j<K; j++)

c[i][j] = 
a[i][j]*f[j];

do I=1, N
do J=1, K

c(I,J) = a(I,J)*f(J)
end do

end do

for(j=0; j<K; j++)
for(i=0; i<N; i++)

c[i][j] = 
a[i][j]*f[j];

do J=1, K
do I=1, N

c(I,J) = a(I,J)*f(J)
end do

end do



Simplest operation

for(i=0; i<K; i++)
a[i] = b[i]+c[i];

for(i=0; i<N; i++)
d[i] = k[i]*f;

for(i=0; i<K; i++){
a[i] = b[i]+c[i];
d[i] = k[i]*f;

}
for(i=K; i<N; i++)

d[i] = k[i]*f;

for(i=0; i<K; i++)
a[i] = b[i]+c[i];

for(i=0; i<K/4; i++){
a[i+0] = b[i+0]+c[i+0];
a[i+1] = b[i+1]+c[i+1];
a[i+2] = b[i+2]+c[i+2];
a[i+3] = b[i+3]+c[i+3];

}



File I/O operations



Reading data

char NextChar(FILE *fd){
char ch;
fread(&ch, 1, sizeof(char), fd);
return ch;

}

Do not read files by chars



Reading data diagram



Reading data
inline char NextChar1(FILE *fd){

static char buf[64];
static int ptr=0;
static int tch=0;

if(ptr==tch){
ptr = 0;
tch = fread(buf, sizeof(char), 64, fd);

}
return buf[ptr++];

}

●In Unix-like systems use mapping of file onto memory

– mmap, munmap



Writing data

● Use buffered output
● Do not write a lot to console 

for(i=0; i<N; i++){

//do something

printf(“\rComplete %d%%”, i*100/N);

}



Read and write asynchronously

● int aio_cancel(int, struct aiocb *);
● int aio_error(const struct aiocb *);
● int aio_fsync(int, struct aiocb *);
● int aio_read(struct aiocb *);
● ssize_t  aio_return(struct aiocb *);
● int aio_suspend(const struct aiocb *const[], int, 

const struct timespec *);
● int aio_write(struct aiocb *);



Double buffer

buf_indx = 0;
next_indx = 1;

bufs = init_get(buf_indx);

while(bufs >= 0){ // -1 – no data to process
bufs = init_get(next_indx);
wait_get(buf_indx);
process(buf_indx);
next_indx = buf_indx;
buf_indx = buf_indx ^ 1;

}



Triple buffer

i = 0;
end = 3;
while(end > 0){

wait_write((i+1)%3);
init_read((i+1)%3);
init_write((i+2)%3);
end -= wait_read(i);
process(i);
i++;
i %= 3;

}

P r o c e s s
b u f [ 0 ]

P r o c e s s
b u f [ 2 ]

P r o c e s s
b u f [ 1 ]

I n i t _ w r i t e  2
W a i t _ w r i t e  1

I n i t _ r e a d  1
W a i t _ r e a d  0

I n i t _ w r i t e  0
W a i t _ w r i t e  2

I n i t _ r e a d  2
W a i t _ r e a d  1

I n i t _ w r i t e  1
W a i t _ w r i t e  0

I n i t _ r e a d  0
W a i t _ r e a d  2



Memory

● Try to place all you data into CPUs cache
● Try to keep all you data in  RAM
● Avoid swapping

– Compress data

– Data recalculation

– Illuminate data duplication



Size of Data
struct _t1_{

char ch1;

char ch2;

int i;

}

struct _t2_{

char ch1;

int i;

char ch2;

}

– What is the result of:
● sizeof(_t1_)
● sizeof(_t2_)



Size of Data
struct _t1_{

char ch1;

char ch2;

int i1;

}

struct _t2_{

char ch1;

int i1;

char ch2;

}
– sizeof(_t1_) = 8 bytes
– sizeof(_t2_) = 12 bytes
– sizeof(char) + sizeof(char) + sizeof(int) ==  

sizeof(char) + sizeof(int) + sizeof(char) == 
6 bytes (!)

– Data alignment – word (4 bytes) by default for x86 

Bytes 0 1 2 3 4 5 6 7 8 9 10 11

_t1_ ch1 ch2 i1

_t2_ ch1 i1 ch2



Packing data
● ABC is given {'A', 'T', 'G', 'C', 'U'} 
● There are strings – RNA, DNA. Task is to find specified 

substring in the strings
● Problem solving:

– Read all strings into char *str[] and perform comparison. 
“Program works too slowly” - students complain.

– “Hmm! Let's change chars with numbers and place two 
chars into a byte. ... use asynchronous read while 
processing...” - my suggestion

– After a while. “That's great. No asynchronouse read 
required. By packing data I could allocate all of them in 
memory and therefor more data in cache. Performance is 
enough for me now”



Keep more data in cache

● For modeling particles one could place information 
about each particle into the following structure:

– struct data{
int x,y,z;
float mass;
char color;

} particles[number_particles];

● Color is not required for calculation

– Move color into separate array

– Turn from array of structs to structs of array



Lists



Trees
● Tree could be represented as array
● Useful for 

– reading data in tree

– Storing tree into file
● Not good for tree modification
● Sub-trees roots are:

– Ind * 2 + 1

– Ind * 2 + 2

A

B C

D E F G

H I J K L M N O

A B C D E F G H I J K L M N O
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14



Data structure alignment

Data structure alignment is the way data is arranged 
and accessed in computer memory. It consists of two 
separate but related issues: data alignment  and 
data structure padding. When modern computers 
read from or write to a memory address, it will do this 
in word sized chunks (e.g. 4 byte chunks on a 32-bit 
system). Data alignment is to put the data at a 
memory offset equal to some multiple of the word 
size, which increases the system's performance due 
to how the CPU handles memory. To align the data, 
it may be necessary to insert some meaningless 
bytes between the end of the last data structure and 
the start of the next, which is data structure padding.



Data structure alignment
double salary float tax

0x0...A0 0x0...A4 0x0...A8 0x0...AC

● tax is not aligned
● To fetch tax CPU need to fetch two words and do 

some calculations.
● Reading and writing unaligned data cause some 

performance problems   



Examples

float *a = (float*) malloc(128*sizeof(float));
● There is no guaranty a is word aligned

– Use memalign(), valloc(), posix_memalign()

– Align address by hands
● Alignment to cache line border is preferred
● For SSE routines  data should be 128bit aligned

double mash[121][511];
● What's wrong here?



Functions call

double Creconstruction::Integral(...){
Cpoint3D KSI;
// do something
for(int i = 0; i<512; i++){

// do something
KSI = GetKSI(NewBasic, LAMBDA, ALPHA, 0, source);
// do something
if(Function(LAMBDA, KSI, circle, &cell)){

// do something
}

}
// do something

}

bool CReconstruction::Function(double LAMBDA, CPoint3D KSI,
int circle, CMatrixElement *cell){

// do something
}



Functions call

double 
length(double x, double y){

return sqrt(x*x+y*y);
}

// do something
for(i=0; i<N; i++){

b[i] = 
length(a[i].x, a[i].y);

// do something
}

.globl length
        .type   length, @function
length:
.LFB2:
        pushq   %rbp
.LCFI0:
        movq    %rsp, %rbp
.LCFI1:
        subq    $48, %rsp
.LCFI2:
        movsd   %xmm0, -8(%rbp)
        movsd   %xmm1, -16(%rbp)
        movsd   -8(%rbp), %xmm0
...
        movsd   dst+820448(%rip), %xmm0
        movsd   dst+32784(%rip), %xmm2
        movapd  %xmm0, %xmm1
        movapd  %xmm2, %xmm0
        call    length
...

● Mark length function as inline
● Make length function as define 



Recursion
unsigned Factorial(unsigned n){

if(n == 0)
return 1;

return n*Factorial(n-1);

}

unsigned Fibonachi(unsigned n){
if(n == 0 || n == 1)

return 1;
return Fibonachi(n-1)+

 Fibonachi(n-2);

}

unsigned Factorial(unsigned n){
unsigned res=1, i;
for(i=1; i<=n; i++)

res *= i;
return res;

}

unsigned Fibonachi(unsigned n){
unsigned i;
unsigned res[3];
res[0] = res[1] = 1;

for(i=2; i<=n; i++)
res[i % 3] = 

res[(i-1) %3] +
res[(i-2) %3];

return res[n % 3];

}



Architecture specific 
optimization

● Compilator keys

– gcc -mcpu={i586, i686,pentium, pentiumpro, k6, 
athlon, ...} -march -O{1,2,3,4}

– icc {-tpp5, -tpp6, -tpp7, ...} -Ax{M,K,i,W} -O{1,2,3,4}
● Rewrite routines on ASM, use specific CPU instruction
● Use specific optimized libraries (MKL) 

● Optimized program would work on target platform only



Stream instructions

● SIMD – Single Instruction Multiple Data
● Intel

– SSE, SSE2, SSE3, SSE4
● AMD

– MMX, 3DNow, SSE2, SSE3, SSE4
● SSE has 70 instruction
● SSE2 adds 144 instructions



Streaming instructions
void F(float *dest, float *src1, float *src2, unsigned len){

unsigned i;
for(i=0; i<len; i++)

dest[i] = sqrt(src1[i]*src1[i] + src2[i]*src2[i]);
}

#include <xmmintrin.h>
void F_SSE(float *dest, float *src1, float *src2, unsigned len){

unsigned i;
__m128 m1, m2, m3, *arr1, *arr2, *arr3;
arr1 = (__m128*)dest; // dest – 16 byte aligned
arr2 = (__m128*)src1; // src1 – 16 byte aligned
arr3 = (__m128*)src2; // src2 – 16 byte aligned
for(i=0; i<len/4; i++){ // len divisible by 4

m1 = _mm_mul_ps(*arr1, *arr1);
m2 = _mm_mul_ps(*arr2, *arr2);
m3 = _mm_add_ps(m1, m2);
*arr3 = _mm_sqrt_ps(m3);
arr1++; arr2++; arr3++;

}
}

F_SSE() is 3-4 times faster then F()



Pseudo optimization

● Do something while user type a text (load drivers, 
spell checking, saving backup, scan for viruses)

● Move calculations and visualization into different 
threads



Parallel program optimization

● Sequential parts (see above)
● Communications

– Communication should take less time than 
calculations

● Load balancing. 

– Don't make one process to wait other one

– Rearrange initial data, rearrange each time step, ... 
  



Tools
Which part of your program should be optimized?

● A profiler is a performance analysis tool that 
measures the behavior of a program as it executes, 
particularly the frequency and duration of function calls

● Profilers history starts from early 1970s

– Used time based interrupts for saving PSW and 
discover “hot spots” on IBM/360, IBM/370

● Output:

– Trace

– Sampling



Methods of data gathering

● Event based profilers
– .NET, Java, Python, Ruby

● Statistical profilers

– gprof

– Oprofile

– CodeAnalyst

– VTune

– Valgring

– ...
● Hypervisor/Simulator

– SIMMON, OLIVER

http://en.wikipedia.org/wiki/List_of_performance_analysis_tools



Gprof example

Bash# gcc -Wall -O3 -g -pg mutation.c
Bash# ls gmon.out

gmon.out
Bash# gprof 

% cumulative    self              self    total           
 time seconds    seconds     calls  s/call   s/call name    

 43.41    121.94   121.94   6160896   0.00     0.00  MinusStr(...)
 20.27    178.89    56.94   3080448   0.00     0.00  MinusStr1(...)

 10.72    208.99    30.11       168   0.18     0.55  Read(...)
  8.45    232.73    23.74    299880   0.00     0.00  GetSost2(...)
  6.93    252.20    19.47    294000   0.00     0.00  BigMix0(...)
  5.66    268.09    15.89 246501360   0.00     0.00  IdeLet(...)
  2.65    275.53     7.44       168   0.04     1.11  BackMat(...)

  1.32    279.25     3.72 117600000   0.00     0.00  Mix(...)
  0.29    280.08     0.83        70   0.01     0.01  TransStr(...)
  0.23    280.72     0.64       168   0.00     1.67  EvalMah(...)



Intel VTune



Parallel program debugging 
and optimization tools

● HeNCE

● TRAPPER

● EDPEPPS

● GRADE

● AIMS (An Automated Instrumentation and Monitoring System)

● Vampir, VampirTrace

● Pablo Performance Analysis Toolkit Software

● Paradyn

● Jumpshot, Nupshot

● Puma

● CXperf 



Jampshot


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

